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A b s t r a c t : Inmathematics, the concept of strongly continuous one-parameter semi-
group (𝐶0-semigroup) appears intuitively to be the generalization of the (usual)
exponential function. Roughly speaking, this class of semigroups provides solu-
tions of linear ordinary differential equations with constant coefficients in Banach
spaces, see Schrödinger equation (1)–(2). Semigroup theory turns out to be fun-
damental in order to understand the time evolution in quantum mechanics, and
is necessary in order to generate the dynamics of both well-known formulations
(Shrödinger picture and Heisenberg picture). Within this paper, the main result
that we present is the Hille–Yosida theorem, see section 5, which characterizes the
generators of 𝐶0-semigroups of linear operators on Banach spaces. It is named
after the mathematicians Einar Hille and Kōsaku Yosida who independently stated
it around 1948. This manuscript is highly inspired by Engel and Nagel’s notes [2].

R e s u m e n : Enmatemáticas, el concepto de semigrupo uniparamétrico fuertemente
continuo (𝐶0-semigrupo) puede entenderse intuitivamente como generalización
de la función exponencial. A grandes rasgos, esta clase de semigrupos ofrece
soluciones a ecuaciones diferenciales ordinarias con coeficientes constantes en
espacios de Banach, véase la ecuación de Schrödinger (1)–(2). La teoría de semi-
grupos resulta fundamental a la hora de comprender la evolución temporal en
mecánica cuántica, y es necesaria para generar la dinámica de ambas formulacio-
nes conocidas (imagen de Schrödinger e imagen de Heisenberg ). En este artículo,
el principal resultado presentado es el teorema de Hille-Yosida, ver sección 5, que
caracteriza los generadores de los 𝐶0-semigrupos de operadores lineales sobre
espacios de Banach. Este teorema debe su nombre a los matemáticos Einar Hille
y Kōsaku Yosida, quienes lo enunciaron independientemente en torno a 1948. El
presente texto se inspira altamente en el libro de Engel y Nagel [2].
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Semigroup theory in quantum mechanics

N o t a t i o n s

• For a normed generic vector space 𝒳, its norm is denoted by ‖ ⋅ ‖𝒳.
• The identity element of a generic vector space 𝒳 is denoted by 𝟏𝒳.
• The set of linear operators from 𝒳 into 𝒳 is denoted by ℒ(𝒳).
• The set of all bounded linear operators on (𝒳, ‖ ⋅ ‖𝒳) is denoted by ℬ(𝒳). For an operator 𝐴 ∈ ℬ(𝒳),
its norm is defined by

‖𝐴‖ℬ(𝒳) ≔ sup
ᵆ∈𝒳

‖𝐴𝑢‖𝒳
‖𝑢‖𝒳

.

• If 𝒳 is a Hilbert space, then its norm is associated to a scalar product denoted by ⟨⋅, ⋅⟩𝒳.
• For all 𝐴,𝐵 ∈ ℬ(𝒳), we define

[𝐴,𝐵] ≔ 𝐴𝐵 − 𝐵𝐴 and {𝐴,𝐵} ≔ 𝐴𝐵 + 𝐵𝐴.

• For any complex number 𝑧, its conjugate is denoted by 𝑧.

1 . I n t r o d u c t i o n

The foundations of quantum mechanics were established during the first half of the 20th century. In the
mid-twenties, two main formulations of quantum physics appeared, both meant to establish the principles
of quantum theory. These two directions were taken byW. K. Heisenberg and by E. Schrödinger, respectively.
After being in opposition, they turned out to be equivalent after several contributions of J. von Neumann
on the foundation of quantum mechanics in the following years. Both formulations are currently used in
any standard textbook on quantum physics. For the sake of clarity, we will first set the so-called Schrödinger
picture of quantum mechanics. Indeed, it is widely known, used and commented in fields such as that of
partial differential equations (PDEs), for instance, through the celebrated Schrödinger equation.

2 . S c h r ö d i n g e r p i c t u r e o f q u a n t u m m e c h a n i c s

In 1925, following de Broglie’s hypothesis on wave property of matter, E. Schrödinger derived his celebrated
equation, describing a time-dependent wave behavior of quantum objects. In fact, the state of the
quantum system is completely described by a family of time dependent wave functions {𝜓(𝑡)}𝑡∈ℝ within a
Hilbert spaceℋ. For instance, for the one-particle case, one generally considers the caseℋ ≔ 𝐿2(ℝ3) or
ℋ ≔ ℓ2(ℤ3), respectively, for the continuum quantum system or the discrete one. This time evolution is
fixed by a self-adjoint operator𝐻 acting onℋ. Indeed, for any time 𝑡 ∈ ℝ, the wave function is determined
by the well-known Schrödinger equation:

( 1 ) (𝑆𝐸) {
i𝜕𝑡𝜓(𝑡) = 𝐻𝜓(𝑡),
𝜓(0) = 𝜓0 ∈ ℋ.

This implies that

( 2 ) 𝜓(𝑡) = e−i𝑡𝐻𝜓0, 𝑡 ∈ ℝ.

Note that the fact that 𝐻 is self-adjoint is important to give a sense to equations (1) and (2). It is described
through Stone’s theorem, see theorem 19, which sets that having a self-adjoint operator, acting on some
Hilbert space, is a sufficient condition in order to define a strongly continuous one-parameter group (also
denoted 𝐶0-group). We will say some words on them later but, at this point, the aim is to give an intuition
to the reader about the different ways to formulate quantum mechanics. A standard example taught to
every student in quantum mechanics is brought by the case whereℋ ≔ 𝐿2(ℝ3) and ‖𝜓(𝑡)‖ℋ = ‖𝜓0‖ℋ = 1.
Then, |𝜓(𝑡, 𝑥)|2 is interpreted as the probability for the particle to be at a position 𝑥 ∈ ℝ3 at time 𝑡 ∈ ℝ. As
mentioned in the introduction above, a widely studied standard example in the field of PDEs is given by
the case where the operator 𝐻 ≔ −Δ (the usual Laplacian operator). The same interpretation can be done
on the lattice ℤ3, instead of taking ℝ3.
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Aguado López et al.

3 . H e i s e n b e r g p i c t u r e o f q u a n t u m m e c h a n i c s

Physical quantities such as position, speed, energy, etc., are self-adjoint operators acting on the Hilbert
spaceℋ. They are called observables, being all quantities of the physical system that can be measured.
For instance, one of the most important observables is the celebrated self-adjoint Hamiltonian 𝐻 that
describes the time evolution of the wave function in the Schrödinger equation (1)–(2). This Hamiltonian is
associated with the energy observable.

The measurement of a physical quantity (observable) has, from this point of view, a random character. The
statistical distribution of its value is described by the family of wave functions {𝜓(𝑡)}𝑡∈ℝ (see equation (1)).
The expectation value of any observable 𝐵 acting onℋ is given by

⟨𝜓(𝑡),𝐵𝜓(𝑡)⟩ℋ .

By equation (2), it equals

( 3 ) ⟨𝜓(𝑡),𝐵𝜓(𝑡)⟩ℋ = ⟨𝜓0, ei𝑡𝐻𝐵e−i𝑡𝐻𝜓0⟩ℋ .

At this point, it turns out that, instead of considering the wave functions as being time-dependent, like
in the Schrödinger picture of quantum mechanics, one can take them as fixed in time and assume a
time evolution of the so-called observables. Both methods lead to the same statistical distribution as
one can see in equation (3). Indeed, for the time evolution of any observable 𝐵, we apply on it the map
𝜏𝑡(𝐵) ≔ ei𝑡𝐻𝐵e−i𝑡𝐻 for 𝑡 ∈ ℝ. For an operator 𝐻 acting on the Hilbert spaceℋ, the family {𝜏𝑡}𝑡∈ℝ defines a
strongly continuous group acting on ℬ(ℋ) and satisfies the following evolution equation for all 𝑡 ∈ ℝ:

( 4 ) 𝜕𝑡𝜏𝑡 = 𝜏𝑡 ∘ 𝛿 = 𝛿 ∘ 𝜏𝑡, 𝜏0 = 𝟏ℬ(ℋ),

where 𝟏ℬ(ℋ) is the identity operator on ℬ(ℋ) and the generator 𝛿 is defined on some dense subset 𝒟 of
ℬ(ℋ). Note that, if 𝐻 is a bounded operator onℋ, then 𝒟 = ℬ(ℋ) and

𝛿(𝐵) ≔ 𝑖 [𝐻,𝐵] , 𝐵 ∈ ℬ(ℋ).

