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A b s t r a c t : This article is about holomorphic functional calculus on Hilbert spaces.
It is an expository paper where we survey the main results in this setting and we
present some examples. We define the natural functional calculus for sectorial op-
erators and give an example of a sectorial operator that does not admit a functional
calculus.

R e s u m e n : Este artículo trata sobre el cálculo funcional holomorfo en espacios
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operadores sectoriales y damos un ejemplo de un operador sectorial que no admite
un cálculo funcional.
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Holomorphic functional calculus

1 . I n t r o d u c t i o n

In this expository paper we develop the main ideas about holomorphic functional calculus for sectorial
operators on Hilbert spaces. Of course, we cannot be exhaustive and make a complete presentation of
the theory. We present the sketch of some proofs, and the complete demonstration of some results. Our
purpose is to show some of the usual procedures and tools in this context. The interested reader can
consult, for instance, the references listed at the end.

The functional calculus that we study was formalized in the late 80’s and 90’s mainly by McIntosh [1, 4, 17,
18]. The motivation was in Kato’s square root problem and the operator-method approach to evolution
equations of Grisvard and Da Prato. Many examples within the class of operators under consideration can
be found among the partial differential operators (elliptic differential operators, Schrödinger operators
with singular potentials, Stokes operators...).

The purpose of a functional calculus is to give a meaning to 𝑓(𝑇), where 𝑓 is a complex function defined
on a subset of ℂ and 𝑇 is an operator defined on a Hilbert space.

For example, in a finite dimensional Hilbert space, we can find exponentials and logarithms of matrices
through the theory of linear systems of differential equations. These operations can be regarded as a
special case of a functional calculus for operators in a finite dimensional setting.

Another example is the well-known equality

( 1 ) Δ𝑓 = ℱ−1(|𝑦|2ℱ(𝑓)),

where Δ represents the Laplace operator, ℱ denotes the Fourier transform and ℱ−1 is the inverse of ℱ.
This equality holds provided that 𝑓 satisfies certain regularity and decay conditions. From (1) it follows
that, if 𝑃 is a polynomial, we can compute 𝑃(Δ) using the following expression:

( 2 ) 𝑃(Δ)𝑓 = ℱ−1(𝑃(|𝑦|2)ℱ(𝑓)).

Now, if we want to define 𝑚(Δ) for a general complex function 𝑚, (2) suggests the following definition:

𝑚(Δ)𝑓 = ℱ−1(𝑚(|𝑦|2)ℱ(𝑓)).

This is the first step to construct a functional calculus for the Laplace operator. In a second step, we
need to specify the Hilbert space 𝐻 where 𝑓 belongs to and the class 𝜉 of admissible functions 𝑚 in this
functional calculus. Actually, (1) can be seen as a spectral representation for the operator Δ. This fact
allows to extend these ideas and to define a functional calculus for operators on Hilbert spaces by using
spectral representations.

The abstract method of defining a functional calculus follows ideas fromHaase [8], and it is roughly done in
the following way. If 𝑇 is an operator in a Hilbert space 𝐻, we consider a class 𝜉 of functions defined on the
spectrum 𝜎(𝑇) of 𝑇 and a mapping 𝛷∶ 𝜉 → 𝐵(𝐻), where 𝐵(𝐻) represents the space of bounded and linear
operators on 𝐻. 𝛷 is actually a method to assign an operator 𝑓(𝑇) defined by 𝛷(𝑓). In a first approach,
the class 𝜉 is formed by smooth enough functions. Later on, this class of functions will be enlarged by
including less regular functions. In this second step, 𝑓(𝑇)may be unbounded if 𝑇 is not in 𝐵(𝐻). Since the
purpose of functional calculus is to make computations, it is convenient that 𝜉 is an algebra and 𝛷 is an
algebra homomorphism. Furthermore, the mapping 𝛷 should be somehow connected to the operator 𝑇
(note that we write 𝑓(𝑇)). One of such relations should be that 𝛷((𝜆 − 𝑧)−1) = 𝑅(𝜆,𝑇), where 𝜆 ∈ 𝜌(𝑇) and
𝑅(𝜆,𝑇) = (𝜆𝐼−𝑇)−1 is the resolvent operator. Haase [8] presented an abstract approach to the construction
of functional calculus.

