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A b s t r a c t : In this paper we introduce four different definitions for the fractional
Laplacian operator. First, we begin by giving the definition through the Fourier
transform, motivated by the problem of finding an inverse operator for the Riesz
potential. Next, we introduce a second definition given by a pointwise integral
formula with a probabilistic motivation. The last two definitions come from func-
tional analysis and partial differential equations: one is given in terms of the heat
semigroup and the other one is given by the extension problem, which allows us to
study properties of a nonlocal operator by means of local methods. We prove the
equivalence between these four definitions and also give some of the properties of
the fractional Laplacian.

R e s u m e n : En este artículo introducimos cuatro definiciones distintas del operador
laplaciano fraccionario. En primer lugar comenzamos dando la definición con
la transformada de Fourier, que viene motivada por la búsqueda de un operador
inverso del potencial de Riesz. A continuación se introduce una segunda definición
como operador dado por una fórmula integral puntual a partir de una motivación
de naturaleza probabilística. Las dos últimas definiciones provienen del análisis
funcional y las ecuaciones diferenciales: una de ellas se da en términos del se-
migrupo del calor y la otra a partir del conocido como problema de extensión,
que permite estudiar las propiedades de un operador no local mediante métodos
locales. Se prueba la equivalencia de las cuatro definiciones y se muestran algunas
de las propiedades del laplaciano fraccionario.

K e y w o r d s : fractional Laplacian, Fourier transform, pointwise formula, semigroup,
extension problem.
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Four different approaches to the fractional Laplacian

1 . I n t r o d u c t i o n

Fractional operators, and in particular the fractional Laplacian, are well known from the point of view
of functional analysis. However, they also appear in other areas of mathematics. Some of the settings in
which this operator arises are the theory of Banach spaces [10], potential theory [8], Lévy proceses [1], the
theory of partial differential equations [4], and scattering theory in conformal geometry [6]. Bibliography
in this topic is extensive and the above are just some examples.

The goal of this paper is to introduce four of the different definitions of the fractional Laplacian which
appear in the literature. There are other definitions that we will not consider here, see for instance the
paper of Kwaśnicki [7] for a nice exposition on ten different definitions of the fractional Laplacian.

The function space we are going to work with is the Schwartz spaceS (ℝ𝑛), which is the space of functions
𝑓 ∈ 𝐶∞(ℝ𝑛) satisfying

‖𝑓‖𝑝 ≔ sup
|𝛼|≤𝑝

sup
𝑥∈ℝ𝑛

(1 + |𝑥|2)𝑝/2 |𝜕𝛼𝑓(𝑥)| < ∞, 𝑝 ∈ ℕ ∪ {0} ,

where 𝛼 = (𝛼1,… ,𝛼𝑛) denotes a multi-index in (ℕ ∪ {0})𝑛 and 𝜕𝛼𝑓 denotes the derivative 𝜕𝛼1
𝜕𝑥𝛼11

… 𝜕𝛼𝑛
𝜕𝑥𝛼𝑛𝑛

𝑓.
With the metric given by

𝑑(𝑓, 𝑔) =
∞
∑
𝑝=0

2−𝑝
‖𝑓 − 𝑔‖𝑝

1 + ‖𝑓 − 𝑔‖𝑝
, 𝑓, 𝑔 ∈ S (ℝ𝑛),

the Schwartz space is a Fréchet space.

In section 2 we introduce the fractional Laplacian operator through the Fourier transform, as the inverse
operator of the Riesz potential. In section 3 we introduce the fractional Laplacian from a probabilistic
motivation, obtaining a pointwise integral formula. Section 4 is devoted to the study of the fractional
Laplacian through the heat semigroup. Also in this section, we will prove the equivalence of the previous
definitions. Finally, in section 5 we will study the fractional Laplacian as a «Dirichlet-to-Neumann» operator
for a harmonic extension problem.

2 . F i r s t d e f i n i t i o n : F o u r i e r t r a n s f o r m

The first time the fractional Laplacian appeared in the literature is in the paper by M. Riesz [10]. The usual
Laplacian, given by −Δ𝑓 = −∑𝑛

𝑘=1
𝜕2𝑓
𝜕𝑥2𝑘

for 𝑓 ∈ 𝐶2(ℝ𝑛), can be understood as the inverse operator of the
Newton potential 𝐼2, which is defined as

𝐼2𝑓(𝑥) ≔ 𝑐𝑛,2| ⋅ |−𝑛+2 ∗ 𝑓(𝑥) = 𝑐𝑛,2∫
ℝ𝑛

𝑓(𝑦)
|𝑥 − 𝑦|𝑛−2 d𝑦, 𝑛 ≥ 3, 𝑓 ∈ S (ℝ𝑛),

where 𝑐𝑛,2 =
1

4π𝑛/2 𝛤 (
𝑛−2
2 ).

Riesz generalized the concept of Newton potential by defining the fractional integral operator (or Riesz
potential) of order 0 < 𝛼 < 𝑛, 𝑛 ∈ ℕ, as

𝐼𝛼𝑓(𝑥) ≔ 𝑐𝑛,𝛼| ⋅ |−𝑛+𝛼 ∗ 𝑓(𝑥) = 𝑐𝑛,𝛼∫
ℝ𝑛

𝑓(𝑦)
|𝑥 − 𝑦|𝑛−𝛼 d𝑦, 𝑓 ∈ S (ℝ𝑛),

with 𝑐𝑛,𝛼 =
𝛤( 𝑛−𝛼2 )
2𝛼π𝑛/2

1
𝛤(𝛼2 )

.

In the same way we have that the relation

( 1 ) 𝐼2 ∘ (−Δ) = Id = (−Δ) ∘ 𝐼2

holds inS (ℝ𝑛), Riesz posed the natural question of the existence of an operator (−Δ)𝛼/2 that would satisfy,
in S (ℝ𝑛), the analogous relation

( 2 ) 𝐼𝛼 ∘ (−Δ)𝛼/2 = Id = (−Δ)𝛼/2 ∘ 𝐼𝛼.
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If we understand (−Δ)𝛼/2 as a fractional version of the differential operator (−Δ), expression (2) somehow
represents a fractional version of the fundamental theorem of calculus (thus the name «fractional integral»
for 𝐼𝛼).

In order to find an explicit expression for an operator satisfying (2) we will use the Fourier transform. For a
function 𝑓 ∈ S (ℝ𝑛), its Fourier transform ℱ[𝑓] is defined to be the function

ℱ[𝑓](𝜉) = ̂𝑓(𝜉) ≔ 1
(2π)𝑛/2

∫
ℝ𝑛
𝑓(𝑥)e−i𝜉⋅𝑥 d𝑥, 𝜉 ∈ ℝ𝑛.

This defines an invertible operator in S (ℝ𝑛) whose inverse is given by

ℱ−1[𝑓](𝑥) ≔ 1
(2π)𝑛/2

∫
ℝ𝑛
𝑓(𝜉)ei𝑥⋅𝜉 d𝜉, 𝑥 ∈ ℝ𝑛.

By using the well-known properties of ℱ with respect to derivatives, it follows easily that ℱ[(−Δ)𝑓](𝜉) =
|𝜉|2 ̂𝑓(𝜉). Next, we are going to obtain an analogous expression for the operator (−Δ)𝛼/2 defined above.