{𝜏𝑡}𝑡∈ℝ is a family of isomorphisms of ℬ(ℋ) and, for all 𝐴,𝐵 ∈ 𝒟, one has

( 5 ) 𝛿(𝐴∗) = 𝛿(𝐴)∗ and 𝛿(𝐴𝐵) = 𝛿(𝐴)𝐵 + 𝐴𝛿(𝐵).

An operator satisfying (5) is called a symmetric derivation or ∗-derivation. 𝐴∗ is the usual adjoint operator of
𝐴. Once again, more precise definitions of the mathematical tools that are involved to formulate quantum
time evolution will be given later, since it is not necessary for the moment. Indeed, the aim of this section is
to give the readers intuition about the different approaches that can be taken. At this point, the knowledge
of semigroup properties turns out to be fundamental in order to understand the dynamics in quantum
mechanics. Observe that, in the Schrödinger picture, one has a semigroup acting on a Hilbert space, while
in the case of the Heisenberg picture, the semigroup acts on a Banach space. Within the next sections, we
introduce the main results in relation to semigroup theory.

4 . S e m i g r o u p s a n d g e n e r a t o r s

First of all, let us give the definitions and basic results of semigroup theory as they are given in Engel and
Nagel’s notes [2]. These will provide the basis required to prove the main theorems studied in this article.
Let 𝑋 be a Banach space.

D e f i n i t i o n 1 . A strongly continuous one-parameter semigroup, also called 𝐶0-semigroup, is a family
(𝑇(𝑡))𝑡≥0 of bounded operators 𝑇(𝑡)∶ 𝑋 → 𝑋 satisfying the functional equation

{
𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠) for all 𝑡, 𝑠 ≥ 0,
𝑇(0) = 𝟏𝑋
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and the strong continuity property, which is nothing else but the continuity of the orbit maps

𝜉𝑥∶ ℝ+ ⟶ 𝑋
𝑡 ⟼ 𝜉𝑥(𝑡) ≔ 𝑇(𝑡)𝑥

for each 𝑥 ∈ 𝑋. If these properties hold not only inℝ+ but also inℝ, we call (𝑇(𝑡))𝑡 a strongly continuous
group, or 𝐶0-group. ◀

L e m m a 2 . Let (𝑇(𝑡))𝑡≥0 be a 𝐶0-semigroup. Then, there exist 𝜔 ∈ ℝ and 𝑀 ≥ 1 such that, for all 𝑡 ≥ 0,

‖𝑇(𝑡)‖ℬ(𝑋) ≤ 𝑀 e𝜔𝑡.

P r o o f . From the uniform boundedness, there exists𝑀 ≥ 1 such that ‖𝑇(𝑠)‖ ≤ 𝑀 for all 0 ≤ 𝑠 ≤ 1. Writing
any 𝑡 ≥ 0 as 𝑡 = 𝑠 + 𝑛 with 𝑛 ∈ ℕ and 𝑠 ∈ [0, 1],

‖𝑇(𝑡)‖ℬ(𝑋) ≤ ‖𝑇(𝑠)‖ℬ(𝑋) ‖𝑇(1)‖𝑛ℬ(𝑋) ≤ 𝑀𝑛+1 = 𝑀e𝑛 log𝑀 ≤ 𝑀e𝑤𝑡

holds for 𝜔 ≔ log𝑀 and 𝑡 ≥ 0. ▪

D e f i n i t i o n 3 . If lemma 2 holds for 𝜔 = 0 and𝑀 = 1, the semigroup is called contractive. It means that
‖𝑇(𝑡)‖ℬ(𝑋) ≤ 1 for all 𝑡 ≥ 0. ◀

E x a m p l e 4 . Letℋ be a Hilbert space, 𝐴 ∈ ℬ(ℋ) ≔ 𝑋. It can be easily shown that the series

e𝑡𝐴 ≔
∞
∑
𝑛=0

1
𝑛! (𝑡𝐴)

𝑛

converges and that 𝑇(𝑡) ≔ e𝑡𝐴 defines a 𝐶0-group. From the triangle inequality, we deduce that

‖𝑇(𝑡)‖ℬ(𝑋) ≤ e𝑡‖𝐴‖𝑋,

and therefore lemma 2 holds for𝑀 = 1 and 𝜔 = ‖𝐴‖𝑋 ∈ ℝ. ◀

R e m a r k 5 (abstract Cauchy problem). In example 4, we have been able to define a 𝐶0-group from a
bounded operator. This group satisfies

( 6 ) {
̇𝑇(𝑡) = 𝐴𝑇(𝑡) for all 𝑡 ≥ 0,

𝑇(0) = 𝟏𝑋.

Themain topic studied in this article is the existence and properties of such an𝐴 for a general𝐶0-semigroup
(𝑇(𝑡))𝑡≥0 by using the abstract Cauchy problem (6). ◀

D e f i n i t i o n 6 . A 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is called uniformly continuous if the map

ℝ+ ⟶ ℬ(𝑋)
𝑡 ⟼ ‖𝑇(𝑡)‖ℬ(𝑋)

is continuous. ◀

P r o p o s i t i o n 7 . Let (𝑇(𝑡))𝑡≥0 be a uniformly continuous semigroup. Then, there exists a bounded operator
𝐴 on 𝑋 such that 𝑇(𝑡) = e𝑡𝐴 for all 𝑡 ≥ 0.

For more details, see theorem 2.12 in Engel and Nagel’s notes [2]. Within this article, we focus our study on
the general case of strong continuity. In this case, the existence of such a bounded operator 𝐴 requires a
deeper study of operator semigroups, see remark 5. We start by defining the generator of a 𝐶0-semigroup.

D e f i n i t i o n 8 (generator). The generator 𝐴∶ 𝐷(𝐴) ⊆ 𝑋 → 𝑋 of a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is the operator

𝐴𝑥 ≔ ̇𝜉𝑥(0) = lim
ℎ↓0

1
ℎ(𝑇(ℎ)𝑥 − 𝑥)

with domain
𝐷(𝐴) = {𝑥 ∈ 𝑋 ∶ lim

ℎ↓0

1
ℎ(𝑇(ℎ)𝑥 − 𝑥) exists } . ◀
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Note that the orbit map 𝜉𝑥 is differentiable on ℝ+ if and only if it is right-differentiable at 𝑡 = 0. Indeed,
the derivative of 𝜉𝑥(𝑡) at any 𝑡 depends only on the derivative at 𝑡 = 0 in the following way:

̇𝜉𝑥(𝑡) = 𝑇(𝑡) ̇𝜉𝑥(0).

The following lemma summarizes some (basic) properties of the generator. They will be used throughout
the proofs of the upcoming results.

L e m m a 9 . Let (𝐴,𝐷(𝐴)) be the generator of a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0. Then,

( i ) 𝐴∶ 𝐷(𝐴) → 𝑋 is a linear operator.
( i i ) If 𝑥 ∈ 𝐷(𝐴), then 𝑇(𝑡)𝑥 ∈ 𝐷(𝐴) and, for all 𝑡 ≥ 0,

d
d𝑡𝑇(𝑡)𝑥 = 𝑇(𝑡)𝐴𝑥 = 𝐴𝑇(𝑡)𝑥.

( i i i ) For all 𝑡 ≥ 0 and 𝑥 ∈ 𝑋,

∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 ∈ 𝐷(𝐴).

( i v ) For all 𝑡 ≥ 0,

𝑇(𝑡)𝑥 − 𝑥 =
⎧⎪
⎨⎪
⎩

𝐴∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 if 𝑥 ∈ 𝑋,

∫
𝑡

0
𝑇(𝑠)𝐴𝑥 d𝑠 if 𝑥 ∈ 𝐷(𝐴).

P r o o f . ( i ) From definition 8, it is clear that 𝐴 is a linear operator and that 𝐷(𝐴) is a linear subspace of 𝑋.
( i i ) Let 𝑥 ∈ 𝐷(𝐴). Since 𝑇(𝑡) is bounded for all 𝑡 ≥ 0,

𝑇(𝑡)𝐴𝑥 = 𝑇(𝑡) lim
ℎ↓0

1
ℎ(𝑇(ℎ)𝑥 − 𝑥) = lim

ℎ↓0

1
ℎ (𝑇(ℎ)𝑇(𝑡)𝑥 − 𝑇(𝑡)𝑥) = 𝐴𝑇(𝑡)𝑥

with
d
d𝑡 (𝑇(𝑡)𝑥) ≔ 𝑇(𝑡) lim

ℎ↓0

1
ℎ(𝑇(ℎ)𝑥 − 𝑥),

and hence
𝑇(𝑡)𝐴𝑥 = d

d𝑡 (𝑇(𝑡)𝑥) = 𝐴𝑇(𝑡)𝑥.