This paper is structured as follows. In section 2 we present the holomorphic functional calculus. The
definition and the main properties of the sectorial operators on Hilbert spaces are presented in section 3.
The holomorphic function algebras, basic for functional calculus, are studied in section 4. Section 5 is
focused on the definitions and properties of the holomorphic functional calculus for sectorial operators.
Finally, in section 6 we discuss an example: a sectorial operator in a separable Hilbert space that does not
have a bounded holomorphic functional calculus.
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The theory developed in this paper is concerned with operators in Hilbert spaces and holomorphic
functions. The standard definitions and properties about these topics that are used in the sequel can be
found in the monographs of Rudin [19, 20]. A detailed study about the holomorphic functional calculus
for sectorial operators appears, for instance, in [7, 14, 15, 24], where most of the results in this paper are
included.

2 . H o l o m o r p h i c f u n c t i o n a l c a l c u l u s

Let 𝐻 be a Hilbert space. In this section, we assume that 𝑇∶ 𝐻 → 𝐻 is a bounded linear operator.

Let 𝑓 be a holomorphic function defined on ℂ such that 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛, |𝑧| < 𝑅, where 𝑅 is the radius
of convergence of 𝑓. Let us also suppose 𝑅 > ‖𝑇‖, where ‖𝑇‖ = sup𝑧∈𝐻⧵{0}

‖𝑇𝑧‖𝐻
‖𝑧‖𝐻

is the operator norm of 𝑇.

A natural way of defining 𝑓(𝑇) is the following one. It is clear that the series defined by

𝑓(𝑇) =
∞
∑
𝑛=0

𝑎𝑛𝑇𝑛

is convergent in 𝐵(𝐻) and 𝑓(𝑇) ∈ 𝐵(𝐻). Moreover, if 𝑃‖𝑇‖ denotes the space of holomorphic functions on
{𝑧 ∈ ℂ ∶ |𝑧| < 𝑅} for some 𝑅 > ‖𝑇‖, the mapping

𝛹∶ 𝑃||𝑇|| ⟶𝐵(𝐻)

𝑓⟼ 𝑓(𝑇)

is an algebra homomorphism. Notice that this way, the definition of 𝑓(𝑇) coincides with the natural
definition whenever 𝑓 is a polynomial.

There is also a natural way of defining 𝑓(𝑇)when 𝑓 is a rational function. Let 𝑝, 𝑞 be polynomials such that 𝑞
does not vanish in 𝜎(𝑇). Then, 𝑟 = 𝑝/𝑞 is a rational function with no poles in 𝜎(𝑇). Write 𝑞(𝑧) = ∏𝑛

𝑗=1 (𝛼𝑗−𝑧).
Since 𝛼𝑗 ∉ 𝜎(𝑇), we have that the resolvent operator 𝑅(𝛼𝑗,𝑇) = (𝛼𝑗𝐼 − 𝑇)−1 is a bounded operator on 𝐻.
Therefore, one can define 𝑟(𝑇) as

𝑟(𝑇) = 𝑝(𝑇)
𝑛
∏
𝑗=1

𝑅(𝛼𝑗,𝑇).

Moreover, 𝑟(𝑇) ∈ 𝐵(𝐻) and the mapping

𝛹∶ 𝑅𝜍(𝑇) ⟶𝐵(𝐻)
𝑟⟼ 𝑟(𝑇)

is and algebra homomorphism. Here 𝑅𝜍(𝑇) denotes the spaces of rational functions without poles in 𝜎(𝑇).

Our objective is to define a functional calculus extending the two above particular cases (power series
with a radius of convergence greater than ||𝑇|| and rational functions without poles in 𝜎(𝑇)). In order to
do this, we consider holomorphic functions in some neighbourhood of the spectrum of 𝑇 ∈ 𝐵(𝐻).

