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Approximation and the full Müntz-Szász theorem

1 . I n t r o d u c t i o n

The genesis of approximation theory is the classic result of Weierstrass about the approximation of contin-
uous functions by polynomials. As Bertrand Russel said: «All exact science is dominated by the idea of
approach». When one calculates, one approximates.

The first work on this subject is attributed to Leonhard Euler, who was trying to solve the problem of
drawing a map of the Russian Empire whose latitudes were accurate. In 1777, he published the work where
he gave the best approximation in relation to the altitudes and latitudes considering all the points of a
meridian between the given latitudes, that is, over the entire interval. Given the vast area occupied by the
Russian Empire, all projections had a large number of errors on the edge of the map, which is why Euler’s
approach was a great contribution.

A problem shown by Laplace shared the same character. A paragraph from a famous work, first published
in 1799, dealt with the question of determining the best ellipsoidal approximation of the Earth’s surface.
Here, it was relevant to obtain the least possible error at each point on the Earth’s surface. Euler solved his
problem in the total domain; on the contrary, Laplace assumed a finite amount of points considerably
greater than the number of parameters of the problem. Fourier generalized the results of Laplace in his
work Analyse des équations determinées. It dealt with the problem of solving, through an approximation
method, linear systems of equations with a greater number of equations than of parameters. His method
was to minimize the error of each equation.

In 1853, Chebyshev was the first to unify all these considerations in a work under the title of ‘Theory of
functions that became as little as possible of zero’. A well-known problem of that time was the so-called
Watts parallelogram, which studied the determination of the parameters of a steam engine mechanism, so
that the conversion of rectilinear movement into a circular movement was as accurate as possible. This led
to the general problem of the approximation of a real analytical function by a polynomial of any degree.
The first objective that Chebyshev achieved was the determination of the degree 𝑛 polynomial with the
first coefficient given whose zero deviation is the smallest possible over the [−1, 1] interval. Today, this
polynomial is known as the first species Chebyshev polynomial.

In 1857, Chebyshev presented a work entitled “Sur les questions de minima qui se rattachent à la représen-
tation approximative des fonctions”, in which he pays attention to the following problem: determining the
value of the parameters 𝜆1, 𝜆2,… , 𝜆𝑛 which solve

min
𝜆1,…,𝜆𝑛

max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥, 𝜆1,… , 𝜆𝑛)|,

where 𝑓∶ ℝ𝑛+1 → ℝ is a given function. He also proved that, under certain hypotheses about partial
derivatives, it was possible to demonstrate a necessary condition for the solution of the previous problem.

The objective of this contribution was to find the polynomial that deviates uniformly as little as possible
from zero for any given number of coefficients. This goal mainly determined his early contributions at the
St. Petersburg Mathematical School in the area of approximation theory.

The Mathematical School of St. Petersburg was characterized by its tendency to solve specific problems
with the intention of obtaining an explicit formula or, failing this, an algorithm that suited its purposes
adequately. Consequently, all the contributions of the members of this school were oriented towards
classical mathematics, due to the exclusive use of algebraic methods. It is relevant to highlight the
articles by Zolotarev and the Markov brothers, who emphasized special problems in the field of uniform
approximation theory. One of the most striking results of the Markov brothers is the following inequality,
which states, that if 𝑃∶ [−1, 1] → ℝ is a polynomial of degree at most 𝑛, then

max
𝑥∈[−1,1]

|𝑃(𝑘)(𝑥)| ≤
𝑛2 (𝑛2 − 1) (𝑛2 − 2) ⋅ (𝑛2 − (𝑘 − 1)2)

1 ⋅ 2 ⋅ 5⋯(2𝑘 − 1) max
𝑥∈[−1,1]

|𝑃(𝑥)|, 𝑘 ≤ 𝑛.

The equality is achieved in the first species Chebyshev polynomials.

Sergei Natanovich Bernstein made use of this result to prove one of his theorems. However, due to the
nature of the task, their investigations rested, again, on algebraic methods. The last contribution to the
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early approximation theory of the St. Petersburg Mathematical School, which came from the hand of
Andrey Markov, took place in 1906.

Throughout this time, it is remarkable that the results achieved by western mathematicians were not cited.
Not even the renownedWeierstrass theorem from 1885 was cited in any of these publications.

Outside of Russia, approximation theory was born in a different way. It had been preferred to address
a theory of the more theoretical approach, due to the great interest in some basic questions generated
at the end of the 18th century for the problem of the oscillating rope. The interest in defining the most
important concept of modern analysis, the concept of continuous function, played a fundamental role in
the consequences derived fromWeierstrass’s approach theorem. He defined the objective, and therefore, it
was time to explicitly find sequences of algebraic or trigonometric polynomials that converged to a given
continuous function. Finally, they tried to determine the speed of convergence with which these sequences
could converge, that is, how quickly the approximation error decreased. Such were the objectives of a large
series of alternative tests that quickly emerged afterWeierstrass’s original work.

T h e o r e m 1 (Weierstrass, 1885). Every continuous function defined in a compact of the real line is uniform
limit of polynomials.

Some proofs of theWeierstrass theorem have been provided by great mathematicians: Lipót Fejèr used
harmonic analysis techniques; the proof of Edmund Landau is based on basic tools of real analysis in one
variable, and Sergei Bernstein applied a probabilistic method.

2 . T h e M ü n t z - S z á s z t h e o r e m o n 𝐶([0, 1])
In 1912, at the Cambridge International Congress of Mathematicians, Bernstein posed a problem from
Weierstrass’s result. He asked about the conditions under which a set of positive numbers {𝜆𝑛}𝑛∈ℕ verifies
that the set of finite linear combinations of {𝑡𝜆𝑛}𝑛∈ℕ is dense in 𝐶([0, 1]). Bernstein himself gave some
partial results and he guessed rightly that the harmonic sum∑𝑛∈ℕ 1/𝜆𝑛 would be crucial. Only two years
later, in 1914, Müntz confirmed the conjecture and demonstrated what went down in history as the
Müntz-Százs theorem.

T h e o r e m 2 (Müntz-Szász theorem). Let {𝜆𝑛}∞𝑛=1 be an increasing sequence of positive real numbers. Then,
the subspace of finite linear combinations of 1, 𝑡𝜆1, 𝑡𝜆2, 𝑡𝜆3,…, i. e., the space span{1, 𝑡𝜆1, 𝑡𝜆2, 𝑡𝜆3,…}, is dense
in 𝐶[0, 1] if and only if

∞
∑
𝑛=1

1
𝜆𝑛

= +∞.