( i i i ) For all 𝑡 ≥ 0 and 𝑥 ∈ 𝑋,

lim
ℎ↓0

1
ℎ (𝑇(ℎ)

∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 −∫

𝑡

0
𝑇(𝑠)𝑥 d𝑠) = lim

ℎ↓0
(
1
ℎ
∫

𝑡

0
𝑇(𝑠 + ℎ)𝑥 d𝑠 − 1

ℎ
∫

𝑡

0
𝑇(𝑠)𝑥 d𝑠)

= lim
ℎ↓0

(
1
ℎ
∫

𝑡+ℎ

𝑡
𝑇(𝑠)𝑥 d𝑠 − 1

ℎ
∫

ℎ

0
𝑇(𝑠)𝑥 d𝑠)

= 𝑇(𝑡)𝑥 − 𝑥

(note that the last limit holds from the fundamental theorem of calculus).
( i v ) Note that from what we have just seen, for any 𝑥 ∈ 𝑋,

𝑇𝑥 − 𝑥 = lim
ℎ↓0

1
ℎ (𝑇(ℎ)

∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 −∫

𝑡

0
𝑇(𝑠)𝑥 d𝑠) = 𝐴∫

𝑡

0
𝑇(𝑠)𝑥 d𝑠.

Moreover, if 𝑥 ∈ 𝐷(𝐴), note that

|||
|||𝑇(𝑠)

𝑇(ℎ)𝑥 − 𝑥
ℎ − 𝑇(𝑠)𝐴𝑥|||

|||𝑋
≤ ‖𝑇(𝑠)‖ℬ(𝑋)

|||
|||
𝑇(ℎ)𝑥 − 𝑥

ℎ − 𝐴𝑥|||
|||𝑋
.
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Hence, on 𝑠 ∈ [0, 𝑡], for any 𝑡 ≥ 0 we have the following convergence, which is uniform with respect
to 𝑠:

𝑇(𝑠)𝑇(ℎ)𝑥 − 𝑥
ℎ

ᵆ
⟶
ℎ↓0

𝑇(𝑠)𝐴𝑥.

Therefore, for any 𝑥 ∈ 𝐷(𝐴),

lim
ℎ↓0

1
ℎ(𝑇(ℎ) − 𝟏𝑋)∫

𝑡

0
𝑇(𝑠)𝑥 d𝑠 = ∫

𝑡

0
𝑇(𝑠) lim

ℎ↓0
(
1
ℎ𝑇(ℎ) − 𝟏𝑋) 𝑥 d𝑠 = ∫

𝑡

0
𝑇(𝑠)𝐴𝑥 d𝑠.

This concludes the proof. ▪

The following theorems give us further properties of the generator.

T h e o r e m 1 0 . The generator 𝐴 of a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is closed, densely defined and it determines
the semigroup uniquely.

P r o o f . Let us prove 𝐴 is closed. Suppose there is a sequence (𝑥𝑛)𝑛∈ℕ ⊂ 𝐷(𝐴) such that 𝑥𝑛 → 𝑥 ∈ 𝑋, for
𝑛 → ∞. Suppose that 𝐴𝑥𝑛 → 𝑦 ∈ 𝑋, for 𝑛 → ∞. It suffices, by the characterisation of closed operators, to
show that 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 = 𝑦. Since 𝑥𝑛 ∈ 𝐷(𝐴), for 𝑡 > 0, one has (see lemma 9)

( 7 ) 𝑇(𝑡)𝑥𝑛 − 𝑥𝑛 = ∫
𝑡

0
𝑇(𝑠)𝐴𝑥𝑛 d𝑠.

We check now that ∫𝑡
0 𝑇(𝑠)𝐴𝑥𝑛 d𝑠 converges to ∫𝑡

0 𝑇(𝑠)𝑦 d𝑠 as 𝑛 → ∞. By strong continuity, the map
𝑠 ∈ [0, 𝑡] ↦ 𝑇(𝑠)𝑦 is integrable over [0, 𝑡]. By the triangular inequality of integrals,

‖
‖
‖
∫

𝑡

0
𝑇(𝑠)𝐴𝑥𝑛 d𝑠 −∫

𝑡

0
𝑇(𝑠)𝑦 d𝑠

‖
‖
‖
𝑋

=
‖
‖
‖
∫

𝑡

0
𝑇(𝑠)(𝐴𝑥𝑛 − 𝑦) d𝑠

‖
‖
‖
𝑋

≤ ∫
𝑡

0
‖𝑇(𝑠)(𝐴𝑥𝑛 − 𝑦)‖𝑋 d𝑠

≤ ∫
𝑡

0
‖𝑇(𝑠)‖ℬ(𝑋)‖𝐴𝑥𝑛 − 𝑦‖𝑋d𝑠 ≤ (∫

𝑡

0
𝑀e𝜔𝑠 d𝑠) ‖𝐴𝑥𝑛 − 𝑦‖𝑋.

Here we have used lemmas 9 and 2. The sequence of inequalities follows from the triangular inequality
for integrals, the boundedness of 𝑇(𝑠) (by strong continuity) and the exponential growth bound. Since
𝐴𝑥𝑛 converges to 𝑦, we deduce that lim𝑛→∞ ∫𝑡

0 𝑇(𝑠)𝐴𝑥𝑛 d𝑠 = ∫𝑡
0 𝑇(𝑠)𝑦 d𝑠. But the strong continuity of

the semigroup yields that lim𝑛→∞ 𝑇(𝑡)𝑥𝑛 − 𝑥𝑛 = 𝑇(𝑡)𝑥 − 𝑥. By uniqueness of limits, we conclude from
equation (7) that, for all 𝑡 ≥ 0,

𝑇(𝑡)𝑥 − 𝑥 = ∫
𝑡

0
𝑇(𝑠)𝑦 d𝑠.

When 𝑡 is taken to be positive, we have

1
𝑡 (𝑇(𝑡)𝑥 − 𝑥) =

1
𝑡
∫

𝑡

0
𝑇(𝑠)𝑦 d𝑠.

When 𝑡 approaches zero we are simply taking the derivative of 𝑇(𝑡)𝑥 at 𝑡 = 0. That limit exists by the
fundamental theorem of vector calculus (the integrand 𝑇(𝑠)𝑦 is continuous). This implies that

𝐴𝑥 = d
d𝑡 (𝑇(𝑡)𝑥) |𝑡=0 = 𝑇(0)𝑦 = 𝑦.

This means that 𝐴𝑥 = 𝑦 is well-defined, thus 𝑥 ∈ 𝐷(𝐴). Hence 𝐴 is closed.

To see that 𝐴 is densely defined, let us consider 𝑥 ∈ 𝑋. By lemma 9,

∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 ∈ 𝐷(𝐴)
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for all 𝑡 > 0. Moreover, since 𝑇 is strongly continuous, taking the limit 𝑡 → 0 is possible again by the
fundamental theorem of vector calculus. This yields

lim
𝑡→0

1
𝑡
∫

𝑡

0
𝑇(𝑠)𝑥 d𝑠 = 𝑇(0)𝑥 = 𝑥.

Thus, 𝐷(𝐴) is a dense subspace of 𝑋.

Finally, to prove that𝐴 determines the semigroup uniquely, we suppose there is another strongly continuous
semigroup (𝑆(𝑡))𝑡≥0 such that its generator is 𝐴∶ 𝐷(𝐴) → 𝑋. Let 𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0 be fixed. To see that
they are the same semigroup, we define the auxiliary function

𝑠 ∈ [0, 𝑡] ↦ 𝜓𝑡,𝑥(𝑠) = 𝑇(𝑡 − 𝑠)𝑆(𝑠)𝑥.