Let 𝑇 be a bounded operator in 𝐻 and𝛺 ⊂ ℂ an open set containing 𝜎(𝑇). For each connected component
𝛺𝑖 of 𝛺, we consider a closed contour 𝛾𝑖 in 𝛺𝑖 around 𝜎(𝑇) ∩ 𝛺𝑖. We let 𝛾 be the union of all the 𝛾𝑖. In
particular, 𝛾 is a finite collection of smooth closed paths that is contained in 𝛺 ⧵ 𝜎(𝑇), see figure 1. Then,
we have

1
2πi∫𝛾

d𝑧
𝑧 − 𝛼 = {

1, 𝛼 ∈ 𝜎(𝑇),
0, 𝛼 ∉ 𝛺.

Suppose that 𝑓 is a holomorphic function in 𝛺; in short, 𝑓 ∈ ℋ(𝛺). Motivated by the Cauchy integral
formula, we define

𝑓(𝑇) = 1
2πi∫𝛾

𝑓(𝑧)𝑅(𝑧,𝑇) d𝑧,
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𝛺

𝜎(𝑇)

𝛾

F i g u r e 1 : The contour 𝛾 around 𝜎(𝑇).

where 𝑅(𝑧,𝑇) = (𝑧𝐼 − 𝑇)−1 is the resolvent operator. The integral is understood in the 𝐵(𝐻)-Böchner
sense [3]. Since 𝑓 ∈ 𝐻(𝛺) and 𝛾 is contained in 𝛺 ⧵ 𝜎(𝑇), the Cauchy integral theorem and Hahn-Banach
theorem imply that the integral defining 𝑓(𝑇) does not depend on the contour 𝛾 satisfying the above
conditions. Moreover, 𝑓(𝑇) ∈ 𝐵(𝐻).

T h e o r e m 1 . Let 𝑇 ∈ 𝐵(𝐻). Assume that 𝛺 is an open set in ℂ containing 𝜎(𝑇). Then, the mapping

𝛷∶ ℋ(𝛺)⟶ 𝐵(𝐻)
𝑓⟼ 𝑓(𝑇)

satisfies the following properties:

( 1 ) 𝛷 is an algebra homomorphism.
( 2 ) 𝛷(𝑝) = 𝑝(𝑇), for every polynomial 𝑝.
( 3 ) If {𝑓𝑛}∞𝑛=1 ⊂ ℋ(𝛺), 𝑓 ∈ ℋ(𝛺) and 𝑓𝑛 → 𝑓, as 𝑛 → ∞, uniformly on every compact subset of 𝛺, then

𝛷(𝑓𝑛) → 𝛷(𝑓) as 𝑛 → ∞ in 𝐵(𝐻).

Moreover, 𝛷 is the unique mapping from 𝐻(𝛺) into 𝐵(𝐻) satisfying the properties (1), (2) and (3).

This holomorphic functional calculus is also called the Dunford–Riesz functional calculus. Note that the two
previous examples are special cases of the Dunford–Riesz functional calculus. Indeed, if 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧
𝑛,

with radius of convergence greater than ‖𝑇‖, by taking 𝛺 = 𝐵(0,𝑅), we have that 𝛷(𝑓) = ∑∞
𝑛=0 𝑎𝑛𝑇

𝑛.
Also, if 𝑟 ∈ 𝑅𝜍(𝑇) ∩ ℋ(𝛺) with 𝜎(𝑇) ⊂ 𝛺, and 𝑟 is a rational function without poles in 𝜎(𝑇), then
𝛷(𝑟) = 𝑝(𝑇)∏𝑛

𝑖=1 (𝛼𝑖𝐼 − 𝑇)−1. Here, we are assuming 𝑟(𝑧) = 𝑝(𝑧)
∏𝑛

𝑖=1(𝛼𝑖−𝑧)
, where 𝑝(𝑧) is a polynomial over ℂ.