As one can see in Stein’s book [11, Ch. V], the following identity

𝑐𝑛,𝛼ℱ(| ⋅ |−𝑛+𝛼)(𝜉) = |𝜉|−𝛼, 𝜉 ∈ ℝ𝑛,

holds for each 𝑛 ∈ ℕ and each 0 < 𝛼 < 𝑛. Hence, as the Fourier transform takes the convolution of two
functions to the product of their Fourier transforms (convolution theorem), we have that

ℱ[𝐼𝛼𝑓](𝜉) = ℱ[𝑐𝑛,𝛼| ⋅ |−𝑛+𝛼 ∗ 𝑓](𝜉) = 𝑐𝑛,𝛼ℱ(| ⋅ |−𝑛+𝛼) ̂𝑓(𝜉) = |𝜉|−𝛼 ̂𝑓(𝜉).

Thus, by taking into account that we want to define (−Δ)𝛼/2 as the inverse of 𝐼𝛼, and by writing 𝛼/2 ↦ 𝑠,
we can define the operator (−Δ)𝑠 as follows.

D e f i n i t i o n 1 . Given 0 < 𝑠 < 1, we define the fractional Laplacian as the operator (−Δ)𝑠 satisfying

ℱ[(−Δ)𝑠𝑓](𝜉) = |𝜉|2𝑠 ̂𝑓(𝜉), 𝜉 ∈ ℝ𝑛, 𝑓 ∈ S (ℝ𝑛). ◀

With this definition, we have

ℱ[𝐼2𝑠 ∘ (−Δ)𝑠𝑓](𝜉) = |𝜉|−2𝑠ℱ[(−Δ)𝑠𝑓](𝜉) = |𝜉|−2𝑠|𝜉|2𝑠 ̂𝑓(𝜉) = ̂𝑓(𝜉),

so by taking the Fourier transform we have that, indeed, (−Δ)𝑠 and 𝐼2𝑠 are inverse operators in S (ℝ𝑛).

It is a well-known fact that the usual Laplacian satisfies

( 3 ) Δ(𝑢 ∘ 𝑇) = Δ𝑢 ∘ 𝑇, 𝑇 ∈ �(𝑛),

i. e., the Laplacian commutes with elements of the orthogonal group. The same property can be easily
obtained for the fractional Laplacian (−Δ)𝑠 thanks to the invariance of the Fourier transform with respect
to these transformations. Indeed, sinceℱ(𝑓 ∘𝑇) = ℱ(𝑓) ∘𝑇 andℱ−1(𝑓 ∘𝑇) = ℱ−1(𝑓) ∘𝑇 for every 𝑇 ∈ �(𝑛)
and every 𝑓 ∈ S (ℝ𝑛), we can write, for each 𝑇 ∈ �(𝑛) and each 𝑢 ∈ S (ℝ𝑛),

(−Δ)𝑠(𝑢 ∘ 𝑇)(𝑥) = ℱ−1[| ⋅ |2𝑠ℱ(𝑢 ∘ 𝑇)( ⋅ )](𝑥) = ℱ−1[| ⋅ |2𝑠ℱ(𝑢) ∘ 𝑇( ⋅ )](𝑥)
= ℱ−1[|𝑇( ⋅ )|2𝑠ℱ(𝑢) ∘ 𝑇( ⋅ )](𝑥) = ℱ−1[| ⋅ |2𝑠ℱ(𝑢)( ⋅ )] ∘ 𝑇(𝑥) = (−Δ)𝑠𝑢 ∘ 𝑇(𝑥),

where we have used that |𝑥| = |𝑇(𝑥)| = |𝑇−1(𝑥)| for each 𝑥 ∈ ℝ𝑛. This in particular proves that, if 𝑓 has
radial symmetry (i. e. if 𝑓 ∘ 𝑇 = 𝑓 for every 𝑇 ∈ �(𝑛)), then (−Δ)𝑠𝑓 also has radial symmetry. Note that, for
the Fourier transform, the invariance with respect to elements of the orthogonal group and the fact that
ℱ−1𝑓(𝑥) = ℱ𝑓(−𝑥) imply that the Fourier transform and the inverse Fourier transform of a function with
radial symmetry coincide.
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3 . S e c o n d d e f i n i t i o n : p o i n t w i s e f o r m u l a

In this section we will describe a probabilistic situation in which the fractional Laplacian appears in a
natural way. In this situation, the operator represents the rate of change in time of the probability of a
particle to be in a particular position at a particular moment if it moves according to a certain process.
This situation is depicted in Bucur and Valdinoci’s book [2].

We are going to discretize the movement of the particle in such a way that 𝜏 > 0 is the discrete step in
time and ℎ > 0 is the discrete space step. We will use the time step 𝜏 = ℎ2𝑠 for a fixed space step ℎ. Let us
denote by 𝑢(𝑥, 𝑡) the probability of finding the particle in position 𝑥 at time 𝑡.

Let us define, for each 0 < 𝑠 < 1, the following probability onℕ. For each subset 𝐼 of natural numbers, we
define

𝑃(𝐼) = 𝑐𝑠 ∑
𝑘∈𝐼

1
𝑘1+2𝑠 ,

where 𝑐−1𝑠 ≔ ∑𝑘∈ℕ
1

𝑘1+2𝑠 .

The particle under study moves according the following probability law: in each time step 𝜏, the particle
chooses a direction 𝑣 ∈ �𝑛−1 randomly according to a uniform distribution on the unit sphere �𝑛−1, and a
natural number 𝑘 ∈ ℕ according to the probability law 𝑃 depicted above, and then it performs a translation
by the vector 𝑘ℎ𝑣. Note that, in this motion, large jumps are allowed, but their probability is very low.

According to this, a particle in position 𝑥0 at time 𝑡, after a time step 𝜏 (i. e., in time 𝑡 + 𝜏), will be placed
in position 𝑥0 + ℎ𝑘𝑣 for some 𝑘 ∈ ℕ and some 𝑣 ∈ �𝑛−1. Then, given 𝑥 ∈ ℝ𝑛 and 𝑡, 𝜏 > 0, the probability
that the particle is in position 𝑥 after a time step 𝜏 from the initial time 𝑡, 𝑢(𝑥, 𝑡 + 𝜏), is the sum of the
probabilities of finding the particle in position 𝑥 + ℎ𝑘𝑣 in the previous time for some 𝑘 ∈ ℕ and some
𝑣 ∈ �𝑛−1 multiplied by the probability of having chosen that direction 𝑣 and that natural number 𝑘, i. e.,

𝑢(𝑥, 𝑡 + 𝜏) =
𝑐𝑠

𝜎(�𝑛−1)
∑
𝑘∈ℕ

∫
�𝑛−1

𝑢(𝑥 + ℎ𝑘𝑣, 𝑡)
𝑘1+2𝑠 d𝜎(𝑣),

where 𝜎 is the surface measure of the sphere.

On one hand we can write

𝑢(𝑥, 𝑡 + 𝜏) − 𝑢(𝑥, 𝑡) =
𝑐𝑠

𝜎(�𝑛−1)
∑
𝑘∈ℕ

∫
�𝑛−1

𝑢(𝑥 + ℎ𝑘𝑣, 𝑡) − 𝑢(𝑥, 𝑡)
𝑘1+2𝑠 d𝜎(𝑣),

and, on the other hand, by the radial symmetry of the process,

𝑢(𝑥, 𝑡 + 𝜏) − 𝑢(𝑥, 𝑡) =
𝑐𝑠

𝜎(�𝑛−1)
∑
𝑘∈ℕ

∫
�𝑛−1

𝑢(𝑥 − ℎ𝑘𝑣, 𝑡) − 𝑢(𝑥, 𝑡)
𝑘1+2𝑠 d𝜎(𝑣).