We differentiate this at 𝑠 ∈ [0, 𝑡]. Consider the quotient

1
ℎ(𝜓𝑡,𝑥(𝑠 + ℎ) − 𝜓𝑡,𝑥(𝑠)) =

1
ℎ(𝑇(𝑡 − 𝑠 − ℎ)𝑆(𝑠 + ℎ)𝑥 − 𝑇(𝑡 − 𝑠)𝑆(𝑠)𝑥)

= [𝑇(𝑡 − 𝑠 − ℎ)1ℎ(𝑆(𝑠 + ℎ)𝑥 − 𝑆(𝑠)𝑥)] + [
1
ℎ(𝑇(𝑡 − 𝑠 − ℎ) − 𝑇(𝑡 − 𝑠))𝑆(𝑠)𝑥] .

The second term converges to −𝐴𝑇(𝑡 − 𝑠)𝑆(𝑠)𝑥 as ℎ → 0, since 𝑆(𝑠)𝑥 ∈ 𝐷(𝐴) by lemma 9. The minus sign
comes from the chain rule: −𝐴 is the generator of 𝑠 ↦ 𝑇(𝑡 − 𝑠).

The first term converges to 𝑇(𝑡 − 𝑠)𝐴𝑆(𝑠)𝑥 due to the fact that ||𝑇(𝑡 − 𝑠 − ℎ)||ℬ(𝑋) is exponentially bounded
by𝑀e𝜔(𝑡−𝑠−ℎ) and the strong continuity of the semigroups. See lemma A.19 in Engel and Nagel’s notes [2],
where this version of the product rule for semigroups composition is proved in detail. Therefore,

d
d𝑠𝜓𝑡,𝑥(𝑠) = 𝑇(𝑡 − 𝑠)𝐴𝑆(𝑠)𝑥 + −𝐴𝑇(𝑡 − 𝑠)𝑆(𝑠)𝑥.

Since semigroups and generators commute (here −𝐴 is the generator of 𝑇(𝑡 − 𝑠)), we conclude that

d
d𝑠𝜓𝑡,𝑥(𝑠) = 0

for all 𝑠 ∈ [0, 𝑡]. Therefore, 𝜓𝑡,𝑥 is constant:

𝑇(𝑡)𝑥 = 𝜓𝑡,𝑥(0) = 𝜓𝑡,𝑥(𝑡) = 𝑆(𝑡)𝑥.

Hence, 𝑇(𝑡) and 𝑆(𝑡) agree on 𝐷(𝐴), which is dense on 𝑋. Thus, they agree on all 𝑋. ▪

Now, we are going to see some definitions and properties to prove the Hille-Yosida theorem.

D e f i n i t i o n 1 1 . Let 𝜆 ∈ ℂ and let 𝐴 be a closed linear operator. The resolvent set of 𝐴 is defined by

𝜌(𝐴) ≔ {𝜆 ∈ ℂ ∶ (𝜆𝟏𝑋 − 𝐴) is bijective},

and 𝑅(𝜆,𝐴) ≔ (𝜆𝟏𝑋 − 𝐴)−1 is called the resolvent map of 𝐴. ◀

R e m a r k 1 2 . Let (𝑇(𝑡))𝑡≥0 be a semigroup. For 𝜇 ∈ ℂ and 𝛼 > 0, we define the rescaled semigroup (𝑆(𝑡))𝑡≥0
by

𝑆(𝑡) = e𝜇𝑡𝑇(𝛼𝑡), 𝑡 ≥ 0.

Note that, if (𝐴,𝐷(𝐴)) is the generator of (𝑇(𝑡))𝑡≥0, then (𝛼𝟏𝑋,𝐷(𝜇𝟏𝑋+𝛼𝐴)) is the generator of (𝑆(𝑡))𝑡≥0 and
the resolvent map is 𝑅(𝜆,𝜇𝟏𝑋 + 𝛼𝐴) = 1

𝛼𝑅(
𝜆
𝛼 −

𝜇
𝛼 ,𝐴) for 𝜆 ∈ 𝜌(𝜇𝟏𝑋 + 𝛼𝐴) ◀

T h e o r e m 1 3 . Let (𝑇(𝑡))𝑡≥0 be a strongly continuous semigroup on the Banach space 𝑋, and let (𝐴,𝐷(𝐴))
be its generator. If 𝜆 ∈ ℂ is such that

𝑅(𝜆) ≔ ∫
+∞

0
e−𝜆𝑠𝑇(𝑠)𝑥 d𝑠

is well-defined for all 𝑥 ∈ 𝑋, then 𝜆 ∈ 𝜌(𝐴) and 𝑅(𝜆) = 𝑅(𝜆,𝐴).
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P r o o f . Without loss of generality, we can assume that 𝜆 = 0. Therefore, one needs to show that 0 ∈ 𝜌(𝐴).
In particular, we will show that 𝑅(0) = 𝑅(0,𝐴) = (−𝐴)−1. For all 𝑥 ∈ 𝑋 and ℎ > 0,

𝑇(ℎ) − 𝟏𝑋
ℎ 𝑅(0)𝑥 =

𝑇(ℎ) − 𝟏𝑋
ℎ

∫
+∞

0
𝑇(𝑠)𝑥 d𝑠 = 1

ℎ
∫

+∞

0
𝑇(𝑠 + ℎ)𝑥 d𝑠 − 1

ℎ
∫

+∞

0
𝑇(𝑠)𝑥 d𝑠

= 1
ℎ
∫

+∞

ℎ
𝑇(𝑠)𝑥 d𝑠 − 1

ℎ
∫

+∞

0
𝑇(𝑠)𝑥 d𝑠 = −1ℎ ∫

ℎ

0
𝑇(𝑠)𝑥 d𝑠.

Moreover,

lim
ℎ→0

(
1
ℎ
∫

ℎ

0
𝑇(𝑠)𝑥 d𝑠) = 𝑥.

Thus, 𝑅(0)𝑥 ∈ 𝐷(𝐴) and 𝐴𝑅(0) = −𝟏𝑋. Furthermore, if 𝑥 ∈ 𝐷(𝐴), we have that

lim
𝑡→+∞

∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 = 𝑅(0)𝑥

and, by lemma 9,

lim
𝑡→+∞

𝐴∫
𝑡

0
𝑇(𝑠)𝑥 d𝑠 = lim

𝑡→+∞
∫

𝑡

0
𝑇(𝑠)𝐴𝑥 d𝑠 = 𝑅(0)𝐴𝑥.

By theorem 10, we deduce that

𝑅(0)𝐴𝑥 = 𝐴𝑅(0)𝑥 = −𝑥, for 𝑥 ∈ 𝐷(𝐴).

This concludes the proof. ▪

C o r o l l a r y 1 4 . Let (𝑇(𝑡))𝑡≥0 be a strongly continuous semigroup such that

‖𝑇(𝑡)‖ℬ(𝑋) ≤ 𝑀e𝜔𝑡 𝜔 ∈ ℝ, 𝑀 ≥ 1.

If 𝜆 ∈ ℂ and 𝜔 < Re 𝜆, then
‖𝑅(𝜆,𝐴)‖ℬ(𝑋) ≤

𝑀
Re 𝜆 − 𝜔.

P r o o f . For 𝑡, 𝑡′ ≥ 0,
‖
‖
‖
∫

𝑡

𝑡′
e−𝜆𝑠𝑇(𝑠) d𝑠

‖
‖
‖
ℬ(𝑋)

≤ 𝑀∫
𝑡

𝑡′
e(𝜔−Re𝜆)𝑠 d𝑠.

By the Cauchy criterium, for 𝜔 < Re 𝜆,

∫
∞

0
e(𝜔−Re𝜆)𝑠 d𝑠

exists. Therefore, by theorem 13, 𝜆 ∈ 𝜌(𝐴) and

𝑅(𝜆,𝐴) = ∫
∞

0
e−𝜆𝑠𝑇(𝑠) d𝑠.

Obviously,

‖𝑅(𝜆,𝐴)‖ℬ(𝑋) ≤ 𝑀∫
∞

0
𝑒(𝜔−Re𝜆)𝑠 d𝑠 = 𝑀

Re 𝜆 − 𝜔.

This concludes the proof. ▪

24 https://temat.es/monograficos

https://temat.es/monograficos


Aguado López et al.

5 . H i l l e - Y o s i d a g e n e r a t i o n t h e o r e m

So far, we have given necessary properties for an operator to be a generator of a strongly continuous
semigroup on 𝑋. In particular, for a strongly continuous contraction semigroup (𝑇(𝑡))𝑡≥0, we know by
theorem 10 that its generator (𝐴,𝐷(𝐴)) is closed and densely defined. Moreover, because of corollary 14
and definition 3, for every 𝜆 ∈ ℂ such that Re 𝜆 > 0, 𝜆 ∈ 𝜌(𝐴) and

‖𝑅(𝜆,𝐴)‖ℬ(𝑋) ≤
1

Re 𝜆 .