The spectral mapping theorem holds for 𝛷, that is, if 𝛺 is an open set in ℂ containing 𝜎(𝑇) and 𝑓 ∈ 𝐻(𝛺),
then 𝑓(𝜎(𝑇)) = 𝜎(𝑓(𝑇)) [20, Theorem 10.28(b)].

We are going to give an idea on how to extend the holomorphic functional calculus to closed operators.
Let 𝑇 be a closed operator and 𝛺 an open set such that 𝜎(𝑇) ⊂ 𝛺 and the resolvent set 𝜌(𝑇) ∩ (ℂ ⧵ 𝛺) ≠ ∅.
We choose 𝛼 ∈ 𝜌(𝑇) ∩ (ℂ ⧵ 𝛺) and we consider the function

𝑅𝛼(𝑧) =
⎧

⎨
⎩

1
𝑧−𝛼 if 𝑧 ∈ ℂ ⧵ {𝛼},
∞ if 𝑧 = 𝛼,
0 if 𝑧 = ∞.

It is clear that 𝑅𝛼(𝛺) = 𝑊 is an open set in ℂ ⧵ {0}. Also, we have that −𝑅𝛼(𝜎(𝑇)) = 𝜎((𝛼𝐼 − 𝑇)−1). Since
𝜎(𝑇) ⊂ 𝛺, 𝜎((𝛼𝐼 − 𝑇)−1) ⊆ −𝑊. We define

𝑓(𝑇) ≔ (𝑓 ∘ (−𝑅−1𝛼 )((𝛼𝐼 − 𝑇)−1),

where we use the holomorphic functional calculus defined in theorem 1 on the right hand side.
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3 . S e c t o r i a l o p e r a t o r s

In this section we introduce sectorial operators and we discuss their main properties. These operators may
not be defined on the whole Hilbert space𝐻 but on a dense subspace that we call domain of 𝑇 (and denote
by 𝐷(𝑇)). Moreover, they may be unbounded. For a (possibly unbounded) linear operator 𝑇∶ 𝐷(𝑇) → 𝐻,
we define its spectrum 𝜎(𝑇) as the set of 𝜆 ∈ ℂ such that 𝑇 − 𝜆Id has a bounded inverse.

If 0 < 𝜔 ≤ π, by 𝑆𝜔 we denote the open sector, that is symmetric with respect the positive real axis and
with opening angle 𝜔, that is,

𝑆𝜔 = {𝑧 ∈ ℂ ⧵ {0} ∶ |Arg(𝑧)| < 𝜔}.

Also, we define 𝑆0 = (0,∞). 𝑆𝜔 denotes the closure of 𝑆𝜔, for every 0 ≤ 𝜔 ≤ π.

D e f i n i t i o n 2 . Let 𝑇∶ 𝐷(𝑇) → 𝐻 be a linear operator. We say that 𝑇 is a sectorial operator of angle
𝝎 ∈ [0,π) (in short, 𝑇 ∈ Sect(𝜔)) when the following two properties hold:

1 ) 𝜎(𝑇) ⊂ 𝑆𝑤,
2 ) for every 𝜔 < 𝛼 < π,

𝑀(𝑇,𝛼) ≔ sup{‖𝑧𝑅(𝑧,𝑇)‖ ∶ 𝑧 ∉ 𝑆𝛼} < ∞. ◀

Note that if 𝑇 ∈ Sect(𝜔) for some 𝜔 ∈ [0,π), then (−∞, 0) ⊆ 𝜌(𝑇) and 𝑇 is a closed operator. We name
sectoriality angle 𝜔𝑇 of the operator 𝑇 to the number

𝜔𝑇 = min{0 ≤ 𝜔 < π ∶ 𝑇 ∈ Sect(𝜔)}.

We now give a few examples of sectorial operators.