If we add the above and divide by 2,

𝑢(𝑥, 𝑡 + 𝜏) − 𝑢(𝑥, 𝑡) = 1
2

𝑐𝑠
𝜎(�𝑛−1)

∑
𝑘∈ℕ

∫
�𝑛−1

𝑢(𝑥 + ℎ𝑘𝑣, 𝑡) + 𝑢(𝑥 − ℎ𝑘𝑣, 𝑡) − 2𝑢(𝑥, 𝑡)
𝑘1+2𝑠 d𝜎(𝑣).

Now, dividing by 𝜏 = ℎ2𝑠 on both sides of the above inequality, we arrive at

𝑢(𝑥, 𝑡 + 𝜏) − 𝑢(𝑥, 𝑡)
𝜏 = ℎ

2
𝑐𝑠

𝜎(�𝑛−1)
∑
𝑘∈ℕ

∫
�𝑛−1

𝑢(𝑥 + ℎ𝑘𝑣, 𝑡) + 𝑢(𝑥 − ℎ𝑘𝑣, 𝑡) − 2𝑢(𝑥, 𝑡)
(ℎ𝑘)1+2𝑠

d𝜎(𝑣).

Here we recognize a Riemann sum. By writing ℎ𝑘 ↦ 𝑟, and taking into account that 𝜏 = ℎ2𝑠, we can take
the (formal) limit when ℎ goes to 0 on both sides to obtain

𝜕𝑡𝑢(𝑥, 𝑡) =
1
2

𝑐𝑠
𝜎(�𝑛−1)

∫
∞

0
∫
�𝑛−1

𝑢(𝑥 + 𝑟𝑣, 𝑡) + 𝑢(𝑥 − 𝑟𝑣, 𝑡) − 2𝑢(𝑥, 𝑡)
𝑟1+2𝑠 d𝜎(𝑣) d𝑟

= 1
2

𝑐𝑠
𝜎(�𝑛−1)

∫
∞

0
𝑟𝑛−1∫

�𝑛−1

𝑢(𝑥 + 𝑟𝑣, 𝑡) + 𝑢(𝑥 − 𝑟𝑣, 𝑡) − 2𝑢(𝑥, 𝑡)
𝑟𝑛+2𝑠 d𝜎(𝑣) d𝑟

= 1
2

𝑐𝑠
𝜎(�𝑛−1)

∫
ℝ𝑛

𝑢(𝑥 + 𝑦, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − 𝑦, 𝑡)
|𝑦|𝑛+2𝑠 d𝑦,
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where we have used polar coordinates.

Thus, the operator 𝐿𝑠1 given by

𝐿𝑠1𝑢(𝑥) ≔ −
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

𝑢(𝑥 + 𝑦) − 2𝑢(𝑥) + 𝑢(𝑥 − 𝑦)
|𝑦|𝑛+2𝑠 d𝑦,

where 𝑐𝑛,𝑠 is a positive constant (which we will choose later), depicts (up to a constant) the rate of change
in time of the probability of the particle being in a certain position in a certain moment according to the
laws we have just described. As we will see in section 4 below, this operator 𝐿𝑠1 coincides with the fractional
Laplacian (−Δ)𝑠, so we have got a probabilistic interpretation for this operator. Note that, according to the
obtained expression, 𝐿𝑠1 is a nonlocal operator, as in order to obtain its value at a point, we need to know
the value of the original function in the whole space.

Even though the above computations are just formal, the definition of 𝐿𝑠1 makes sense as, for functions in
S (ℝ𝑛), the integral there converges. Indeed,

∫
ℝ𝑛

|2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)|
|𝑦|𝑛+2𝑠 d𝑦

= ∫
|𝑦|≤1

|2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)|
|𝑦|𝑛+2𝑠 d𝑦 +∫

|𝑦|≥1

|2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)|
|𝑦|𝑛+2𝑠 d𝑦

= 𝐼 + II .

Since 𝑢 ∈ S (ℝ𝑛), by using the Taylor expansion, we know that, if |𝑦| ≤ 1, then 2𝑢(𝑥)−𝑢(𝑥+𝑦)−𝑢(𝑥−𝑦) =
−2⟨∇2𝑢(𝑥)𝑦, 𝑦⟩ + 𝑜(|𝑦|2) for each 𝑥 ∈ ℝ𝑛, so

𝐼 = ∫
|𝑦|≤1

|2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)|
|𝑦|𝑛+2𝑠 d𝑦

= ∫
|𝑦|≤1

|2⟨∇2𝑢(𝑥)𝑦, 𝑦⟩ + 𝑜(|𝑦|2)|
|𝑦|𝑛+2𝑠 d𝑦

≤ ∫
|𝑦|≤1

2|∇2𝑢(𝑥)||𝑦|2 + |𝑜(|𝑦|2)|
|𝑦|𝑛+2𝑠 d𝑦

≤ 𝐶𝑥∫
|𝑦|≤1

1
|𝑦|𝑛−2(1−𝑠)

d𝑦 < ∞,

( 4 )

as 0 < 𝑠 < 1.

The boundedness of II is simpler:

II = ∫
|𝑦|≥1

|2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)|
|𝑦|𝑛+2𝑠 d𝑦 ≤ 4‖𝑢‖𝐿∞(ℝ𝑛)∫

|𝑦|≥1

1
|𝑦|𝑛+2𝑠 d𝑦 < ∞.

R e m a r k 2 . Observe that in the above argument, we only use that 𝑢 is a bounded 𝐶2(ℝ𝑛) function. Thus, 𝐿𝑠1
makes sense in a bigger class than S (ℝ𝑛). ◀

This pointwise formula allows us to prove in a very simple way the behavior of this operator with respect to
translations 𝜏ℎ𝑓(𝑥) = 𝑓(𝑥 + ℎ), ℎ ∈ ℝ𝑛; dilations Δ𝜆𝑓(𝑥) = 𝑓(𝜆𝑥), and transformations of the orthogonal
group �(𝑛) (i. e., the isometries of ℝ𝑛 which fix the origin, as, for instance, rotations or reflections).

P r o p o s i t i o n 3 . Let 𝑢 ∈ S (ℝ𝑛). For each ℎ ∈ ℝ𝑛 and each 𝜆 > 0, we have that

( 5 ) 𝐿𝑠1(𝜏ℎ𝑢) = 𝜏ℎ(𝐿𝑠1𝑢) and 𝐿𝑠1(Δ𝜆𝑢) = 𝜆2𝑠Δ𝜆[𝐿𝑠1𝑢].