In 1916, Szász published an article where he completed the proof, further improving and simplifying it.
Müntz’s demonstration uses real variable techniques and is based on estimating the distance between any
continuous function to certain finite subspaces of polynomials, which can be made as small as desired.
Szász’s proof makes use of complex variable techniques combined with some arguments of functional
analysis. The proof we present here can be found in Rudin’s book [7] and follows Szász’s ideas.

The first step towards proving theorem 2 is to present a more practical and complete version which implies
the Müntz-Szász theorem.

T h e o r e m 3 . Let 0 < 𝜆1 < 𝜆2 < 𝜆3 < … and

𝑋 = span{1, 𝑡𝜆1, 𝑡𝜆2, 𝑡𝜆3,…}.

( i ) If
∞
∑
𝑛=1

1
𝜆𝑛

= +∞, then 𝑋 = 𝐶[0, 1].

( i i ) If
∞
∑
𝑛=1

1
𝜆𝑛

< +∞ and 𝜆 ∉ {𝜆𝑛}∞𝑛=1, 𝜆 ≠ 0, then 𝑡𝜆 ∉ 𝑋.

To prove this theorem, we will use the following lemma.
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L e m m a 4 . Let 0 < 𝜆1 < 𝜆2 < 𝜆3 < … be a sequence such that ∑𝑛 1/𝜆𝑛 = ∞, and let 𝜇 be a complex Borel
measure on 𝐼 = (0, 1] such that 𝑇 ∈ 𝐶(𝐼)∗ ≅ 𝑀(𝐼), where 𝐶(𝐼)∗ is the continuous dual of 𝐶(𝐼), is a linear
and bounded functional associated to 𝜇 with

( 1 ) 𝑇(𝑡𝜆𝑛) = ∫
1

0
𝑡𝜆𝑛 d𝜇(𝑡) = 0, 𝑛 = 1, 2, 3,…

Then,

𝑇(𝑡𝑘) = ∫
1

0
𝑡𝑘 d𝜇(𝑡) = 0, 𝑘 = 1, 2, 3,…

P r o o f . Suppose that the condition (1) holds. We may assume that the measure 𝜇 is concentrated on
𝐼 = (0, 1]. We consider the function

𝑓(𝑧) = ∫
1

0
𝑡𝑧 d𝜇(𝑡) = ∫

1

0
e𝑧 log 𝑡 d𝜇(𝑡),

which is well-defined and bounded in the right half plane ℂ+ ≔ {𝑧 ∈ ℂ ∶ ℜ𝑧 > 0}:

|𝑓(𝑧)| ≤ ∫
1

0
|e𝑧 log 𝑡| d|𝜇|(𝑡) = ∫

1

0
eℜ(𝑧) log 𝑡 d|𝜇|(𝑡) = ∫

1

0
𝑡ℜ(𝑧) d|𝜇|(𝑡) ≤ ‖𝜇‖ < +∞.

Now, we check that the function 𝑓 is continuous. Let 𝜀 > 0. Since the map 𝑡 ↦ 𝑡𝑧 is uniformly continuous
in the compact [0, 1], there exists 𝛿(𝜀) > 0 such that

|𝑓(𝑧) − 𝑓(𝑧0)| ≤ ∫
1

0
|𝑡𝑧 − 𝑡𝑧0| d|𝜇|(𝑡) ≤ 𝜀∫

1

0
d|𝜇|(𝑡) = 𝜀‖𝜇‖,

for |𝑧 − 𝑧0| < 𝛿.

Let 𝛾 be a regular closed path on ℂ+. By Fubini’s theorem, we obtain that

∮
𝛾
𝑓(𝑧) d𝑧 = ∮

𝛾
∫

1

0
𝑡𝑧 d𝜇(𝑡) d𝑧 = ∫

1

0
∮
𝛾
𝑡𝑧 d𝑧 d𝜇(𝑡) = 0,

and we conclude that 𝑓 is a bounded analytic function on ℂ+.

We define the function
𝑔(𝑧) ≔ 𝑓 (

1 + 𝑧
1 − 𝑧) , 𝑧 ∈ � ≔ {𝑧 ∈ ℂ ∶ |𝑧| < 1}.

Note that 𝑔 ∈ 𝐻∞, i. e., it is a bounded analytic function on the disc. By the hypothesis (1) we conclude
that 𝑔(𝛼𝑛) = 0, where

𝛼𝑛 ≔
𝜆𝑛 − 1
𝜆𝑛 + 1 .

We claim that ∞
∑
𝑛=1

1
𝜆𝑛

= +∞ ⟹
∞
∑
𝑛=1

1 − |𝛼𝑛| = +∞.

Note that ∞
∑
𝑛=1

1 − |||
𝜆𝑛 − 1
𝜆𝑛 + 1

||| =
∞
∑
𝑛=1

𝜆𝑛 + 1 − |𝜆𝑛 − 1|
𝜆𝑛 + 1 .

We split in two different cases.

• If 0 < 𝜆𝑛 < 1 for all 𝑛 ∈ ℕ, then 𝜆𝑛 + 1 − |𝜆𝑛 − 1| = 2𝜆𝑛 and
∞
∑
𝑛=1

1 − |𝛼𝑛| =
∞
∑
𝑛=1

2𝜆𝑛
𝜆𝑛 + 1 = +∞,

due to the fact that
2𝜆𝑛
𝜆𝑛 + 1 ↛ 0 when 𝑛 → ∞.
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• If there exists 𝑚 ∈ ℕ such that 𝜆𝑛 ≥ 1 for all 𝑛 ≥ 𝑚, then 𝜆𝑛 + 1 − |𝜆𝑛 − 1| = 2 and

∞
∑
𝑛=1

1 − |𝛼𝑛| ≥
∞
∑
𝑛=𝑚

2
𝜆𝑛 + 1 = +∞.

By the Riesz representation theorem, we conclude that 𝑔(𝑧) = 0, for 𝑧 ∈ �. In particular,

𝑇(𝑡𝑘) = ∫
𝐼
𝑡𝑘 d𝜇(𝑡) = 𝑓(𝑘) = 𝑔 (𝑘 − 1

𝑘 + 1) = 0, 𝑘 = 1, 2, ...,

and we conclude the proof. ▪

Now we present the proof of theorem 3.