E x a m p l e 3 . If 𝑇 ∈ 𝐵(𝐻) is self-adjoint and positive, then 𝑇 ∈ Sect(0). ◀

E x a m p l e 4 . Let 0 < 𝜔 < π
2 . A family {𝑇(𝑧) ∶ 𝑧 ∈ 𝑆𝜔} ⊆ 𝐵(𝐻) is said to be a holomorphic semigroup when

1 ) 𝑇(𝑧1)𝑇(𝑧2) = 𝑇(𝑧1 + 𝑧2), 𝑧1, 𝑧2 ∈ 𝑆𝑤,
2 ) the mapping

𝛹∶ 𝑆𝜔 ⟶𝐵(𝐻)
𝑧⟼𝑇(𝑧)

is holomorphic.

The infinitesimal generator of {𝑇(𝑧)} is the operator 𝐴 defined by

𝐴𝑥 = lim
𝑡→0+

𝑇(𝑡) − 𝐼
𝑡 𝑥, 𝑥 ∈ 𝐷(𝐴),

where the domain 𝐷(𝐴) of 𝐴 is formed by all those 𝑥 ∈ 𝐻 such that the limit lim𝑡→0+
𝑇(𝑡)𝑥−𝑥

𝑡 exists. Then,
the operator −𝐴 is in Sect(π2 − 𝜔). ◀

E x a m p l e 5 . We consider on ℂ2 the usual inner product defined by

(𝑢, 𝑣) ⋅ (𝑎, 𝑏) = 𝑢 ̄𝑎 + 𝑣 ̄𝑏, 𝑢, 𝑣, 𝑎, 𝑏 ∈ ℂ.

We define the space ℓ2(ℂ2) of sequences 𝑧 = {𝑧𝑛 = (𝑢𝑛 , 𝑣𝑛)}∞𝑛=1 in ℂ2 such that

‖𝑧‖2 = ‖{𝑧𝑛}∞𝑛=1‖2 ≔ (
∞
∑
𝑛=1

(|𝑢𝑛|2 + |𝑣𝑛|2))
1/2

< ∞.

The vector space ℓ2(ℂ2) is actually a Hilbert space with the natural operations and the inner product of
ℓ2(ℂ2) is defined by

𝑧 ⋅ 𝑦 = {𝑧𝑛}∞𝑛=1 ⋅ {𝑦𝑛}∞𝑛=1 =
∞
∑
𝑛=1

𝑧𝑛 ⋅ ̄𝑦𝑛, 𝑧, 𝑦 ∈ ℓ2(ℂ2).
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We define the operator T on ℓ2(ℂ2) as follows: for 𝑧 = {(𝑢𝑛, 𝑣𝑛)}∞𝑛=1, we define

𝑇(𝑧) = {( 2−𝑛 1
0 2−𝑛 ) ( 𝑢𝑛

𝑣𝑛
)}

∞

𝑛=1
.

Therefore, 𝑇 ∈ 𝐵(ℓ2(ℂ2)). Note that 𝑇 is not a sectorial operator for any angle 0 ≤ 𝜔 < 𝜋. Let 𝜀 < 0. Let
𝑧 = {(𝑢𝑛, 𝑣𝑛)}𝑛 ∈ ℓ2(ℂ2). We have that

(𝜀𝐼 − 𝑇)(𝑧) = {( 𝜀 − 2−𝑛 −1
0 𝜀 − 2−𝑛 ) ( 𝑢𝑛

𝑣𝑛
)}

∞

𝑛=1
.

And therefore, the resolvent operator has the following expression:

(𝜀𝐼 − 𝑇)−1(𝑧) = {( (𝜀 − 2−𝑛)−1𝑢𝑛 + (𝜀 − 2−𝑛)−2𝑣𝑛
(𝜀 − 2−𝑛)−1𝑣𝑛

)}
∞

𝑛=1
, 𝑧 = {(𝑢𝑛, 𝑣𝑛)}𝑛 ∈ ℓ2(ℂ2),

and
‖(𝜀𝐼 − 𝑇)−1‖ ≥ sup

𝑛≥1
(𝜀 − 2−𝑛)−2 = 𝜀−2.