P r o o f . The behavior of 𝐿𝑠1 with respect to translations is easily obtained by direct computations using
the definition of the operator. The behavior with respect to dilations is straightforward to obtain as well.
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Let us see the proof of the behavior with respect to dilations in order to illustrate the simplicity of these
computations. Let us fix 𝑥 ∈ ℝ𝑛. By using the change of variables 𝑧 = 𝜆𝑦, we have

𝐿𝑠1(Δ𝜆𝑢)(𝑥) =
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

2Δ𝜆𝑢(𝑥) − Δ𝜆𝑢(𝑥 + 𝑦) − Δ𝜆𝑢(𝑥 − 𝑦)
|𝑦|𝑛+2𝑠 d𝑦

=
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

2𝑢(𝜆𝑥) − 𝑢(𝜆𝑥 + 𝜆𝑦) − 𝑢(𝜆𝑥 − 𝜆𝑦)
|𝑦|𝑛+2𝑠 d𝑦

=
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

2𝑢(𝜆𝑥) − 𝑢(𝜆𝑥 + 𝑧) − 𝑢(𝜆𝑥 − 𝑧)

( |𝑧|𝜆 )
𝑛+2𝑠

d𝑧
𝜆𝑛

= 𝜆2𝑠
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

2𝑢(𝜆𝑥) − 𝑢(𝜆𝑥 + 𝑧) − 𝑢(𝜆𝑥 − 𝑧)
|𝑧|𝑛+2𝑠 d𝑧

= 𝜆2𝑠𝐿𝑠1𝑢(𝜆𝑥) = 𝜆2𝑠Δ𝜆[𝐿𝑠1𝑢](𝑥). ▪

In the following two sections we will give two new definitions of the fractional Laplacian and we will prove
that they are equivalent to the definition of 𝐿𝑠1 and the one of (−Δ)𝑠. First, we will rewrite 𝐿𝑠1.

T h e o r e m 4 . Let 𝑢 ∈ S (ℝ𝑛). For each 𝑥 ∈ ℝ𝑛 we have

( 6 ) 𝐿𝑠1𝑢(𝑥) = 𝑐𝑛,𝑠 PV∫
ℝ𝑛

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑛+2𝑠 d𝑦,

where PV is the Cauchy principal value, i. e.,

( 7 ) PV∫
ℝ𝑛

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑛+2𝑠 d𝑦 = lim

𝜖→0+
∫
|𝑥−𝑦|>𝜖

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑛+2𝑠 d𝑦

and 𝑐𝑛,𝑠 is a constant that depends on the dimension 𝑛 and the order of the fractional Laplacian 𝑠.

P r o o f . Let 𝑥 ∈ ℝ𝑛. As the integral defining 𝐿𝑠1 converges, we can rewrite it as follows:

𝐿𝑠1𝑢(𝑥) =
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)
|𝑦|𝑛+2𝑠 d𝑦

=
𝑐𝑛,𝑠
2 lim

𝜖→0+
∫
|𝑦|>𝜖

2𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦)
|𝑦|𝑛+2𝑠 d𝑦

=
𝑐𝑛,𝑠
2 lim

𝜖→0+
∫
|𝑦|>𝜖

𝑢(𝑥) − 𝑢(𝑥 + 𝑦)
|𝑦|𝑛+2𝑠 d𝑦 +

𝑐𝑛,𝑠
2 lim

𝜖→0+
∫
|𝑦|>𝜖

𝑢(𝑥) − 𝑢(𝑥 − 𝑦)
|𝑦|𝑛+2𝑠 d𝑦.

If we use the changes of variables 𝑧 = 𝑥 + 𝑦 and 𝑧 = 𝑥 − 𝑦, respectively, we can write the previous sum as

𝑐𝑛,𝑠
2 lim

𝜖→0+
∫
|𝑧−𝑥|>𝜖

𝑢(𝑥) − 𝑢(𝑧)
|𝑧 − 𝑥|𝑛+2𝑠 d𝑧 +

𝑐𝑛,𝑠
2 lim

𝜖→0+
∫
|𝑥−𝑧|>𝜖

𝑢(𝑥) − 𝑢(𝑧)
|𝑥 − 𝑧|𝑛+2𝑠 d𝑧.

By grouping all the terms in one integral, we finally obtain the desired result:

𝐿𝑠1𝑢(𝑥) = 𝑐𝑛,𝑠 lim𝜖→0+
∫
|𝑥−𝑧|>𝜖

𝑢(𝑥) − 𝑢(𝑧)
|𝑥 − 𝑧|𝑛+2𝑠 d𝑧. ▪

R e m a r k 5 . Note that when we first defined the operator 𝐿𝑠1, we proved that this definition made sense in
the Schwartz class by using that, in the Taylor expansion of 𝑢(𝑥) − 𝑢(𝑥 + 𝑦) − 𝑢(𝑥 − 𝑦) used in (4), the linear
term disappears, while in the formulation of theorem 4 we do not have this property at hand; hence we
need to plug in the principal value. ◀

4 . T h i r d d e f i n i t i o n : t h e h e a t s e m i g r o u p . E q u i v a l e n c e o f d e f i n i t i o n s

In this section we will give a new definition of the fractional Laplacian in terms of the heat semigroup
and then we will prove that this and the ones introduced above through the Fourier transform and the
pointwise formula are equivalent and define the same operator.
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Let us take a positive second order differential operator 𝐿 = 𝐿𝑥 acting on functions in the spatial variable 𝑥
defined on a domain 𝛺 ⊂ ℝ𝑛, 𝑛 ≥ 1. Let us consider the problem

{
𝑣𝑡(𝑥, 𝑡) + 𝐿𝑣(𝑥, 𝑡) = 0, for (𝑥, 𝑡) ∈ 𝛺 × (0,∞),
𝑣(𝑥, 0) = 𝑢(𝑥), for 𝑥 ∈ 𝛺.

Inspired by the form of solutions of linear first order differential equations, given an initial data 𝑢 for the
previous problem, we define the operator e−𝑡𝐿 by

( 8 ) e−𝑡𝐿𝑢(𝑥) = 𝑣(𝑥, 𝑡), 𝑥 ∈ 𝛺, 𝑡 ≥ 0,

where 𝑣 is the solution to the previous problem corresponding to the initial data 𝑢.

If we now think of the family {e−𝑡𝐿, 𝑡 ≥ 0}, it turns out that it is a semigroup of class (𝐶0) [14, Def. 1, Ch. 9].
Indeed, if 𝑣 is the solution to the previous problem with initial data 𝑢 and we consider 𝑡2 ∈ (0,∞), then
the function 𝑣𝑡2(𝑥, 𝑡) ≔ 𝑣(𝑥, 𝑡 + 𝑡2) satisfies the differential equation and also verifies 𝑣𝑡2(𝑥, 0) = 𝑣(𝑥, 𝑡2) =
e−𝑡2𝐿𝑢(𝑥). Then,

e−𝑡1𝐿(e−𝑡2𝐿𝑢(𝑥)) = 𝑣𝑡2(𝑥, 𝑡1) = 𝑣(𝑥, 𝑡1 + 𝑡2) = e−(𝑡1+𝑡2)𝐿𝑢(𝑥), 𝑥 ∈ 𝛺, 𝑡1, 𝑡2 ∈ (0,∞).

If we take 𝐿 = −Δ acting in the spatial variable 𝑥, we have defined the operator e𝑡Δ in the way we just
depicted in (8). In this case, a more specific expression can be given by solving the initial value problem

{
𝑣𝑡(𝑥, 𝑡) = Δ𝑣(𝑥, 𝑡), for (𝑥, 𝑡) ∈ ℝ𝑛 × (0,∞),
𝑣(𝑥, 0) = 𝑢(𝑥), for 𝑥 ∈ ℝ𝑛.

By applying the Fourier transform with respect to the variable 𝑥, we can rewrite the previous problem as

( 9 ) {
̂𝑣𝑡(𝜉, 𝑡) = |𝜉|2 ̂𝑣(𝜉, 𝑡), for (𝜉, 𝑡) ∈ ℝ𝑛 × (0,∞),
̂𝑣(𝜉, 0) = 𝑢̂(𝜉), for 𝜉 ∈ ℝ𝑛.