Now we are going to show that these conditions are sufficient for contraction semigroup. First we recall a
result that will be useful in the sequel.

L e m m a 1 5 ([2, ch. I, §1, proposition 1.3]). Let (𝑇(𝑡))𝑡≥0 be a semigroup. If there exist a dense subset 𝐷 ⊂ 𝑋,
𝛿 > 0 and 𝑀 ≥ 1 such that

( i ) ‖𝑇(𝑡)‖ℬ(𝑋) ≤ 𝑀 for all 𝑡 ∈ [0, 𝛿] and
( i i ) lim

𝑡↓0
𝑇(𝑡)𝑥 = 𝑥 for all 𝑥 ∈ 𝐷,

then (𝑇(𝑡))𝑡≥0 is a strongly continuous semigroup.

T h e o r e m 1 6 (Hille-Yosida, 1948). Let (𝐴,𝐷(𝐴)) be a linear operator on a Banach space 𝑋. The following
statements are equivalent:

( i ) (𝐴,𝐷(𝐴)) generates a strongly continuous contraction semigroup.
( i i ) (𝐴,𝐷(𝐴)) is closed, densely defined, and for all 𝜆 > 0, 𝜆 ∈ 𝜌(𝐴) and ‖𝜆𝑅(𝜆,𝐴)‖ℬ(𝑋) ≤ 1.
( i i i ) (𝐴,𝐷(𝐴)) is closed, densely defined, and for all 𝜆 ∈ ℂ with Re 𝜆 > 0, 𝜆 ∈ 𝜌(𝐴) and ‖𝑅(𝜆,𝐴)‖ℬ(𝑋) ≤

1
Re𝜆 .

P r o o f . Note that (i) yields (iii) by an application of corollary 14. Moreover, (ii) is a straightforward
conclusion of (iii). Thus, it remains to prove that (ii) implies (i).

To that purpose, we define the Yosida approximants

𝐴𝑛 ≔ 𝑛𝐴𝑅(𝑛,𝐴) = 𝑛2𝑅(𝑛,𝐴) − 𝑛𝐼, 𝑛 ∈ ℕ.

Note that, for each 𝑛 ∈ ℕ,
‖𝐴𝑛‖ℬ(𝑋) ≤ 𝑛‖𝑛𝑅(𝑛,𝐴)‖ℬ(𝑋) + 𝑛 ≤ 2𝑛.

Moreover, since
(𝑛 − 𝐴)(𝑚 − 𝐴) = (𝑚 − 𝐴)(𝑛 − 𝐴),

one has
𝑅(𝑛,𝐴)𝑅(𝑚,𝐴) = 𝑅(𝑚,𝐴)𝑅(𝑛,𝐴) and [𝐴𝑛,𝐴𝑚] = 0.

These properties imply that the semigroups (𝑇𝑛(𝑡))𝑡≥0 given by𝑇𝑛(𝑡) ≔ e𝑡𝐴𝑛, 𝑡 ≥ 0, are uniformly continuous,
and mutually commute.

Because of the fact that 𝐴𝑛𝑥 = 𝑛𝐴𝑅(𝑛,𝐴)𝑥 = 𝑛2𝑅(𝑛,𝐴)𝑥 − 𝑛𝐼 converges to 𝐴𝑥 for 𝑥 ∈ 𝐷(𝐴) (see Engel and
Nagel’s notes [2, ch. II, §3, proposition 3.4]), we can anticipate the following properties:

( a ) 𝑇(𝑡)𝑥 ≔ lim𝑛→∞ 𝑇𝑛(𝑡)𝑥 exists for each 𝑥 ∈ 𝑋.
( b ) (𝑇(𝑡))𝑡≥0 is a 𝐶0-contraction semigroup on 𝑋.
( c ) This semigroup has generator (𝐴,𝐷(𝐴)).

In order to prove (a), we observe that (𝑇𝑛(𝑡))𝑡≥0 is a contraction semigroup for each 𝑛 ∈ ℕ:

( 8 ) ‖𝑇𝑛(𝑡)‖ℬ(𝑋) ≤ e−𝑛𝑡e ‖𝑛2𝑅(𝑛,𝐴))‖ℬ(𝑋)𝑡 ≤ e−𝑛𝑡e𝑛𝑡 = 1
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for 𝑡 ≥ 0, by assumption (ii).

Now, by using the mutual commutativity of the semigroups (𝑇𝑛(𝑡))𝑡≥0 for all 𝑛 ∈ ℕ and the vector-valued
version of the fundamental theorem of calculus, for 𝑥 ∈ 𝐷(𝐴), 𝑡 ≥ 0,𝑚, 𝑛 ∈ ℕ,

𝑇𝑛(𝑡)𝑥 − 𝑇𝑚(𝑡)𝑥 = ∫
𝑡

0

d
d𝑠 (𝑇𝑚(𝑡 − 𝑠)𝑇𝑛(𝑠)𝑥) d𝑠 = ∫

𝑡

0
𝑇𝑚(𝑡 − 𝑠)𝑇𝑛(𝑠)(𝐴𝑛𝑥 − 𝐴𝑚𝑥) d𝑠.

By using the triangle inequality and (8), we obtain that

( 9 ) ‖𝑇𝑛(𝑡)𝑥 − 𝑇𝑚(𝑡)𝑥‖ℬ(𝑋) ≤ 𝑡‖𝐴𝑛𝑥 − 𝐴𝑚𝑥‖ℬ(𝑋).

For 𝑥 ∈ 𝐷(𝐴), since (𝐴𝑛𝑥)𝑛∈ℕ is a Cauchy sequence, (𝑇𝑛(𝑡)𝑥)𝑛∈ℕ is a Cauchy sequence, i. e., (𝑇𝑛(𝑡)𝑥)𝑛∈ℕ
converges to some 𝑇(𝑡)𝑥. Now let 𝑥 ∈ 𝑋. Since 𝐷(𝐴) is dense in 𝑋, one has

∀𝜀 > 0,∃𝑦 ∈ 𝐷(𝐴) ∶ ‖𝑥 − 𝑦‖𝑋 < 𝜀.

Therefore,

‖𝑇𝑛(𝑡)𝑥 − 𝑇𝑚(𝑡)𝑥‖ℬ(𝑋) ≤ ‖𝑇𝑛(𝑡)(𝑥 − 𝑦)‖ℬ(𝑋) + ‖𝑇𝑛(𝑡)𝑦 − 𝑇𝑚(𝑡)𝑦‖ℬ(𝑋) + ‖𝑇𝑚(𝑡)(𝑦 − 𝑥)‖ℬ(𝑋).

Observe that the right side of the inequality is arbitrarily small as 𝑛,𝑚 go to ∞ because (𝑇𝑛(𝑡))𝑛∈ℕ is a
Cauchy sequence. Hence, (𝑇𝑛(𝑡)(𝑥))𝑛∈𝑁 is a Cauchy sequence, for all 𝑡 ≥ 0 and 𝑥 ∈ 𝑋. Therefore, it
converges to some 𝑇(𝑡)𝑥, for all 𝑥 ∈ 𝑋.

In (b), one needs to prove that the family of operators defined above is a strongly continuous contraction
semigroup. First, observe that

𝑥 = lim
𝑛→∞

𝑇𝑛(0)𝑥 = 𝑇(0)𝑥.

Hence,
𝑇(0) = 𝟏𝑋.

Moreover, for 𝑡, 𝑠 ≥ 0,

( 1 0 ) 𝑇(𝑡 + 𝑠)𝑥 = lim
𝑛→∞

𝑇𝑛(𝑡 + 𝑠)𝑥 = lim
𝑛→∞

𝑇𝑛(𝑡)𝑇𝑛(𝑠)𝑥.

Furthermore, for 𝑡, 𝑠 ≥ 0,

𝑇𝑛(𝑡)𝑇𝑛(𝑠)𝑥 = 𝑇𝑛(𝑡)𝑇(𝑠)𝑥 + 𝑇𝑛(𝑡)(𝑇𝑛(𝑠) − 𝑇(𝑠))𝑥.