Hence, 𝑇 ∉ Sect(𝜔), for any 𝜔 ∈ [0,π). ◀

E x a m p l e 6 . The following differential operators are sectorial:

1 ) 𝑇𝑓 = −𝑓″, 𝑓 ∈ 𝐷(𝑇) = 𝑊 2,2(ℝ).
2 ) 𝑇𝑓 = −𝑓″, 𝑓 ∈ 𝐷(𝑇) = {𝑓 ∈ 𝑊 2,2(0 , 1) ∶ 𝑓(0) = 𝑓(1) = 0}.
3 ) 𝑇𝑓 = −𝑓″, 𝑓 ∈ 𝐷(𝑇) = {𝑓 ∈ 𝑊 2,2(0 , 1) ∶ 𝑓′(0) = 𝑓′(1) = 0}.
4 ) Let 𝛺 be a bounded open set in ℝ𝑛 with 𝐶2 boundary and

𝑇𝑢 = −Δ𝑢, 𝑢 ∈ 𝐷(𝑇) = 𝑊 2,2(𝛺) ∩ 𝑊 1,2
0 (𝛺).

Here, by𝑊 we denote the usual Sobolev spaces [20, Chapter 8.8]. ◀

Now, we present some of the main properties of sectorial operators.

P r o p o s i t i o n 7 . Let 𝐻 be a Hilbert space and 𝑇 ∈ Sect(𝜔), where 0 ≤ 𝜔 ≤ π. The following statements hold.

1 ) If 𝑇 is injective, then 𝑇−1 ∈ Sect(𝜔).

2 ) Let 𝑥 ∈ 𝐻. We have that 𝑥 ∈ 𝐷(𝑇) if and only if lim𝑡→∞ 𝑡𝑛(𝑡 + 𝑇)−𝑛𝑥 = 𝑥.

3 ) Let 𝑥 ∈ 𝐻. Then, 𝑥 ∈ 𝑅(𝑇) if and only if lim𝑡→0 𝑇𝑛(𝑡 + 𝑇)−𝑛𝑥 = 𝑥.

4 ) 𝐷(𝑇) = 𝐻 and 𝐻 = 𝑁(𝑇) ⊕ 𝑅(𝑇). 𝑇 is injective if and only if 𝑅(𝑇) is dense in 𝐻.
5 ) 𝑇∗ ∈ Sect(𝜔) and 𝜔𝑇 = 𝜔𝑇∗.

P r o o f .

1 ) Suppose that 𝑇 is injective. We have that 𝑇−1∶ 𝑅(𝑇) ⊂ 𝐻 → 𝐷(𝑇) ⊂ 𝐻. If 𝜆 ≠ 0, 𝜆 ∈ 𝜎(𝑇) if and only
if 1

𝜆 ∈ 𝜎(𝑇−1). Moreover 𝜆(𝜆 + 𝑇−1)−1 = 𝐼 − 1
𝜆 (

1
𝜆 + 𝑇)−1 provided that −1

𝜆 ∈ 𝜌(𝑇). Then, 𝜎(𝑇−1) ⊂ 𝑆𝜔
and, for every 𝛼 ∈ (𝜔,π),𝑀(𝑇−1,𝛼) < ∞.

2 ) Since (𝑡 + 𝑇)−𝑛𝑥 ∈ 𝐷(𝐴), for every 𝑡 > 0, we deduce that 𝑥 ∈ 𝐷(𝐴) provided that 𝑥 = lim𝑡→+∞ 𝑡𝑛(𝑡 +
𝑇)−𝑛𝑥. Suppose that 𝑥 ∈ 𝐷(𝑇). We can write

𝑥 = 𝑡(𝑡 + 𝑇)−1𝑥 + 1
𝑡 (𝑡(𝑡 + 𝑇)−1)𝑇𝑥.