The resulting problem is a Cauchy problem associated to a homogeneous linear first order differential
equation with initial value 𝑢̂. Its solution is ̂𝑣(𝜉, 𝑡) = e−𝑡|𝜉|2𝑢̂(𝜉). By applying the inverse Fourier transform,

e𝑡Δ𝑢(𝑥) = 1
(2π)𝑛/2

∫
ℝ𝑛
e−𝑡|𝜉|2𝑢̂(𝜉)ei𝑥⋅𝜉 d𝜉 = 1

(2π)𝑛
∫
ℝ𝑛
e−𝑡|𝜉|2 (∫

ℝ𝑛
𝑢(𝑧)e−i𝜉⋅𝑧 d𝑧) ei𝑥⋅𝜉 d𝜉

= ∫
ℝ𝑛
𝑢(𝑧) ( 1

(2π)𝑛
∫
ℝ𝑛
e−𝑡|𝜉|2ei(𝑥−𝑧)⋅𝜉 d𝜉) d𝑧 = ∫

ℝ𝑛
𝑢(𝑧)𝑊𝑡(𝑥 − 𝑧) d𝑧,

where
𝑊𝑡(𝑥) =

1
(4π𝑡)𝑛/2

e−
|𝑥|2
4𝑡

is the Gauss kernel.

Once we got an explicit expression for e𝑡Δ, and inspired by the following numerical identity,

𝜆𝑠 = 1
𝛤(−𝑠)

∫
∞

0
(e−𝑡𝜆 − 1) d𝑡

𝑡1+𝑠 ,

which is valid for any 0 < 𝑠 < 1 and 𝜆 > 0, we can give the following alternative definition for the fractional
Laplacian.

D e f i n i t i o n 6 . For 0 < 𝑠 < 1 and 𝑢 ∈ S (ℝ𝑛), we define the operator 𝐿𝑠2 as

𝐿𝑠2𝑢(𝑥) =
1

𝛤(−𝑠)
∫

∞

0
(e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 . ◀
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This definition can be justified by means of the spectral theorem, and can be found for instance in Stinga’s
thesis [13].
At this point, we prove the equivalence of the operators 𝐿𝑠1 and 𝐿𝑠2 to the fractional Laplacian (−Δ)𝑠 which
we defined in section 2. The following result can be found in Stinga’s thesis [13, Lemma 2.1].

T h e o r e m 7 . Let 0 < 𝑠 < 1 and 𝑢 ∈ S (ℝ𝑛). Then, (−Δ)𝑠𝑢 = 𝐿𝑠1𝑢 = 𝐿𝑠2𝑢, i. e.,

(−Δ)𝑠𝑢(𝑥) = −
𝑐𝑛,𝑠
2 ∫

ℝ𝑛

𝑢(𝑥 + 𝑦) − 2𝑢(𝑥) + 𝑢(𝑥 − 𝑦)
|𝑦|𝑛+2𝑠 d𝑦 = 1

𝛤(−𝑠)
∫

∞

0
(e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 , 𝑥 ∈ ℝ𝑛,

where
𝑐𝑛,𝑠 =

4𝑠𝛤(𝑛/2 + 𝑠)
−π𝑛/2𝛤(−𝑠)

.

P r o o f . We will prove that the last expression coincides with the other ones. Let us see first the equivalence
between (−Δ)𝑠𝑢 and 𝐿𝑠2𝑢. By the Fourier inversion theorem,

e𝑡Δ𝑢(𝑥) − 𝑢(𝑥) = 1
(2π)𝑛/2

∫
ℝ𝑛
(e−𝑡|𝜉|2 − 1)𝑢̂(𝜉)ei𝑥⋅𝜉 d𝜉.

By using this and the change of variables 𝑤 = 𝑡|𝜉|2, we obtain

∫
∞

0

||e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)||
d𝑡
𝑡1+𝑠 ≤ 𝐶𝑛∫

∞

0
∫
ℝ𝑛
|e−𝑡|𝜉|2 − 1||𝑢̂(𝜉)| d𝜉 d𝑡

𝑡1+𝑠

= 𝐶𝑛∫
ℝ𝑛
∫

∞

0
|e−𝑤 − 1| d𝑤𝑤1+𝑠 |𝜉|

2𝑠|𝑢̂(𝜉)| d𝜉

= 𝐶𝑛,𝑠∫
ℝ𝑛
|𝜉|2𝑠|𝑢̂(𝜉)| d𝜉 < ∞,

as 𝑢 ∈ S (ℝ𝑛). Hence, by Fubini’s theorem

1
𝛤(−𝑠)

∫
∞

0
(e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 =
1

𝛤(−𝑠)
1

(2π)𝑛/2
∫
ℝ𝑛
∫

∞

0
(e−𝑡|𝜉|2 − 1) d𝑡

𝑡1+𝑠 𝑢̂(𝜉)e
i𝑥⋅𝜉 d𝜉

= 1
𝛤(−𝑠)

1
(2π)𝑛/2

∫
ℝ𝑛
∫

∞

0
(e−𝑤 − 1) d𝑤

𝑤1+𝑠 |𝜉|
2𝑠𝑢̂(𝜉)ei𝑥⋅𝜉 d𝜉

= 1
(2π)𝑛/2

∫
ℝ𝑛
|𝜉|2𝑠𝑢̂(𝜉)ei𝑥⋅𝜉 d𝜉 = ℱ−1 (| ⋅ |2𝑠𝑢̂) (𝑥).

Now, we see that 𝐿𝑠1𝑢 and 𝐿𝑠2𝑢 coincide for a suitable choice of 𝑐𝑛,𝑠. More precisely, we will prove that

1
𝛤(−𝑠)

∫
∞

0
(e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 =
4𝑠𝛤(𝑛/2 + 𝑠)
−π𝑛/2𝛤(−𝑠)

PV∫
ℝ𝑛

𝑢(𝑥) − 𝑢(𝑧)
|𝑥 − 𝑧|𝑛+2𝑠 d𝑧, 𝑥 ∈ ℝ𝑛.

Let 𝜀 > 0. By using the fact that ‖𝑊𝑡(𝑥 − ⋅ )‖𝐿1(ℝ𝑛) = 1 for every 𝑥 ∈ ℝ𝑛 and Fubini’s theorem,

∫
∞

0
(e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 =
∫

∞

0
∫
ℝ𝑛
𝑊𝑡(𝑥 − 𝑧)(𝑢(𝑧) − 𝑢(𝑥)) d𝑧 d𝑡

𝑡1+𝑠

= ∫
ℝ𝑛
∫

∞

0
𝑊𝑡(𝑥 − 𝑧)(𝑢(𝑧) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 d𝑧 = 𝐼𝜀 + II𝜀.