Finally, observe that
lim
𝑛→∞

‖𝑇𝑛(𝑡)(𝑇𝑛(𝑠) − 𝑇(𝑠))𝑥‖𝑋 = 0

and
lim
𝑛→∞

𝑇𝑛(𝑡)𝑇(𝑠)𝑥 = 𝑇(𝑡)𝑇(𝑠)𝑥.

By (10) we thus deduce the semigroup property.

To prove that the family (𝑇(𝑡))𝑡≥0 is strongly continuous, note that, by (9), for all 𝑥 ∈ 𝐷(𝐴), 𝑇(𝑠)𝑥 is actually
the uniform limit of 𝑇𝑛(𝑠)𝑥 on the interval [0, 𝑡]. The maps 𝑠 ∈ [0, 𝑡] ↦ 𝑇𝑛(𝑠)𝑥 are continuous. Hence,
the uniform limit 𝑠 ∈ [0, 𝑡] ↦ 𝑇(𝑠)𝑥 is also continuous. From (8), ‖𝑇(𝑡)‖ ≤ 1 for all 𝑡 ≥ 0. Thus, by using
lemma 15 with 𝐷 = 𝐷(𝐴) we conclude the family is strongly continuous.

To finish the proof, it remains to show that the generator of (𝑇(𝑡))𝑡≥0, namely (𝐵,𝐷(𝐵)), is (𝐴,𝐷(𝐴)). Fix
any 𝑥 ∈ 𝐷(𝐴). The orbit map

𝜉𝑥 ∶ 𝑡 ∈ [0, 𝑡0] ↦ 𝜉𝑥(𝑡) = 𝑇(𝑡)𝑥

is the uniform limit of
𝜉𝑛𝑥 ∶ 𝑡 ∈ [0, 𝑡0] ↦ 𝜉𝑛𝑥 (𝑥) = 𝑇𝑛(𝑡)𝑥.

Also, their derivatives
d
d𝑡𝜉

𝑛
𝑥 ∶ 𝑡 ∈ [0, 𝑡0] ↦ 𝑇𝑛(𝑡)𝐴𝑛𝑥
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converge uniformly to
𝜂𝑥 ∶ 𝑡 ↦ 𝑇(𝑡)𝐴𝑥.

Indeed, for 𝑡 ∈ [0, 𝑡0]

‖𝑇𝑛(𝑡)𝐴𝑛𝑥 − 𝑇(𝑡)𝐴𝑥‖ℬ(𝑋) ≤ ‖𝑇𝑛(𝑡)(𝐴𝑛𝑥 − 𝐴𝑥)‖ℬ(𝑋) + ‖(𝑇𝑛(𝑡) − 𝑇(𝑡))𝐴𝑥‖ℬ(𝑋)

and the right hand side vanishes as 𝑛 goes to∞ uniformly with respect to 𝑡 ∈ [0, 𝑡0]. Since

𝜉𝑛𝑥 (𝑡) = 𝑥 +∫
𝑡

0

d
d𝑠𝜉

𝑛
𝑥 (𝑠) d𝑠 = 𝑥 +∫

𝑡

0
𝑇𝑛(𝑠)𝐴𝑛𝑥 d𝑠,

by taking 𝑛 → ∞, we have

𝜉𝑥(𝑡) = lim
𝑛→∞

𝜉𝑛𝑥 (𝑡) = 𝑥 +∫
𝑡

0
𝑇(𝑠)𝐴𝑥 d𝑠 = 𝑥 +∫

𝑡

0
𝜂𝑥(𝑠) d𝑠.

Thus, 𝜉𝑥 is differentiable with
d
d𝑡𝜉𝑥(𝑡)|𝑡=0 = 𝜂(0) = 𝐴𝑥, i. e., 𝐷(𝐴) ⊆ 𝐷(𝐵) and 𝐴𝑥 = 𝐵𝑥, for 𝑥 ∈ 𝐷(𝐴).

Now let 𝜆 > 0. By hypothesis, 𝜆 ∈ 𝜌(𝐴). Since (𝐵,𝐷(𝐵)) is the generator of the contraction semigroup
(𝑇(𝑡))𝑡≥0, 𝜆 ∈ 𝜌(𝐵). Thus, both (𝜆 −𝐴) and (𝜆 − 𝐵), possibly unbounded, admit a bounded inverse operator
mapping the whole space onto the domain of the generator. Then, for every 𝑦 ∈ 𝐷(𝐵), we get that

(𝜆 − 𝐵)𝑦 = 𝟏𝑋(𝜆 − 𝐵)𝑦 = (𝜆 − 𝐴) 𝑅(𝜆,𝐴)(𝜆 − 𝐵)𝑦⏟⎵⎵⎵⏟⎵⎵⎵⏟
∈𝐷(𝐴)

.

Moreover, since 𝐴 and 𝐵 agree on 𝐷(𝐴),

(𝜆 − 𝐵)𝑦 = (𝜆 − 𝐵)𝑅(𝜆,𝐴)(𝜆 − 𝐵)𝑦.

By applying 𝑅(𝜆,𝐵) on both sides we get

𝑦 = 𝑅(𝜆,𝐴)(𝜆 − 𝐵)𝑦 ∈ 𝐷(𝐴).

This implies that 𝐷(𝐵) ⊂ 𝐷(𝐴), thus (𝐴,𝐷(𝐴)) = (𝐵,𝐷(𝐵)). This concludes the proof. ▪

A generalization of the Hille-Yosida theorem was set in 1952 by Feller, Miyadera and Phillips. Its proof relies
on the generation theorem proved by Hille and Yosida, which can be applied after a rescaling argument
and a renormalization of the space.

T h e o r e m 1 7 (general generation theorem, Feller-Miyadera-Phillips, 1952). Let (𝐴,𝐷(𝐴)) be a linear op-
erator on a Banach space 𝑋 and let 𝜔 ∈ ℝ, 𝑀 ≥ 1 be constants. Then, the following properties are
equivalent.

( i ) (𝐴,𝐷(𝐴)) generates a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 satisfying that, for all 𝑡 ≥ 0,

‖𝑇(𝑡)‖ ≤ 𝑀e𝑤𝑡.

( i i ) (𝐴,𝐷(𝐴)) is closed, densely defined, and for all 𝜆 > 𝜔, 𝜆 ∈ 𝜌(𝐴) and

∀𝑛 ∈ ℕ ‖ [(𝜆 − 𝜔)𝑅(𝜆,𝐴)]𝑛 ‖ ≤ 𝑀.

( i i i ) (𝐴,𝐷(𝐴)) is closed, densely defined, and for all 𝜆 ∈ ℂ such that Re 𝜆 > 𝜔, 𝜆 ∈ 𝜌(𝐴) and

∀𝑛 ∈ ℕ ‖𝑅(𝜆,𝐴)𝑛‖ ≤ 𝑀
(Re 𝜆 − 𝜔)𝑛

.

P r o o f . The fact that (i) implies (iii) is proved in corollary 1.11 of Engel and Nagel’s notes [2]. We shall omit
this proof for a matter of space. Then, (iii) immediately implies (ii). Thus, we will detail the fact that (ii)
implies (i).
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We have already seen that, if 𝐴 generates (𝑇(𝑡))𝑡≥0, then 𝐴 − 𝜔 generates (e−𝑤𝑡𝑇(𝑡))𝑡≥0. Furthermore, the
resolvent satisfies

𝑅(𝜆,𝐴 − 𝜔) = 𝑅(𝜆 + 𝜔,𝐴).

Hence, for any 𝜆 > 0, 𝜆 ∈ 𝜌(𝐴 − 𝜔). One can assume without loss of generality that 𝜔 = 0. Therefore, by
hypothesis

( 1 1 ) ∀𝑛 ∈ ℕ ‖𝜆𝑛𝑅(𝜆,𝐴)𝑛‖ ≤ 𝑀.

Note that throughout the rest of the proof, as it has already been defined previously, 𝑅(𝜆,𝐴) is denoted by
𝑅(𝜆).

Now, we define, for any 𝜇 > 0, the following norm on 𝑋:

( 1 2 ) ‖𝑥‖𝜇 ≔ sup
𝑛≥0

‖𝜇𝑛𝑅(𝜇)𝑛𝑥‖𝑋,

which is equivalent to ‖ ⋅ ‖𝑋. In fact, the estimate ‖𝑥‖𝜇 ≤ 𝑀‖𝑥‖𝑋 follows from equation (11). By taking
𝑛 = 0 in (12) we get the equivalence of norms:

( 1 3 ) ∀𝑥 ∈ 𝑋, ‖𝑥‖𝑋 ≤ ‖𝑥‖𝜇 ≤ 𝑀‖𝑥‖𝑋.