By iteration of this equality we get

𝑥 = (𝑡(𝑡 + 𝑇)−1)𝑛𝑥 + 1
𝑡

𝑛
∑
𝑘=1

(𝑡(𝑡 + 𝑇)−1)𝑘𝑇𝑥.

Since sup𝑡>0 ‖𝑡(𝑡 + 𝑇)−1‖ < ∞, it follows that lim𝑡→+∞ (𝑡(𝑡 + 𝑇)−1)𝑛𝑥 = 𝑥. By using again that
sup𝑡>0 ‖𝑡(𝑡 + 𝑇)−1‖ < ∞, we deduce that lim𝑡→+∞ (𝑡(𝑡 + 𝑇)−1)𝑛𝑦 = 𝑦, for every 𝑦 ∈ 𝐷(𝑇).
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3 ) This property can be proved in a similar way as the previous one.
4 ) Let 𝑥 ∈ 𝐻. Since sup𝑛∈ℕ ‖𝑛(𝑛 + 𝑇)−1𝑛‖ < ∞, there exists an increasing function 𝜙∶ ℕ → ℕ and

𝑦 ∈ 𝐻 such that 𝜙(𝑛)(𝜙(𝑛) + 𝑇)−1𝑥 → 𝑦, as 𝑛 → ∞, in the weak topology of 𝐻. That is,

lim
𝑛→∞

⟨𝜙(𝑛)(𝜙(𝑛) + 𝑇)−1𝑥 , 𝑧⟩ = ⟨𝑦 , 𝑧⟩, 𝑧 ∈ 𝐻.

This implies that 𝑇(𝜙(𝑛) + 𝑇)−1𝑥 → 𝑥 − 𝑦, as 𝑛 → ∞, in the weak topology of 𝐻. Now, 𝑇 is a closed
operator. This means that 𝐺(𝑇) is a closed subspace of 𝐻 × 𝐻. Hence, 𝐺(𝑇) is also weakly closed in
𝐻 × 𝐻. Then, 𝑥 = 𝑦. Since the closure of 𝐷(𝑇) in the weak topology of 𝐻 coincides with the closure
of 𝐷(𝑇) in H, we conclude that 𝑥 ∈ 𝐷(𝑇).

We now prove that 𝐻 = 𝑁(𝑇) ⊕ 𝑅(𝑇). Note that, according to 2), if 𝑥 ∈ 𝑁(𝑇) ∩ 𝑅(𝑇), then

0 = 𝑇𝑥 = lim
𝑡→0+

(𝑡 + 𝑇)−1𝑇𝑥 = lim
𝑡→0+

𝑇(𝑡 + 𝑇)−1𝑥 = 𝑥.

Hence, 𝑁(𝑇) ∩ 𝑅(𝑇) = {0}. Let 𝑥 ∈ 𝐻. Since sup𝑡>0 ‖𝑡(𝑡 + 𝑇)−1𝑥‖ < ∞, there exists a decreasing
sequence (𝑡𝑛)∞𝑛=1 ⊂ (0,∞) such that 𝑡𝑛 → 0, and 𝑡𝑛(𝑡𝑛 + 𝑇)−1𝑥 → 𝑦, as 𝑛 → ∞, in the weak topology
of 𝐻. On the other hand,

𝑡𝑛𝑇(𝑡𝑛 + 𝑇)−1𝑥 = 𝑡𝑛(𝑥 − 𝑡𝑛(𝑡𝑛 + 𝑇)−1) → 0, as 𝑛 → ∞,

in 𝐻. By recalling that 𝐺(𝑇) is a weakly closed subspace of 𝐻, it follows that 𝑇𝑦 = 0. Moreover,
𝑇(𝑡𝑛 + 𝑇)−1𝑥 → 𝑥 − 𝑦, in the weak topology of 𝐻. Hence, 𝑥 − 𝑦 is in the weak closure of 𝑅(𝑇) that
coincides with the closure of 𝑅(𝑇) in 𝐻. We conclude that 𝑥 ∈ 𝑁(𝑇) + 𝑅(𝑇).