P r o o f o f t h e o r e m 3 . To show part (i), it is enough to show that 𝑋 contains all the functions 𝑡𝑘, for 𝑘 = 1, 2, 3,…,
and apply theWeierstrass approximation theorem. Suppose that there exists 𝑘0 ∈ ℕ such that 𝑡𝑘0 ∉ 𝑋. By
the Hahn-Banach theorem, there exists a bounded and linear functional 𝑇∶ 𝐶[0, 1] → ℝ such that

𝑇(𝑡𝑘0) ≠ 0 and 𝑇|span{1,𝑡𝜆1,𝑡𝜆2,…} ≡ 0.

By lemma 4, we conclude that 𝑇(𝑡𝑘0) = 0, which contradicts our hypothesis.

In order to prove part (ii), assume that
∞
∑
𝑛=1

1
𝜆𝑛

< ∞.

Our objective is to give a bounded linear functional 𝑇 = ⟨⋅,𝜇⟩ ∈ 𝐶[0, 1]∗ such that 𝑇(𝑡𝜆𝑛) = 0 for all
𝑛 ∈ ℕ ∪ {0} (𝜆0 = 0), but 𝑇(𝑡𝜆) ≠ 0 for 𝜆 ∉ {𝜆𝑛}𝑛≥1. By the Hahn-Banach theorem, we shall conclude that
𝑡𝜆 ∉ span{1, 𝑡𝜆1, 𝑡𝜆2, 𝑡𝜆3,…} for 𝜆 ∉ {𝜆𝑛}∞𝑛=1.

To get this, we would need to obtain a complex Borel measure 𝜇 on [0, 1] such that the analytic function 𝑓,
given by

𝑧 ↦∫
1

0
𝑡𝑧 d𝜇(𝑡),

defines a bounded function on the half plane ℂ−1 ≔ {𝑧 ∈ ℂ ∶ ℜ(𝑧) > −1}, and whose zeros are precisely
the sequence {𝜆𝑛}∞𝑛=1. In this case, we shall take 𝑇 ≔ ⟨⋅,𝜇⟩.

We consider the function 𝑓 given by

𝑓(𝑧) ≔ 𝑧
(2 + 𝑧)3

∞
∏
𝑛=1

𝜆𝑛 − 𝑧
2 + 𝜆𝑛 + 𝑧 , 𝑧 ∈ ℂ ⧵ {−2 − 𝜆𝑛}.

First, we check that the function 𝑓 is a meromorphic function whose poles are the set {−2−𝜆𝑛 ∶ 𝑛 ∈ ℕ} and
whose zero set is {𝜆𝑛}∞𝑛=1. To do this, it is enough to show the uniform convergence of the infinite product
on compacts contained in ℂ ⧵ {−2− 𝜆𝑛}. This convergence is equivalent to the uniform convergence of the
following series:

( 2 )

∞
∑
𝑛=1

|||1 −
𝜆𝑛 − 𝑧

2 + 𝜆𝑛 + 𝑧
||| =

∞
∑
𝑛=1

|||
2𝑧 + 2

2 + 𝜆𝑛 + 𝑧
||| .

Fixed 𝐾 a compact set, there exists 𝛼 > 0 such that 𝐾 ⊂ ℂ−𝛼 = {𝑧 ∈ ℂ ∶ ℜ(𝑧) > −𝛼}. As the series
∞
∑
𝑛=1

1
𝜆𝑛

is

convergent, there exist 𝑁 ∈ ℕ and 𝐶 > 0, which only depends on the compact set 𝐾, such that

|||
2𝑧 + 2

2 + 𝜆𝑛 + 𝑧
||| ≤

𝐶
2 + 𝜆𝑛 − 𝛼 ,

for 𝑛 > 𝑁. By theWeierstrass M-test, we obtain the uniform convergence of series (2).
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Now we claim that the function 𝑓 is bounded on ℂ−1. Every factor in the infinite product and the fraction
𝑧

2+𝑧 are Möbius transform from ℂ−1 into the disc. Finally, as
1

(2+𝑧)2 ≤ 1 for 𝑧 ∈ ℂ−1, we conclude that 𝑓 is
bounded on ℂ−1.

Note that 𝑓 ∈ 𝐿1({𝑧 ∈ ℂ ∶ ℜ(𝑧) = −1}), due to the fact that

∫
ℝ

|𝑓(−1 + i𝑡)| d𝑡 ≤ 𝐶∫
ℝ

1
1 + 𝑡2 d𝑡 = 𝐶π.

By Cauchy’s theorem, given 𝑧0 ∈ ℂ−1, we have that

𝑓(𝑧0) = ∫
𝛾

𝑓(𝑧)
𝑧 − 𝑧0

d𝑧,

where 𝛾 is the path formed by the semicircle with center −1 and radius 𝑅 > 1+|𝑧0|, from −1− i𝑅 to −1+ i𝑅
and the interval [−1 − i𝑅,−1 + i𝑅]. Then, we obtain that

𝑓(𝑧0) =
1
2π ∫

𝑅

−𝑅

𝑓(−1 + i𝑠)
1 − i𝑠 + 𝑧0

d𝑠 + 1
2π ∫

π/2

−π/2

𝑓(−1 + 𝑅ei𝜃)
−1 + 𝑅ei𝜃 − 𝑧0

𝑅ei𝜃 d𝜃.

Since |𝑓(𝑧)| ≤ ||
𝑧

(2+𝑧)3
||, the second summand tends to 0 when 𝑅 → ∞. We get the equality

𝑓(𝑧) = ∫
ℝ

𝑓(−1 + i𝑠)
1 − i𝑠 + 𝑧 d𝑠, 𝑧 ∈ ℂ−1.

We apply the identity
1

1 − i𝑠 + 𝑧 = ∫
1

0
𝑡𝑧e−i𝑠 log 𝑡 d𝑡

and Fubini’s theorem to get that

( 3 ) 𝑓(𝑧) = ∫
1

0
𝑡𝑧 (

1
2π ∫

ℝ

𝑓(−1 + i𝑠)e−i𝑠 log 𝑡 d𝑠) d𝑡, 𝑧 ∈ ℂ−1.