Moreover,

( 1 4 ) ‖𝜇𝑅(𝜇)𝑥‖𝜇 = sup
𝑛≥1

‖𝜇𝑛𝑅(𝜇)𝑛𝑥‖𝑋 ≤ sup
𝑛≥0

‖𝜇𝑛𝑅(𝜇)𝑛𝑥‖𝑋 = ‖𝑥‖𝜇.

Let 0 < 𝜆 ≤ 𝜇 and fix some 𝑥 ∈ 𝑋. Observe that, for 𝑅(𝜆)𝑥 ∈ 𝐷(𝐴) and 𝑅(𝜇)(𝜇 − 𝐴) acting as the identity
on 𝐷(𝐴),

𝑅(𝜆)𝑥 = 𝑅(𝜇)(𝜇 − 𝐴)𝑅(𝜆)𝑥 = 𝑅(𝜇)(𝜇 − 𝜆)𝑅(𝜆)𝑥 + 𝑅(𝜇)(𝜆 − 𝐴)𝑅(𝜆)𝑥 = 𝑅(𝜇)(𝑥 + (𝜇 − 𝜆)𝑅(𝜆)𝑥).

By the triangle inequality on 𝜇-norms,

‖𝑅(𝜆)𝑥‖𝜇 ≤ ‖𝑅(𝜇)𝑥‖𝜇 + ‖(𝜇 − 𝜆)𝑅(𝜇)𝑅(𝜆)𝑥‖𝜇,

and, by using equation (14), we obtain that

‖𝜆𝑅(𝜆)𝑥‖𝜇 ≤ ‖𝑥‖𝜇.

Together with the norm equivalence in (13), this inequality implies

‖𝜆𝑛𝑅(𝜆)𝑛𝑥‖𝑋 ≤ ‖𝜆𝑛𝑅(𝜆)𝑛𝑥‖𝜇 ≤ ‖𝑥‖𝜇.

By considering the supremum over 𝑛 of the left hand side, we obtain the following property of the 𝜇-norms:

∀𝑥 ∈ 𝑋, ‖𝑥‖𝜆 ≤ ‖𝑥‖𝜇 for 0 < 𝜆 ≤ 𝜇.

Because of equation (13),
|||𝑥||| ≔ sup

𝜇>0
‖𝑥‖𝜇

is well-defined and actually defines another norm on 𝑋. Because of the equivalence relation of the 𝜇-norms,
the norm |||⋅||| satisfies

( 1 5 ) ∀𝑥 ∈ 𝑋, ‖𝑥‖𝑋 ≤ |||𝑥||| ≤ 𝑀‖𝑥‖𝑋.

One concludes that |||𝜆𝑅(𝜆)||| ≤ 1. Thus, (𝐴,𝐷(𝐴)) satisfies the hypothesis of theorem 16 and generates a
|||⋅|||-contraction semigroup (𝑇(𝑡))𝑡≥0 in the Banach space (𝑋, |||⋅|||). It follows from the equivalence of the
|||⋅|||-norm and the previous norm established in equation (15) that, for every 𝑡 ≥ 0,

‖𝑇(𝑡)‖ℬ(𝑋) ≤ 𝑀.

This concludes the proof. ▪
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6 . H i l b e r t s p a c e g e n e r a t i o n t h e o r e m s

In this section, letℋ be aHilbert space. First of all, given a strongly continuous semigroup (𝑇(𝑡))𝑡≥0 ⊂ ℬ(ℋ),
one shall define its adjoint semigroup as (𝑇(𝑡)∗)𝑡≥0. Note that, since 𝑇(𝑡)

∗𝑇(𝑠)∗ = (𝑇(𝑠)𝑇(𝑡))∗ = 𝑇(𝑡 + 𝑠)∗,
for 𝑡, 𝑠 ≥ 0, the adjoint semigroup is well-defined.

P r o p o s i t i o n 1 8 . Let (𝐴,𝐷(𝐴)) be the generator of the 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 acting on a Hilbert space ℋ.
Then, its adjoint semigroup is strongly continuous with generator (𝐴∗,𝐷(𝐴∗)).

P r o o f . For (𝑇(𝑡))𝑡≥0 being strongly continuous there exist 𝑀 ≥ 0, 𝜔 ∈ ℝ such that the growth bound
‖𝑇(𝑡)‖ℬ(ℋ) ≤ 𝑀e𝜔𝑡 holds. Since ‖𝑇(𝑡)∗‖ℬ(ℋ) = ‖𝑇(𝑡)‖ℬ(ℋ), the adjoint semigroup satisfies the same
inequality. Let 𝑥 ∈ 𝐷(𝐴) be a normalised vector and 𝑧 ∈ 𝐷(𝐴∗). Then, by the properties stated in lemma 9,

( 1 6 ) ⟨𝑥,𝑇(𝑡)∗𝑧 − 𝑧⟩ = ⟨𝑇(𝑡)𝑥 − 𝑥, 𝑧⟩ = ∫
𝑡

0
⟨𝐴𝑇(𝜏)𝑥, 𝑧⟩ d𝜏 = ∫

𝑡

0
⟨𝑥,𝑇(𝜏)∗𝐴∗𝑧⟩ d𝜏.

Thus, by the Cauchy-Schwarz and triangle inequalities1

( 1 7 ) |⟨𝑥,𝑇(𝑡)∗𝑧 − 𝑧⟩| ≤ ∫
𝑡

0
‖𝑇(𝜏)∗‖ℬ(ℋ)‖𝐴∗𝑧‖ℋ d𝜏 ≤ 𝑀𝑡e𝜔𝑡‖𝐴∗𝑧‖ℋ.

Since𝐷(𝐴) is dense inℋ, it follows from above that ‖𝑇(𝑡)∗𝑧−𝑧‖ℋ ≤ 𝑀𝑡e𝜔𝑡‖𝐴∗𝑧‖ℋ. Therefore, lim
𝑡↓0

𝑇(𝑡)∗𝑧 = 𝑧

for every 𝑧 ∈ 𝐷(𝐴). Moreover, for 𝑡0 > 0 and 𝑡 ∈ [0, 𝑡0], ‖𝑇(𝑡)∗‖ ≤ 𝑀e𝜔𝑡0 (𝑀 = 1, 𝜔 = 0 in the contraction
case). By lemma 15, the adjoint semigroup is strongly continuous.

Suppose that (𝐵,𝐷(𝐵)) is the generator of the adjoint semigroup. Let 𝑥 ∈ 𝐷(𝐴) and 𝑦 ∈ 𝐷(𝐵). Observe that

⟨𝐴𝑥, 𝑦⟩ = lim
𝑡↓0

1
𝑡 ⟨𝑇(𝑡)𝑥 − 𝑥, 𝑦⟩ = lim

𝑡↓0

1
𝑡 ⟨𝑥,𝑇(𝑡)

∗𝑦 − 𝑦⟩ = ⟨𝑥,𝐵𝑦⟩.

Therefore, 𝐷(𝐵) ⊂ 𝐷(𝐴∗), by definition of 𝐷(𝐴∗). Moreover, since 𝐷(𝐴) is dense, (16) implies that, for
𝑧 ∈ 𝐷(𝐴∗),

𝑇(𝑡)∗𝑧 − 𝑧 = ∫
𝑡

0
𝑇(𝜏)∗𝐴∗𝑧 d𝜏.

Hence, for 𝑧 ∈ 𝐷(𝐴∗),

𝐵𝑧 = lim
ℎ↓0

1
ℎ(𝑇(ℎ)

∗𝑧 − 𝑧) = lim
ℎ↓0

1
ℎ
∫

𝑡

0
𝑇(𝜏)∗𝐴∗𝑧 d𝜏 = 𝐴∗𝑧

holds and 𝐷(𝐴∗) ⊂ 𝐷(𝐵) and 𝐴∗ = 𝐵. ▪

A (possibly unbounded) operator 𝐴 acting on a Hilbert space is said to be skew-adjoint whenever 𝐴∗ = −𝐴.
The next theorem, due to Stone, deals with generators satisfying this property. The proof we provide relies
on the Hille-Yosida contraction generation theorem. As we will see in the next section, the generators of
evolution groups in quantum mechanics are skew-adjoint.