On one hand,

𝐼𝜀 ≔ ∫
|𝑥−𝑧|>𝜀

∫
∞

0
(4π𝑡)−𝑛/2e−

|𝑥−𝑧|2
4𝑡 (𝑢(𝑧) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 d𝑧

= ∫
|𝑥−𝑧|>𝜀

(𝑢(𝑧) − 𝑢(𝑥))∫
∞

0
(4π𝑡)−𝑛/2e−

|𝑥−𝑧|2
4𝑡

d𝑡
𝑡1+𝑠 d𝑧

= ∫
|𝑥−𝑧|>𝜀

(𝑢(𝑥) − 𝑢(𝑧))4
𝑠𝛤(𝑛/2 + 𝑠)
−π𝑛/2

1
|𝑥 − 𝑧|𝑛+2𝑠 d𝑧,
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where the change of variables 𝑟 = |𝑥−𝑧|2
4𝑡 is used. Note that, as 𝑢 is bounded, 𝐼𝜀 is absolutely convergent for

any 𝜀 > 0. On the other hand, by using polar coordinates,

II𝜀 ≔ ∫
∞

0
∫
|𝑥−𝑧|<𝜀

𝑊𝑡(𝑥 − 𝑧)(𝑢(𝑧) − 𝑢(𝑥)) d𝑧 d𝑡
𝑡1+𝑠

= ∫
∞

0
(4π𝑡)−𝑛/2∫

𝜀

0
e−

𝑟2
4𝑡 𝑟𝑛−1∫

|𝑧′|=1
(𝑢(𝑥 + 𝑟𝑧′) − 𝑢(𝑥)) d𝑆(𝑧′) d𝑟 d𝑡

𝑡1+𝑠 .

Now, by Taylor’s theorem and by using the symmetry of the sphere, we can write

∫
|𝑧′|=1

(𝑢(𝑥 + 𝑟𝑧′) − 𝑢(𝑥)) d𝑆(𝑧′) = 𝐾𝑛𝑟2Δ𝑢(𝑥) + 𝑂(𝑟3),

with 𝐾𝑛 some constant that we will specify later. Indeed, by Taylor’s theorem we can write, for each
𝑧′ ∈ �𝑛−1,

𝑢(𝑥 + 𝑟𝑧′) = 𝑢(𝑥) + 𝑟⟨∇𝑢(𝑥), 𝑧′⟩ + 𝑟2

2 ⟨∇
2𝑢(𝑥)𝑧′, 𝑧′⟩ + 𝑂(𝑟3),

where ⟨⋅ , ⋅⟩ denotes the usual inner product in ℝ𝑛. Taking into account the symmetry of the sphere, we
know that the integral of an odd function over �𝑛−1 is 0: this means, in our formula above, that the first
order terms integrate zero over the sphere. Likewise, when we examine closely the cross derivative terms
of ∇2𝑢(𝑥), they also accompany an odd function in the formula above and so they disappear when we
take the integral. This computation can be easily done by taking polar coordinates. It can also be noticed
that what we are left with is a multiple of 𝑟Δ𝑢(𝑥), as we wrote above.
Hence,

|II𝜀| ≤ 𝐾𝑛,Δᵆ(𝑥)∫
𝜀

0
𝑟𝑛+1∫

∞

0

e−
𝑟2
4𝑡

𝑡𝑛/2+𝑠
d𝑡
𝑡 = 𝐾𝑛,Δᵆ(𝑥)∫

𝜀

0
𝑟𝑛+1𝐾𝑛,𝑠𝑟−𝑛−2𝑠 d𝑟 = 𝐾𝑛,Δᵆ(𝑥),𝑠𝜀2(1−𝑠).

This proves that II𝜀 → 0 when 𝜀 → 0, so

∫
∞

0
(e𝑡Δ𝑢(𝑥) − 𝑢(𝑥)) d𝑡

𝑡1+𝑠 = lim
𝜀→0

𝐼𝜀 + II𝜀 =
4𝑠𝛤(𝑛/2 + 𝑠)

−π𝑛/2
PV∫

ℝ𝑛

𝑢(𝑥) − 𝑢(𝑧)
|𝑥 − 𝑧|𝑛+2𝑠 d𝑧. ▪

With computations very similar to the ones we just did, we can prove that, whenever 𝑢 ∈ 𝐶2(ℝ𝑛) ∩ 𝐿∞(ℝ𝑛),
we have that (−Δ)𝑠𝑢(𝑥) converges to 𝑢(𝑥) when 𝑠 → 0+, for every 𝑥 ∈ ℝ𝑛. Actually, for a given 𝑥 ∈ ℝ𝑛, to
prove the aforementioned convergence, we would only need that 𝑢 belongs to 𝐶2(𝐵(𝑥)) ∩ 𝐿∞(ℝ𝑛), with
𝐵(𝑥) the ball of center 𝑥 and radius 1 [13, Prop. 2.3]. Note also that, when 𝑢 ∈ S (ℝ𝑛), the pointwise
convergence is obvious by the definition via Fourier transform, in the same way that it is obvious that
(−Δ)𝑠 → (−Δ) when 𝑠 → 1−.

5 . F o u r t h d e f i n i t i o n : t h e e x t e n s i o n p r o b l e m

When one works with nonlocal operators as (−Δ)𝑠, one of the principal difficulties which appears is the
fact that they do not act on functions in the same way that differential operators do, but they are defined by
integral formulas. As a consequence, we do not have some of the properties that local operators have. From
the point of view of the tools to study these operators, it is desirable to have some procedure which allows
us to connect a nonlocal problem with a local one at hand. The bibliography in the topic of differentiable
problems is extensive, and then the set of techniques is very rich. With this motivation, we present the
trace relation and the extension problem.
Caffarelli and Silvestre [3] introduced a method which allows to transform nonlocal problems in ℝ𝑛 into
other ones in which some differential operator in ℝ𝑛+1

+ appears. The method is described as follows: given
0 < 𝑠 < 1 and 𝑢 ∈ S (ℝ𝑛), we want to study the solution of the system

( 1 0 )

⎧

⎨
⎩

𝐿1−2𝑠𝑈(𝑥, 𝑦) ≔ div𝑥,𝑦 (𝑦1−2𝑠∇𝑥,𝑦𝑈) = 0, 𝑥 ∈ ℝ𝑛
+, 𝑦 > 0,

𝑈(𝑥, 0) = 𝑢(𝑥),
𝑈(𝑥, 𝑦) → 0 when 𝑦 → ∞.
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By using the definition of the divergence, the system in (10) can be rewritten as

( 1 1 )

⎧

⎨
⎩

−Δ𝑥𝑈(𝑥, 𝑦) = (𝜕𝑦𝑦 +
1−2𝑠
𝑦 𝜕𝑦)𝑈(𝑥, 𝑦), 𝑥 ∈ ℝ𝑛

+, 𝑦 > 0,
𝑈(𝑥, 0) = 𝑢(𝑥),
𝑈(𝑥, 𝑦) → 0 when 𝑦 → ∞,

and the solution of (11) is given by the following result.

T h e o r e m 8 (extension theorem). The solution 𝑈 of the extension problem (11) is given by the convolution

( 1 2 ) 𝑈(𝑥, 𝑦) = (𝑃𝑠( ⋅ , 𝑦) ∗ 𝑢)(𝑥) = ∫
ℝ𝑛
𝑃𝑠(𝑥 − 𝑧, 𝑦)𝑢(𝑧) d𝑧,

where
𝑃𝑠(𝑥, 𝑦) =

𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(𝑠)

𝑦2𝑠

(𝑦2 + |𝑥|2)(𝑛+2𝑠)/2

is the generalized Poisson kernel for the extension problem in the semispace ℝ𝑛+1
+ . Moreover, for 𝑈

defined as in (12) one has

( 1 3 ) (−Δ)𝑠𝑢(𝑥) = −2
𝑠−1𝛤(𝑠)
𝛤(1 − 𝑠)

lim
𝑦→0+

𝑦1−2𝑠𝜕𝑦𝑈(𝑥, 𝑦),

which is what we call the trace relation.