We define 𝑔(𝑠) = 𝑓(−1 + i𝑠). Note that the inner integral in (3) is equal to ̂𝑔(log 𝑡), where ̂𝑔 is the Fourier
transform of 𝑔. Since ̂𝑔 is continuous and bounded, we define

d𝜇 = 1
2π

̂𝑔(log 𝑡) d𝑡

to conclude that 𝜇 is a complex Borel measure on [0, 1]. Finally, we obtain the following representation
of 𝑓:

𝑓(𝑧) = ∫
1

0
𝑡𝑧 d𝜇(𝑡),

and the proof is completed. ▪

3 . T h e f u l l M ü n t z - S z á s z t h e o r e m o n 𝐿2([0, 1])
Now that we have demonstrated the classical Müntz-Szász theorem, it is worth asking if we can extend the
result for other functional spaces, such as Lebesgue spaces 𝐿𝑝([0, 1]), or if it is really necessary that the
sequence of exponents {𝜆𝑛}𝑛∈ℕ is monotone increasing. These questions were partially answered by the
mathematicians Borwein and Erdélyi in an article published in 1996 [1] where they proved theMüntz-Szász
theorem for spaces 𝐿1([0, 1]), 𝐿2([0, 1]) and 𝐶([0, 1]) without the monotonicity assumption. We will present
here the proof of these facts following the original article by Borwein and Erdélyi.

We start with the proof for 𝐿2([0, 1]), since, being a Hilbert space, we have a richer structure to rely on.
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T h e o r e m 5 . Let {𝜆𝑛}∞𝑛=0 be a sequence of different real numbers greater than −1/2. Then, the set
span {𝑡𝜆𝑛 ∶ 𝑛 ≥ 0} is dense in 𝐿2[0, 1] if and only if

∞
∑
𝑛=0

2𝜆𝑛 + 1
(2𝜆𝑛 + 1)2 + 1 = +∞.

P r o o f . Our aim is to show that
∞
∑
𝑛=0

2𝜆𝑛 + 1
(2𝜆𝑛 + 1)2 + 1 = +∞ ⟺ 𝑡𝑚 ∈ span {𝑡𝜆𝑛 ∶ 𝑛 ∈ ℕ ∪ {0}} , ∀𝑚 ∈ ℕ ∪ {0}.

We will obtain the result as a consequence of theWeierstrass approximation theorem. Let 𝑚 ∈ ℕ ∪ {0} be
such that 𝑚 ∉ {𝜆𝑛}∞𝑛=0.

Observe span{𝑡𝜆0, 𝑡𝜆1,… , 𝑡𝜆𝑛} is a closed subspace of 𝐿2([0, 1]), so we can consider the orthogonal projection
of 𝑡𝑚 onto span{𝑡𝜆0, 𝑡𝜆1,… , 𝑡𝜆𝑛}. The expression of this projection is given by∑𝑛

𝑖=0 ⟨𝑡
𝑚, 𝑡𝜆𝑖⟩𝑡𝜆𝑖. Observe this

function satisfies

min
𝑎𝑖∈ℂ

‖
‖
‖
𝑡𝑚 −

𝑛
∑
𝑖=0

𝑎𝑖𝑡𝜆𝑖
‖
‖
‖
𝐿2([0,1])

=
‖
‖
‖
𝑡𝑚 −

𝑛
∑
𝑖=0

⟨𝑡𝑚, 𝑡𝜆𝑖⟩𝑡𝜆𝑖
‖
‖
‖
𝐿2([0,1])

= 1
√2𝑚+ 1

𝑛
∏
𝑖=0

|||
𝑚 − 𝜆𝑖

𝑚+ 𝜆𝑖 + 1
||| ,

where the last equality arises from a direct computation of the norm. Then ,

( 4 ) 𝑡𝑚 ∈ span {𝑡𝜆𝑛 ∶ 𝑛 ∈ ℕ ∪ {0}} ⟺ lim sup
𝑛→∞

𝑛
∏
𝑖=0

|||
𝑚 − 𝜆𝑖

𝑚+ 𝜆𝑖 + 1
||| = 0.

We divide into two cases, 𝜆𝑖 > 𝑚 and 𝜆𝑖 < 𝑚, to get

𝑛
∏
𝑖=0

|||
𝑚 − 𝜆𝑖

𝑚+ 𝜆𝑖 + 1
||| =

𝑛
∏

𝑖=0,𝜆𝑖<𝑚
(1 −

2𝜆𝑖 + 1
𝑚+ 𝜆𝑖 + 1)

𝑛
∏

𝑖=0,𝑚<𝜆𝑖

(1 − 2𝑚+ 1
𝑚+ 𝜆𝑖 + 1) .

Then, the condition (4) is equivalent to one of these two following conditions:

lim sup
𝑛→∞

𝑛
∏

𝑖=0,𝜆𝑖<𝑚
(1 −

2𝜆𝑖 + 1
𝑚+ 𝜆𝑖 + 1) = 0 or lim sup

𝑛→∞

𝑛
∏

𝑖=0,𝜆𝑖>𝑚
(1 − 2𝑚+ 1

𝑚+ 𝜆𝑖 + 1) = 0.

By Theorem 15.5 from Rudin’s book [7], each condition is equivalent to the divergence of one of these two
series: ∞

∑
𝑖=0,𝜆𝑖<𝑚

2𝜆𝑖 + 1
𝑚+ 𝜆𝑖 + 1 and

∞
∑

𝑖=0,𝜆𝑖>𝑚

2𝑚+ 1
𝑚+ 𝜆𝑖 + 1 .

By comparison, the divergence of these two series is equivalent to the divergence of
∞
∑

𝑖=0,𝜆𝑖<𝑚
(2𝜆𝑖 + 1) and

∞
∑

𝑖=0,𝜆𝑖>𝑚
(

1
2𝜆𝑖 + 1) .

Finally, the divergence of these two series is equivalent to
∞
∑
𝑖=0

2𝜆𝑖 + 1
(2𝜆𝑖 + 1)2 + 1 = +∞,

and the proof is finished. ▪

4 . T h e f u l l M ü n t z - S z á s z t h e o r e m o n 𝐶([0, 1])
Now we will show the full Müntz-Szász theorem on 𝐶[0, 1]. To do so, we need some preliminary results
about Newman’s inequality and Chebyshev polynomials.
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T h e o r e m 6 . Let 𝜆1, 𝜆2,… , 𝜆𝑛 be different positive real numbers. Then, for 𝑝 ∈ span{1, 𝑡𝜆1, 𝑡𝜆2,… , 𝑡𝜆𝑛}, the
following inequality holds:

‖𝑡𝑝′(𝑡)‖𝐶[0,1] ≤ 11 (
𝑛
∑
𝑖=1

𝜆𝑖) ‖𝑝(𝑡)‖𝐶[0,1].