T h e o r e m 1 9 (Stone, 1932). Let (𝐴,𝐷(𝐴)) be an operator acting on aHilbert space. Then, (𝐴,𝐷(𝐴)) generates
a unitary 𝐶0-group (𝑈(𝑡))𝑡∈ℝ if and only if 𝐴 is skew-adjoint.

P r o o f . If (𝑈(𝑡))𝑡∈ℝ is a unitary 𝐶0-group, then 𝐴
∗ is the generator for𝑈(𝑡)∗ = 𝑈(𝑡)−1 = 𝑈(−𝑡), as was shown

in the previous theorem. Given any 𝑥 ∈ 𝐷(𝐴),

lim
ℎ↓0

1
ℎ(𝑈(ℎ)

∗𝑥 − 𝑥) = lim
ℎ↓0

1
ℎ(𝑈(−ℎ)𝑥 − 𝑥) = −𝐴𝑥,

1Note that the exponential term in the right-hand-side of equation (17) should be omitted in the contraction case.
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so 𝑥 ∈ 𝐷(𝐴∗). Since the left hand side equals 𝐴∗𝑥, 𝐷(𝐴) ⊂ 𝐷(𝐴∗) and −𝐴 agrees with 𝐴∗ along its domain.
One could repeat the same argument for arbitrary 𝑥 ∈ 𝐷(𝐴∗), obtaining that 𝐷(𝐴∗) ⊂ 𝐷(𝐴). Therefore,
𝐷(𝐴) = 𝐷(𝐴∗) and 𝐴 is skew-adjoint.

On the other hand, note that, if (𝐴,𝐷(𝐴)) is skew-adjoint, then (𝑖𝐴,𝐷(𝐴)) is self-adjoint. Thus, both
(𝐴,𝐷(𝐴)) and (𝐴∗,𝐷(𝐴∗)) = (−𝐴,𝐷(𝐴)) have a purely imaginary spectrum (lying on iℝ). It follows that

‖𝜆𝑅(𝜆,𝐴)‖ℬ(ℋ) ≤ sup
𝜇∈iℝ

𝜆
|𝜆 + 𝜇| ≤ 1.

The same calculation is satisfied by −𝐴 trivially. Therefore, because of the Hille-Yosida generation theorem
in the contraction case, (𝐴,𝐷(𝐴)), respectively (−𝐴,𝐷(𝐴)), is the generator of the semigroup (𝑈(𝑡)+)𝑡≥0,
respectively (𝑈(𝑡)−)𝑡≥0.

Now, we proceed to show that (𝑈(𝑡))𝑡∈ℝ defined by

𝑈(𝑡) = {
𝑈(𝑡)+ 𝑡 ≥ 0,
𝑈(−𝑡)− 𝑡 < 0

is a unitary 𝐶0-group. Indeed, the strong continuity follows after its definition. All that is left to prove is
that (𝑈(𝑡))𝑡∈ℝ, with composition as a product, is a unitary group.

We proceed to show that 𝑈(𝑡), 𝑈(−𝑡) are inverse elements with 𝑈(0) = 𝟏ℋ as identity element. To this end,
fix any 𝑥 ∈ 𝐷(𝐴). For 𝑡 = 0, 𝑈(0)+𝑈(0)−𝑥 = 𝟏ℋ𝑥 = 𝑥. Then, for 𝑡 > 0, because of the derivative properties
of 𝐶0-semigroups and the skew-adjointness of (𝐴,𝐷(𝐴)),

d
d𝑡𝑈(𝑡)

+𝑈(𝑡)−𝑥 = [𝑈(𝑡)+𝐴𝑈(𝑡)− + 𝑈(𝑡)+𝐴∗𝑈(𝑡)−] 𝑥 = 0.

Thus, for 𝑡 > 0, 𝑈(𝑡)+𝑈(𝑡)−𝑥 = 𝑥, and 𝐷(𝐴) is dense inℋ, so 𝑈(𝑡)𝑈(−𝑡) = 𝟏ℋ.

In order to prove that (𝑈(𝑡))𝑡∈ℝ is closed under composition, fix any 𝑡, 𝑠 > 0. We have 𝑈(𝑡)𝑈(𝑠) = 𝑈(𝑡 + 𝑠)
and 𝑈(−𝑡)𝑈(−𝑠) = 𝑈(−𝑡 − 𝑠), since (𝑈(𝑡)+)𝑡≥0 and (𝑈(𝑡)

−)𝑡≥0 are semigroups. If 𝑡 < 𝑠, then 𝑈(𝑡)𝑈(−𝑠) =
𝑈(𝑡)𝑈(−𝑡)𝑈(𝑡−𝑠) = 𝑈(𝑡−𝑠), and the 𝑡 > 𝑠 case follows similarly. Since composition is associative, (𝑈(𝑡))𝑡∈ℝ
is a group.

In order for 𝐴 to be skew-adjoint, (𝑈(𝑡)∗)𝑡≥0 must be generated by 𝐴∗ = −𝐴, as follows from proposition 18.
However, −𝐴 generates (𝑈(−𝑡))𝑡≥0 too, as follows from the construction above. Theorem 10 ensures the
uniqueness of the semigroup generated by −𝐴 so, for every 𝑡 ≥ 0, 𝑈(𝑡)∗ = 𝑈(−𝑡), i. e., the 𝐶0-group
(𝑈(𝑡))𝑡∈ℝ is unitary. ▪

7 . B a c k t o q u a n t u m m e c h a n i c s

In the setting of quantum mechanics, as explained in the introduction, the space of all possible states of
the system is modelled by a Hilbert spaceℋ. The energy of the system, described by the Hamiltonian 𝐻
(self-adjoint operator), determines the evolution of the system via the Schrödinger equation, previously
defined in (1).

As one can see in (2), the solution of the above system has the form 𝜓(𝑡, 𝑥) = 𝑈(𝑡)𝜓0(𝑥), where𝑈(𝑡) ∈ ℬ(ℋ)
for 𝑡 ∈ ℝ. Again, by (2), 𝑈(𝑡) satisfies

( 1 8 ) {
𝜕𝑡𝑈(𝑡) = −i𝐻𝑈(𝑡),
𝑈(0) = 𝟏ℋ.

Since 𝐻 is a self-adjoint operator, 𝐻 is densely defined, and so is −i𝐻. Thus, Stone’s theorem ensures that
−i𝐻 will generate a strongly continuous unitary group (𝑈(𝑡))𝑡∈ℝ satisfying the functional equation in (18).

In terms of the wave function interpretation, we need that the evolution semigroup preserves the norm of
the original state 𝜓0. Otherwise, there would be an undesirable loss (or gain) of probability if, for example,

‖𝜓𝑡‖ℋ < ‖𝜓0‖ℋ = 1.
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Stone’s theorem ensures this will not occur. Since the evolution operator is unitary, we are guaranteed that,
inℋ ,

‖𝜓𝑡‖ℋ = ‖𝑈(𝑡)𝜓0‖ℋ = ‖𝜓0‖ℋ = 1.

In terms of the Heisenberg picture introduced in section 3, the time evolution of an observable 𝐵 in a
system determined by the Hamiltonian 𝐻 is given by the action of a strongly continuous group {𝜏𝑡}𝑡∈ℝ
on ℬ(ℋ). This time evolution is defined by 𝜏𝑡(𝐵) ≔ ei𝑡𝐻𝐵e−i𝑡𝐻, for 𝑡 ∈ ℝ and 𝐵 ∈ ℬ(ℋ). These operators
satisfy equation (4), where 𝛿∶ 𝐷(𝛿) ⊂ ℬ(ℋ) → ℬ(ℋ) is a symmetric derivation defined on a dense subset
𝐷(𝛿) of ℬ(ℋ). It can be proved (in case of interest, see [1]) that these symmetric derivations satisfy the
hypothesis of the Hille-Yosida generation theorem. Therefore, they are the generators of the 𝐶0-group
{𝜏𝑡}𝑡∈ℛ and determine the evolution of the physical system uniquely.

In fact, the 𝛿 operators described above belong to the class of dissipative operators, which are contained in
the core of the Lumer-Phillips generation theorem [2, theorem 3.15]. This theorem allows to adapt the
Hille-Yosida generation theorem to dissipative operators, in a similar way as the Stone theorem, which
adjusts our main theorem to self-adjoint operators.

Bru and de Siqueira Pedra [1] show an example of application of symmetric derivations in quantum
mechanics generating a 𝐶0-group. These structures are associated to the behaviour of fermions in lattices.
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