R e m a r k 9 . The extension theorem provides an interesting relation between the operators (−Δ)𝑠 and 𝜕𝑦.
This relation allows to obtain properties of the nonlocal operator from the properties of the local one. ◀

P r o o f o f t h e o r e m 8 . By taking the partial Fourier transform in the variable 𝑥 in (11), we get the system

( 1 4 ) {
𝜕𝑦𝑦𝑈̂(𝜉, 𝑦) +

1−2𝑠
𝑦 𝜕𝑦𝑈̂(𝜉, 𝑦) − |𝜉|2𝑈̂(𝜉, 𝑦) = 0, (𝜉, 𝑦) ∈ ℝ𝑛+1

+ ,
𝑈̂(𝜉, 0) = 𝑢̂(𝜉), 𝑈̂(𝜉, 𝑦) → 0 when 𝑦 → ∞, 𝜉 ∈ ℝ𝑛.

Now, if we fix 𝜉 ∈ ℝ𝑛 ⧵ {0} and write 𝑌(𝑦) = 𝑌𝜉(𝑦) ≔ 𝑈̂(𝜉, 𝑦), the previous problem can be written as

( 1 5 ) {
𝑦2𝑌″(𝑦) + (1 − 2𝑠)𝑦𝑌 ′(𝑦) − |𝜉|2𝑦2𝑌(𝑦) = 0, 𝑦 ∈ ℝ+,
𝑌(0) = 𝑢̂(𝜉), 𝑌(𝑦) → 0 when 𝑦 → ∞.

The equation in the above problem, under some adjustment of the parameters, is known in the literature
as the generalised modified Bessel equation (see for instance Lebedev’s book [9]), and is given by

( 1 6 ) 𝑦2𝑌″ + (1 − 2𝛼)𝑦𝑌 ′(𝑦) + [𝛽2𝛾2𝑦2𝛾 + (𝛼 − 𝜈2𝛾2)]𝑌(𝑦) = 0,

where
𝛼 = 𝑠, 𝛾 = 1, 𝜈 = 𝑠, 𝛽 = |𝜉|.

It is well known (see Lebedev’s book [9]) that (16) has two linear independent solutions given by

𝑢1(𝑦) = 𝑦𝑠𝐼𝑠(|𝜉|𝑦) and 𝑢2(𝑦) = 𝑦𝑠𝐾𝑠(|𝜉|𝑦),

where 𝐼𝑠 and 𝐾𝑠 are Bessel functions of second and third kind, respectively:

( 1 7 )

𝐼𝑟(𝑧) = (
𝑧
2)

𝑟
∑∞

𝑘=0
(𝑧/2)2𝑘

𝛤(𝑘 + 1) 𝛤(𝑘 + 𝑠 + 1) , |𝑧| < ∞, |arg(𝑧)| < π;

𝐾𝑟(𝑧) =
π
2
𝐼−𝑟(𝑧) − 𝐼𝑟(𝑧)

sinπ𝑟 , |arg(𝑧)| < π.

Thus, for each 𝜉 ≠ 0, the solution of (15) is

( 1 8 ) 𝑈̂(𝜉, 𝑦) = 𝐴𝑦𝑠𝐼𝑠(|𝜉|𝑦) + 𝐵𝑦𝑠𝐾𝑠(|𝜉|𝑦), (𝜉, 𝑦) ∈ ℝ𝑛+1
+ .
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From the expressions in (17) one can obtain (see [9, formulas (5.11.9) and (5.11.10), p. 123]) the following
asymptotics for 𝑧 →∞:

( 1 9 ) 𝐼𝑠(𝑧) ≈ e𝑧(2π𝑧)−1/2, 𝐾𝑠(𝑧) ≈ (
π
2𝑧)

1/2
e−𝑧,

where we use the symbol 𝐴 ≈ 𝐵 to say that there exist constants 𝑐,𝐶 > 0 such that 𝑐𝐴 ≤ 𝐵 ≤ 𝐶𝐴. Thus, the
function 𝐼𝑠(𝑧) diverges, while 𝐾𝑠(𝑧) takes finite values for 𝑧 sufficiently large. From here, we can deduce
that the condition that 𝑈̂(𝜉, 𝑦) → 0 when 𝑦 → ∞ implies that, in (18), we must have 𝐴 = 0. Therefore,

( 2 0 ) 𝑈̂(𝜉, 𝑦) = 𝐵𝑦𝑠𝐾𝑠(|𝜉|𝑦), (𝜉, 𝑦) ∈ ℝ𝑛+1
+ .

On the other hand, it can be proved that, when 𝑧 → 0+ in (17),

( 2 1 ) 𝐼𝑠(𝑧) ≈
1

𝛤(𝑠 + 1) (
𝑧
2)

𝑠
and 𝐼−𝑠(𝑧) ≈

1
𝛤(1 − 𝑠) (

𝑧
2)

−𝑠

(c.f. [9, formula (5.7.1), p. 108]). Hence, by imposing the condition 𝑈̂(𝜉, 0) = 𝑢̂(𝜉), we can fix 𝐵 in the
following way:

( 2 2 ) 𝐵𝑦𝑠𝐾𝑠(|𝜉|𝑦) = 𝐵π2
𝑦𝑠𝐼−𝑠(|𝜉|𝑦) − 𝑦𝑠𝐼𝑠(|𝜉|𝑦)

sinπ𝑠
𝑦→0∗
→ 𝐵π2𝑠−1

𝛤(1 − 𝑠) sinπ𝑠 |𝜉|
−𝑠 = 𝐵2𝑠−1𝛤(𝑠)|𝜉|−𝑠,

where in the last equality we have used the property of the 𝛤 function that

( 2 3 ) 𝛤(𝑧)𝛤(1 − 𝑧) = π
sinπ𝑧 , 𝑧 ∉ ℤ.

Since 𝑈̂(𝜉, 0) = 𝑢̂(𝜉), we have that

( 2 4 ) 𝑈̂(𝜉, 𝑦) =
|𝜉|𝑠𝑢̂(𝜉)
2𝑠−1𝛤(𝑠)𝑦

𝑠𝐾𝑠(|𝜉|𝑦).

Suppose that 𝑈 is given by the convolution of 𝑢 with a kernel 𝑃𝑠(𝑥, 𝑦) and let us see the explicit expression
for this kernel. With this assumption, from the properties of the Fourier transform with respect to the
convolution of functions, we deduce that 𝑈̂(𝜉, 𝑦) = ̂𝑃𝑠(𝜉, 𝑦)𝑢̂(𝜉), so

𝑃𝑠(𝑥, 𝑦) = ℱ−1 (
𝑈̂( ⋅ , 𝑦)
𝑢̂( ⋅ ) ) (𝑥) = ℱ−1 (

| ⋅ |𝑠

2𝑠−1𝛤(𝑠)𝑦
𝑠𝐾𝑠(| ⋅ |𝑦)) (𝑥).