It is interesting to point out that the optimal constant on the Newman inequality is conjectured to be 4, see
the paper of Borwein and Erdélyi [2]. A modification of this inequality allows to control the derivative of any
polynomial 𝑝 ∈ span{𝑡𝜆0, 𝑡𝜆1,…}. You may find this result in work of Borwein and Erdélyi [1, Theorem 3.4].

T h e o r e m 7 . Suppose that {𝜆𝑛}∞𝑛=1 is a sequence of positive real numbers such that 𝜆𝑛 ≥ 1 for 𝑛 = 1, 2,… ,
and ∑∞

𝑛=1
1
𝜆𝑛

< ∞. Take 𝜀 ∈ (0, 1). Then, there exists 𝑐 which depends uniquely on {𝜆𝑛}𝑛∈ℕ and 𝜀 such that

‖𝑝′‖𝐶[0,1−𝜀] ≤ 𝑐‖𝑝‖𝐶[0,1]

for any 𝑝 ∈ span{1, 𝑡𝜆1,…}.

The theory of approximation using Chebyshev polynomials and the following theorem may be found, for
example, in Cheney’s book [3].

T h e o r e m 8 (Chebyshev polynomials). Let 𝐴 be a compact subset contained in [0,+∞) with at least 𝑛 + 1
points, and let 𝜆1, 𝜆2,… , 𝜆𝑛 be 𝑛 different positive real numbers. Then, there exists a unique Chebyshev
polynomial 𝑇𝑛 such that

𝑇𝑛(𝑡) = 𝑐 (𝑡𝜆𝑛 −
𝑛−1
∑
𝑖=1

𝑎𝑖𝑡𝜆𝑖) ,

where the coefficients 𝑎𝑖 minimize the norm

‖
‖
‖
𝑡𝜆𝑛 −

𝑛−1
∑
𝑖=1

𝑎𝑖𝑡𝜆𝑖
‖
‖
‖𝐶(𝐴)

,

the constant 𝑐 is such that ‖𝑇𝑛‖𝐶(𝐴) = 1, and 𝑇𝑛(max𝐴) > 0.

The Chebyshev polynomial 𝑇𝑛 ∈ span{𝑡𝜆1, 𝑡𝜆2,… , 𝑡𝜆𝑛} is uniquely characterized by the existence of an
alternation set

{𝑡0 < 𝑡1 < … < 𝑡𝑛} ⊂ 𝐴

such that
𝑇𝑛(𝑡𝑗) = (−1)𝑛−𝑗 = (−1)𝑛−𝑗 ‖𝑇𝑛‖𝐶(𝐴) , 0 ≤ 𝑗 ≤ 𝑛.

Now, we present the full Müntz-Szász theorem in 𝐶[0, 1].

T h e o r e m 9 . Let {𝜆𝑛}∞𝑛=1 be a sequence of different positive real numbers. Then,

span{1, 𝑡𝜆1, 𝑡𝜆2,…}

is dense in 𝐶[0, 1] if and only if
∞
∑
𝑖=1

𝜆𝑖
𝜆2𝑖 + 1

= +∞.

P r o o f . We consider the following four cases depending on the sequence {𝜆𝑛}.

1 . inf
𝑛∈ℕ

𝜆𝑛 > 0.

2 . lim
𝑛→+∞

𝜆𝑛 = 0.

3 . {𝜆𝑛} = {𝛼𝑛} ∪ {𝛽𝑛}, with 𝛼𝑛 → 0 and 𝛽𝑛 → +∞.
4 . {𝜆𝑛} has a cluster point on (0,+∞).
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Note that every positive sequence {𝜆𝑖}∞𝑖=1 or one of its rearrangements fits in one of these cases.

We consider the first case. We may suppose with no loss of generality that 𝜆𝑖 ≥ 1, for all 𝑖 ∈ ℕ. Given
𝑚 ∈ ℕ, we have that

|
|
|
𝑡𝑚 −

𝑛
∑
𝑖=1

𝑎𝑖𝑡𝜆𝑖
|
|
|
=
|
|
|
∫

1

0
(𝑚𝑥𝑚−1 −

𝑛
∑
𝑖=1

𝑎𝑖𝜆𝑖𝑥(𝜆𝑖−1)) d𝑥
|
|
|
≤ ∫

1

0

|
|
|
𝑚𝑥𝑚−1 −

𝑛
∑
𝑖=1

𝑎𝑖𝜆𝑖𝑥(𝜆𝑖−1)
|
|
|
d𝑥

≤ (∫
1

0
(𝑚𝑥𝑚−1 −

𝑛
∑
𝑖=1

𝑎𝑖𝜆𝑖𝑥(𝜆𝑖−1))
2

d𝑥)

1
2

and we get the inequality

( 5 ) min
𝑎𝑖∈ℂ

‖
‖
‖
𝑡𝑚 −

𝑛
∑
𝑖=1

𝑎𝑖𝑡𝜆𝑖
‖
‖
‖
𝐶[0,1]

≤ 𝑚(min
𝑏𝑖∈ℂ

‖
‖
‖
𝑡𝑚−1 −

𝑛
∑
𝑖=1

𝑏𝑖𝑡𝜆𝑖−1
‖
‖
‖
𝐿2[0,1]

) .

Suppose that
∞
∑
𝑖=1

𝜆𝑖
𝜆2𝑖 + 1

= ∞. Since 𝜆𝑖 ≥ 1, we also conclude that

∞
∑
𝑖=1

2(𝜆𝑖 − 1) + 1
2((𝜆𝑖 − 1) + 1)2 + 1 = +∞.

By theorem 5, the set span{1, 𝑡𝜆1−1, 𝑡𝜆2−1,…} is dense in 𝐿2[0, 1], and the inequality (5) shows that, in fact,
span{1, 𝑡𝜆1, 𝑡𝜆2,…} is dense on 𝐶[0, 1].

Conversely suppose that span{1, 𝑡𝜆1, 𝑡𝜆2,…} is dense in 𝐶[0, 1]. As the space 𝐶[0, 1] is dense in 𝐿2[0, 1], the
set span{1, 𝑡𝜆1, 𝑡𝜆2,…} is also dense in 𝐿2[0, 1], and

∞
∑
𝑖=1

2𝜆𝑖 + 1
(2𝜆𝑖 + 1)2 + 1 = +∞,

by theorem 5. By comparing the sums, we conclude that
∞
∑
𝑖=1

𝜆𝑖
𝜆2𝑖 + 1

= +∞.

Now we suppose that the sequence {𝜆𝑖}𝑖≥1 converges to 0. Then,
∞
∑
𝑖=1

𝜆𝑖
𝜆2𝑖 + 1

= +∞ ⟺
∞
∑
𝑖=1

𝜆𝑖 = +∞.

If
∞
∑
𝑖=1

𝜆𝑖 = +∞, then we conclude that

∞
∑
𝑖=1

(1 − |||
𝜆𝑖 − 1
𝜆𝑖 + 1

|||) = ∞.

We follow the same ideas we used in the proof of lemma 4 to conclude that span{1, 𝑡𝜆1, 𝑡𝜆2,…} is dense in
𝐶([0, 1]).

On the other hand, if 𝜂 =
∞
∑
𝑖=1

𝜆𝑖 < +∞, we apply Newman’s inequality to get that

( 6 ) ‖𝑡𝑝′(𝑡)‖𝐶[0,1] ≤ 11𝜂‖𝑝(𝑡)‖𝐶[0,1],

for any 𝑝 ∈ span{1, 𝑡𝜆1, 𝑡𝜆2,…}. We claim that this last inequality implies that the set span{1, 𝑡𝜆1, 𝑡𝜆2,…} is not
dense in 𝐶([0, 1]). Indeed, suppose that this set is dense in 𝐶([0, 1]). Given the function 𝑓(𝑡) = √1 − 𝑡 and
𝑚 ∈ ℕ, there exists 𝑝 ∈ span{1, 𝑡𝜆1, 𝑡𝜆2,…} such that ‖𝑝 − 𝑓‖𝐶([0,1]) < 1/𝑚2. Then,

|||𝑝 (1 −
1
𝑚2 ) − 𝑝(1)||| ≥

|||𝑓 (1 −
1
𝑚2 ) −

1
𝑚2 − (𝑓(1) + 1

𝑚2 )
||| =

1
𝑚 − 2

𝑚2 .
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By the mean value theorem, there exists 𝜉 ∈ (1 − 1/𝑚2, 1) such that

|𝜉𝑝′(𝜉)| = 𝜉

|||𝑝 (1 −
1
𝑚2 ) − 𝑝(1)|||
1
𝑚2

≥ 𝑚 − 2
2 ,

which gives a contradiction with the inequality (6).

Now we consider the third case. We split the sequence {𝜆𝑖} into two sequences {𝜆𝑖 ∶ 𝑖 ∈ ℕ} = {𝛼𝑖 ∶ 𝑖 ∈

ℕ} ∪ {𝛽𝑖 ∶ 𝑖 ∈ ℕ} such that 𝛼𝑛 → 0 and 𝛽𝑛 → +∞. Note that
∞
∑
𝑖=1

𝜆𝑖
𝜆2𝑖 + 1

= ∞ is equivalent to

( 7 )

∞
∑
𝑖=1

𝛼𝑖 +
∞
∑
𝑖=1

1
𝛽𝑖
= ∞.

If the condition (7) holds, then∑𝛼𝑖 = ∞ or∑ 1
𝛽𝑖
= ∞. Then, we may apply cases 1 and 2 to conclude that

span{1, 𝑡𝜆1, 𝑡𝜆2,…} is dense in 𝐶([0, 1]).

Conversely, if the condition (7) does not hold, then
∞
∑
𝑖=1

𝛼𝑖 < ∞ and
∞
∑
𝑖=1

1
𝛽𝑖
< ∞.

Given a sequence {𝑤1,… ,𝑤𝑛} of 𝑛 different positive real numbers, we denote by 𝑇𝑛{1, 𝑡𝑤1,… , 𝑡𝑤𝑛} the
associated Chebychev polynomial in the compact [0, 1] given by theorem 8. With this notation, we define

𝑇𝑛,𝛼 ≔ 𝑇𝑛{1, 𝑡𝛼1,… , 𝑡𝛼𝑛},
𝑇𝑛,𝛽 ≔ 𝑇𝑛{1, 𝑡𝛽1,… , 𝑡𝛽𝑛},

𝑇2𝑛,𝛼,𝛽 ≔ 𝑇2𝑛{1, 𝑡𝛼1,… , 𝑡𝛼𝑛, 𝑡𝛽1,… , 𝑡𝛽𝑛}.

Now our objective is to count and localize the zeros of these polynomials. It follows from Newman’s
inequality (theorem 6) and the mean value theorem that for every 𝜀 > 0 there exists a 𝑘1(𝜀) ∈ ℕ depending
only on {𝛼𝑛}∞𝑛=1 and 𝜀 (and not on 𝑛) so that 𝑇𝑛,𝛼 has at most 𝑘1(𝜀) zeros in [𝜀, 1) and at least 𝑛 − 𝑘1(𝜀) zeros
in (0, 𝜀).

Analogously, it follows from theorem 7 and the mean value theorem that for every 𝜀 > 0 there exists a
𝑘2(𝜀) ∈ ℕ depending only on {𝛽𝑛}∞𝑛=1 and 𝜀 (and not on 𝑛) so that 𝑇𝑛,𝛽 has at most 𝑘2(𝜀) zeros in (0, 1 − 𝜀]
and at least 𝑛 − 𝑘1(𝜀) zeros in (1 − 𝜀, 1).

Now, counting the zeros of 𝑇𝑛,𝛼 − 𝑇2𝑛,𝛼,𝛽 and 𝑇𝑛,𝛽 − 𝑇2𝑛,𝛼,𝛽, we can deduce that for every 𝜀 > 0 there exists
a 𝑘(𝜀) ∈ ℕ depending only on {𝜆𝑛}∞𝑛=1 and 𝜀 > 0 (and not on 𝑛) so that 𝑇2𝑛,𝛼,𝛽 has at most 𝑘(𝜀) zeros in
[𝜀, 1 − 𝜀].