Now, as the function | ⋅ |𝑠
2𝑠−1𝛤(𝑠)𝑦

𝑠𝐾𝑠(| ⋅ |𝑦) is a function with spherical symmetry, we know that its Fourier
transform coincides with its inverse Fourier transform, so finding an expression for the kernel 𝑃𝑠(𝑥, 𝑦) is
equivalent to computing the Fourier transform (in the case in which the Fourier transform is applied to
radial functions, it is called the Hankel transform) of the function | ⋅ |𝑠

2𝑠−1𝛤(𝑠)𝑦
𝑠𝐾𝑠(| ⋅ |𝑦).

For this, we use the fact that the Hankel transform of a radial function 𝑓( ⋅ ) = 𝑓0(| ⋅ |) is (see Stein and
Weiss’s book [12, Ch. IV, Th. 3.3])

ℱ(𝑓0)(𝑟) =
1

(2π)
𝑛
2 𝑟

𝑛−2
2
∫

∞

0
𝑓0(𝑠)𝐽 𝑛−2

2
(𝑟𝑠)𝑠

𝑛
2 d𝑠.

Here, 𝐽 𝑛−2
2
denotes the Bessel function, defined for 𝑘 a real number greater than 1/2 by letting

𝐽𝑘(𝑡) ≔
(𝑡/2)𝑘

𝛤[(2𝑘 + 1)/2]𝛤( 12 )
∫

1

−1
ei𝑡𝑠(1 − 𝑠2)(2𝑘−1)/2 d𝑠.

Thus, by applying this to our function and by using [5, formula 3 in 6.576, p. 684], we get

ℱ(
| ⋅ |𝑠

2𝑠−1𝛤(𝑠)𝑦
𝑠𝐾𝑠(| ⋅ |𝑦)) (𝑥) = ℱ (

| ⋅ |𝑠

2𝑠−1𝛤(𝑠)𝑦
𝑠𝐾𝑠(| ⋅ |𝑦)) (|𝑥|)

=
𝑦𝑠

2𝑠−1𝛤(𝑠)(2π)
𝑛
2 |𝑥|

𝑛−2
2
∫

∞

0
|𝜉|

𝑛
2 +𝑠𝐾𝑠(|𝜉|𝑦)𝐽 𝑛−2

2
(|𝑥|𝑠) d|𝜉|

=
𝛤(𝑛2 + 𝑠)
π𝑛/2

𝑦2𝑠

(𝑦2 + |𝑥|2)(𝑛+2𝑠)/2
.
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Only (13) is left, i. e., we just have to check the equality

(−Δ)𝑠𝑢(𝑥) = −2
2𝑠−1𝛤(𝑠)
𝛤(1 − 𝑠)

lim
𝑦→0+

𝑦1−2𝑠𝜕𝑦𝑈(𝑥, 𝑦).

Let us recall that the Fourier transform of the function (−Δ)𝑠𝑢(𝑥) is |𝜉|2𝑠𝑢̂(𝜉). Then, (13) is equivalent to
seeing that

( 2 5 ) |𝜉|2𝑠𝑢̂(𝜉) = −2
2𝑠−1𝛤(𝑠)
𝛤(1 − 𝑠)

lim
𝑦→0+

𝑦1−2𝑠 𝜕𝑈̂𝜕𝑦 (𝜉, 𝑦).

By using the following identities for the Bessel function of third kind (c.f. [9, formula (5.7.9), p. 110)],

( 2 6 ) 𝐾′
𝑠(𝑧) =

𝑠
𝑧𝐾𝑠(𝑧) − 𝐾𝑠+1(𝑧)

and

( 2 7 )
2𝑠
𝑧 𝐾𝑠(𝑧) − 𝐾𝑠+1(𝑧) = −𝐾𝑠−1(𝑧) = −𝐾1−𝑠(𝑧),

together with (23), we get

𝑦1−2𝑠𝜕𝑦𝑈̂(𝜉, 𝑦) =
|𝜉|𝑠+1𝑢̂(𝜉)
2𝑠−1𝛤(𝑠) 𝑦

1−𝑠 (
2𝑠
𝑦 𝐾𝑠(|𝜉|𝑦) − 𝐾𝑠+1(|𝜉|𝑦)) = −

|𝜉|𝑠+1𝑢̂(𝜉)
2𝑠−1𝛤(𝑠) 𝑦

1−𝑠𝐾1−𝑠(|𝜉|𝑦).

In view of the behaviour of the Bessel function of third kind 𝐾𝑠, we have that

lim
𝑦→0+

𝑦1−𝑠𝐾1−𝑠(|𝜉|𝑦) =
𝛤(1 − 𝑠)|𝜉|𝑠−1

2𝑠 ,

so we get

lim
𝑦→0+

𝑦1−2𝑠𝜕𝑦𝑈̂(𝜉, 𝑦) = − 𝛤(1 − 𝑠)
22𝑠−1𝛤(𝑠) |𝜉|

2𝑠𝑢̂(𝜉).

This proves (13), thus finishing the proof. ▪

A l t e r n a t i v e p r o o f o f ( 1 3 ) . By using the following property of the generalised Poisson kernel,

( 2 8 ) ∫
ℝ𝑛
𝑃𝑠(𝑥, 𝑦) d𝑥 = 1, 𝑦 > 0,

we can obtain an alternative proof where we do not need to use (26) and (27).

Let 𝑢 ∈ S (ℝ𝑛) and consider a solution

𝑈(𝑥, 𝑦) = (𝑃𝑠( ⋅ , 𝑦) ∗ 𝑢)(𝑥)

of the extension problem (12). Observe that, by using (28), we can write

𝑈(𝑥, 𝑦) = 𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(𝑠)

∫
ℝ𝑛

(𝑢(𝑧) − 𝑢(𝑥))𝑦2𝑠

(𝑦2 + |𝑥 − 𝑧|2)(𝑛+2𝑠)/2
d𝑧 + 𝑢(𝑥).

By differentiating the two sides with respect to 𝑦, we obtain

𝑦1−2𝑠𝜕𝑦𝑈(𝑥, 𝑦) = 2𝑠𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(𝑠)

∫
ℝ𝑛

𝑢(𝑧) − 𝑢(𝑥)
(𝑦2 + |𝑧 − 𝑥|2)(𝑛+2𝑠)/2

d𝑧 + 𝑂(𝑦2).

If we let 𝑦 → 0+ and we use the Lebesgue dominated convergence theorem, we get

lim
𝑦→0+

𝑦1−2𝑠𝜕𝑦𝑈(𝑥, 𝑦) = 2𝑠𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(𝑠)

PV∫
ℝ𝑛

𝑢(𝑧) − 𝑢(𝑥)
(|𝑧 − 𝑥|2)(𝑛+2𝑠)/2

d𝑧

= −2𝑠𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(𝑠)

𝑐−1𝑛,𝑠(−Δ)𝑠𝑢(𝑥),
( 2 9 )
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where in the second equality we have used the definition of fractional Laplacian (6).

Finally, recall that

( 3 0 ) 𝑐𝑛,𝑠 =
𝑠22𝑠𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(1 − 𝑠)

,

so, by substituting the expression of (30) in (29) we obtain

lim
𝑦→0+

𝑦1−2𝑠𝜕𝑦𝑈(𝑥, 𝑦) = −2𝑠𝛤(𝑛/2 + 𝑠)
π𝑛/2𝛤(𝑠)

𝑐−1𝑛,𝑠(−Δ)𝑠𝑢(𝑥) = − 𝛤(1 − 𝑠)
22𝑠−1𝛤(𝑠) (−Δ)

𝑠𝑢(𝑥),

which completes the alternative proof. ▪
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