Take a fixed 𝜀 = 1
4 and 𝑘 ≔ 𝑘 ( 14 ). We pick 𝑘 + 4 points such that

1
4 < 𝜂0 < 𝜂1 < … < 𝜂𝑘+3 <

3
4 ,

and a function 𝑓 ∈ 𝐶([0, 1]) such that𝑓(𝑡) = 0 for every 𝑡 ∈ [0, 14 ] ∪ [
3
4 , 1], and

𝑓(𝜂𝑖) ≔ 2(−1)𝑖, 𝑖 = 0, 1,… , 𝑘 + 3.

Suppose that there exists a polynomial 𝑝 ∈ span{1, 𝑡𝜆1, 𝑡𝜆2,…} such that

‖𝑓 − 𝑝‖𝐶([0,1]) < 1.

Then, 𝑝 − 𝑇2𝑛,𝛼,𝛽 has at least 2𝑛 + 1 zeros in (0, 1). However, for sufficiently large n,

𝑝 − 𝑇2𝑛,𝛼,𝛽 ∈ span{1, 𝑡𝜆1,… , 𝑡𝜆2𝑛},
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which can have at most 2𝑛 zeros in [0,+∞). This contradiction shows that span{1, 𝑡𝜆1, 𝑡𝜆2,…} is not dense
in 𝐶([0, 1]).

Finally we consider the case when the sequence {𝜆𝑛} has a cluster point in (0,∞). In this case there, exists
a subsequence {𝜆𝑛𝑘} such that inf𝑘∈ℕ 𝜆𝑛𝑘 > 0 and∑∞

𝑘=1
𝜆𝑛𝑘

𝜆2𝑛𝑘+1
= ∞, where we may apply the case 1. ▪

5 . T h e f u l l M ü n t z - S z á s z t h e o r e m o n 𝐿1([0, 1])
Now we present the full Müntz-Szász theorem on 𝐿1([0, 1]).

T h e o r e m 1 0 . Suppose that {𝜆𝑛}∞𝑛=0 is a sequence of real numbers greater than −1. Then,

span{𝑡𝜆0, 𝑡𝜆1,…}

is dense in 𝐿1([0, 1]) if and only if
∞
∑
𝑖=0

𝜆𝑖 + 1
(𝜆𝑖 + 1)2 + 1 = ∞.

P r o o f . Suppose that the set span{𝑡𝜆𝑖 ∶ 𝑖 ∈ ℕ ∪ {0}} is dense in 𝐿1([0, 1]). We fix a non-negative integer 𝑚.
For 𝜀 > 0, we choose 𝑝 ∈ span{𝑡𝜆0, 𝑡𝜆1,…} such that

( 8 ) ‖𝑡𝑚 − 𝑝‖𝐿1([0,1]) < 𝜀.

We define the function

𝑞(𝑡) ≔ ∫
𝑡

0
𝑝(𝑠) d𝑠 ∈ span{𝑡𝜆0+1, 𝑡𝜆1+1,…}.

By the inequality (8), we have that
|||
|||
𝑡𝑚+1

𝑚+ 1 − 𝑞
|||
|||𝐶([0,1])

< 𝜀.

We apply theWeierstrass approximation theorem to conclude that the set

span{1, 𝑡𝜆0+1, 𝑡𝜆1+1,…}

is dense in 𝐶([0, 1]). We apply the full Müntz-Szász theorem in 𝐶([0, 1]) (theorem 9) to conclude that

∞
∑
𝑖=0

𝜆𝑖 + 1
(𝜆𝑖 + 1)2 + 1 = +∞.

Conversely, now we suppose that
∞
∑
𝑖=0

𝜆𝑖 + 1
(𝜆𝑖 + 1)2 + 1 = +∞.

By the Hahn-Banach theorem and the Riesz representation theorem, the set span{𝑡𝜆0, 𝑡𝜆1,…} is not dense
in 𝐿1([0, 1]) if and only if there exists a function 0 ≠ ℎ ∈ 𝐿∞([0, 1]) such that

∫
1

0
𝑡𝜆𝑖ℎ(𝑡) d𝑡 = 0; 𝑖 = 0, 1,… .

Given this function ℎ, we define

𝑓(𝑧) ≔ ∫
1

0
𝑡𝑧ℎ(𝑡) d𝑡,

and then
𝑔(𝑧) ≔ 𝑓 (

1 + 𝑧
1 − 𝑧 − 1) .

TEMat monogr., 1 (2020) e-ISSN: 2660-6003 43
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Note that the function 𝑔 is bounded and analytic in the open unit disc and

𝑔 (
𝜆𝑛

𝜆𝑛 + 2) = 𝑓(𝜆𝑛) = 0.

Note that∑∞
𝑖=0

𝜆𝑖+1
(𝜆𝑖+1)2+1

= +∞ implies that
∞
∑
𝑛=1

(1 − |||
𝜆𝑛

𝜆𝑛 + 2
|||) = +∞.

We consider the Blaschke product [7, Theorem 15.23] to conclude that 𝑔 = 0 on the open unit disc, and
𝑓(𝑧) = 0 in the half plane ℜ(𝑧) > −1. In particular, we have that

𝑓(𝑛) = ∫
1

0
𝑡𝑛ℎ(𝑡) d𝑡 = 0; 𝑛 = 0, 1,…

We apply theWeierstrass approximation theorem to get

∫
1

0
𝑢(𝑡)ℎ(𝑡) d𝑡 = 0,

for every 𝑢 ∈ 𝐶([0, 1]). Finally, we conclude that ℎ = 0 and that span{𝑡𝜆0, 𝑡𝜆1,…} is dense in 𝐿1([0, 1]). ▪

6 . T h e f u l l M ü n t z - S z á s z t h e o r e m o n 𝐿𝑝([0, 1]) f o r 1 ≤ 𝑝 < ∞
Once we have shown the full Müntz-Szász theorem on 𝐿1([0, 1]) and 𝐿2([0, 1]), it is natural to ask about the
full Müntz-Szász theorem on 𝐿𝑝([0, 1]) for 1 ≤ 𝑝 < ∞. This question was posed by Borwein and Erdélyi [1]
and solved by Operstein [6, Theorem 1].

T h e o r e m 1 1 . Let 1 < 𝑝 < ∞ and {𝜆𝑛}∞𝑛=0 be a sequence of different real numbers greater than −1/𝑝. Then,
the set span{𝑡𝜆𝑖 ∶ 𝑖 ∈ ℕ ∪ {0}} is dense in 𝐿𝑝[0, 1] if and only if

( 9 )

∞
∑
𝑛=0

𝜆𝑖 + 1/𝑝
(𝜆𝑖 + 1/𝑝)2 + 1 = +∞.

To show this theorem, we need the following lemma.

L e m m a 1 2 . Let {𝜇𝑖}∞𝑖=0 be a sequence of positive real numbers such that the set span{𝑡𝜇𝑖−1/𝑟 ∶ 𝑖 ∈ ℕ ∪ {0}}
is dense in 𝐿𝑟([0, 1]). Then, the space span{𝑡𝜇𝑖−1/𝑠 ∶ 𝑖 ∈ ℕ ∪ {0}} is dense in 𝐿𝑠([0, 1]) for 𝑠 > 𝑟, and
span{1, 𝑡𝜇0, 𝑡𝜇1,…} is dense in 𝐶([0, 1]).

P r o o f . We consider the spaces 𝑋 = 𝐿𝑟([0, 1]), 𝑌 = 𝐿𝑠([0, 1]) and 𝐴 = span{𝑡𝜇𝑖−1/𝑟 ∶ 𝑖 ∈ ℕ ∪ {0}}. Our aim is
to define a linear bounded operator 𝐽 between the spaces 𝑋 and 𝑌 such that 𝐽(𝑋) is dense in 𝑌. Note that
this fact implies that 𝐽(𝐴) is dense in 𝑌. We consider the operator 𝐽∶ 𝐿𝑟([0, 1]) → 𝐿𝑠([0, 1]) defined by

(𝐽𝜑)(𝑡) = 𝑡−(1/𝑟′+1/𝑠)∫
𝑡

0
𝜑(𝑢) d𝑢, 𝑡 ∈ [0, 1], 𝜑 ∈ 𝐿𝑟([0, 1]),

where 1
𝑟 +

1
𝑟′ = 1. By the generalized Hardy inequality [5, Theorem 329], this operator 𝐽 is bounded.

For every 𝑛 ∈ ℕ, we define the function 𝜓𝑛(𝑡) ≔ (𝑛 + 1/𝑟′ + 1/𝑠)𝑡𝑛+1/𝑠−1/𝑟 for 𝑡 ∈ [0, 1]. Note that
𝜓𝑛 ∈ 𝐿𝑟([0, 1]) and (𝐽𝜓𝑛)(𝑡) = 𝑡𝑛 for 𝑛 ∈ ℕ. By theWeierstrass approximation theorem, we conclude that
𝐽(𝑋) is dense in 𝑌 and the set 𝐽(𝐴) = span{𝑡𝜇𝑖−1/𝑠 ∶ 𝑖 ∈ ℕ ∪ {0}} is dense in 𝐿𝑠([0, 1]).
To show the second part, we consider the linear bounded operator 𝐽∶ 𝐿𝑟([0, 1]) → 𝐶([0, 1]) defined by

(𝐽𝜑)(𝑡) = 𝑡−1/𝑟′ ∫
𝑡

0
𝜑(𝑢) d𝑢, 𝑡 ∈ (0, 1], (𝐽𝜑)(0) = 0,

for 𝜑 ∈ 𝐿𝑟([0, 1]) and 1
𝑟 +

1
𝑟′ = 1. Using similar ideas to the ones in the first part, we conclude that the set

span{1, 𝑡𝜇0, 𝑡𝜇1,…} is dense in 𝐶([0, 1]). ▪
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With the help of this lemma and the full Müntz-Szász theorem on 𝐿1([0, 1]) and 𝐶([0, 1]), we prove theo-
rem 11.

P r o o f o f t h e o r e m 1 1 . We take a sequence {𝜆𝑖}∞𝑖=0 satisfying condition (9). Now we consider the sequence
{𝑣𝑖}∞𝑖=0, where 𝑣𝑖 = 𝜆𝑖 − 1/𝑝′ for 𝑖 ≥ 0, where 1

𝑝 +
1
𝑝′ = 1. By hypothesis, we have that

∞
∑
𝑖=0

𝑣𝑖 + 1
(𝑣𝑖 + 1)2 + 1 =

∞
∑
𝑛=0

𝜆𝑖 + 1/𝑝
(𝜆𝑖 + 1/𝑝)2 + 1 = +∞.

We apply theorem 10 to conclude that the space

span{𝑡𝑣𝑖 ∶ 𝑖 ∈ ℕ ∪ {0}} = span{𝑡𝜆𝑖−1/𝑞 ∶ 𝑖 ∈ ℕ ∪ {0}}

is dense in 𝐿1([0, 1]). We take 𝜇𝑖 = 𝜆𝑖 + 1/𝑝 for 𝑖 ∈ ℕ ∪ {0} and we apply lemma 12 to get that

span{𝑡𝜇𝑖−1/𝑝 ∶ 𝑖 ∈ ℕ ∪ {0}} = span{𝑡𝜆𝑖 ∶ 𝑖 ∈ ℕ ∪ {0}}

is dense in 𝐿𝑝([0, 1]) for 𝑝 > 1.

Conversely, we suppose that the space span{𝑡𝜆𝑖 ∶ 𝑖 ∈ ℕ ∪ {0}} is dense in 𝐿𝑝([0, 1]). We write 𝜇𝑖 = 𝜆𝑖 + 1/𝑝,
for 𝑖 ∈ ℕ ∪ {0}, to obtain that

span{𝑡𝜇𝑖−1/𝑝 ∶ 𝑖 ∈ ℕ ∪ {0}}

is dense in 𝐿𝑝([0, 1]). By lemma 12, the space span{1, 𝑡𝜇𝑖 ∶ 𝑖 ∈ ℕ ∪ {0}} is dense in 𝐶([0, 1]). Now we apply
theorem 9 to obtain that ∞

∑
𝑖=0

𝜆𝑖 + 1/𝑝
(𝜆𝑖 + 1/𝑝)2 + 1 =

∞
∑
𝑖=0

𝜇𝑖
𝜇2𝑖 + 1

= +∞. ▪
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