5 ) This property follows by taking into account that 𝑝(𝑇∗) = { ̄𝜆 ∶ 𝜆 ∈ 𝑝(𝑇)} and that 𝑅(𝜆,𝑇)∗ = 𝑅( ̄𝜆 , 𝑇∗),
for every 𝜆 ∈ 𝑝(𝑇). ▪

Before stating the last properties of sectorial operators, we give some definitions.

D e f i n i t i o n 8 . A collection of operators {𝑇𝑖}𝑖∈𝐼 is said to be uniformly sectorial of angle 𝝎 ∈ [0,π) when
𝑇𝑖 ∈ Sect(𝜔), 𝑖 ∈ 𝐼, and, for every 𝛼 ∈ (𝜔,π), sup𝑖∈𝐼𝑀(𝑇𝑖,𝛼) < ∞. ◀

D e f i n i t i o n 9 . Suppose that the sequence {𝑇𝑛}∞𝑛≤1 is uniformly sectorial of angle 𝜔. We say that {𝑇𝑛}𝑛∈ℕ
is a sectorial approximation on 𝑆𝜔 for an operator 𝑇 when there exists 𝜆 ∉ 𝑆𝜔 such that 𝜆 ∈ 𝜌(𝑇) and
𝑅(𝜆,𝑇𝑛) → 𝑅(𝜆,𝑇), as 𝑛 → ∞, in 𝐵(𝐻). In this case we write 𝑇𝑛 → 𝑇, (𝑆𝜔). ◀

Note that if {𝑇𝑛}𝑛∈ℕ is a sectorial aproximation on 𝑆𝜔 for 𝑇, then 𝑇 ∈ Sect(𝜔) and, for every 𝜆 ∉ 𝑆𝜔,
𝑅(𝜆,𝑇𝑛) → 𝑅(𝜆,𝑇), in 𝐵(𝐻).

In the next proposition we present some properties concerning sectorial convergence.

P r o p o s i t i o n 1 0 . Suppose that the sequence {𝑇𝑛}∞𝑛=1 uniformly sectorial of angle 𝜔.

1 ) If 𝑇𝑛 → 𝑇, (𝑆𝜔) and 𝑇𝑛, 𝑇 are injective, then 𝑇−1
𝑛 → 𝑇−1, (𝑆𝜔).

2 ) If 𝑇𝑛 → 𝑇(𝑆𝜔) and 𝑇 ∈ 𝐵(𝐻), then there exists 𝑛0 ∈ ℕ such that 𝑇𝑛 ∈ 𝐵(𝐻) when 𝑛 ≥ 𝑛0 and
𝑇𝑛 → 𝑇, as 𝑛 → ∞ in 𝐵(𝐻).

3 ) If {𝑇𝑛}∞𝑛=1 ⊂ 𝐵(𝐻), 𝑇 ∈ 𝐵(𝐻) and 𝑇𝑛 → 𝑇, as 𝑛 → ∞ in 𝐵(𝐻), then 𝑇𝑛 → 𝑇, (𝑆𝑤).

P r o o f .

1 ) Follows from proposition 7.1).
2 ) Assume that 𝑇𝑛 → 𝑇, (𝑆𝜔), and 𝑇 ∈ 𝐵(𝐻). Then, −𝑅(−1,𝑇𝑛) = (𝐼 + 𝑇𝑛)−1 → (𝐼 + 𝑇)−1 in 𝐵(𝐻). The

set of invertible operators in 𝐵(𝐻) is open in 𝐵(𝐻). Also if 𝐴𝑛, 𝑛 ∈ ℕ, and 𝐴 are in 𝐵(𝐻), they are
invertible and 𝐴𝑛 → 𝐴, as 𝑛 → ∞ in 𝐵(𝐻), then 𝐴−1𝑛 → 𝐴−1 as 𝑛 → ∞ in 𝐵(𝐻). Thus 2) is proved.

3 ) Assume that {𝑇𝑛}∞𝑛=1 ⊂ 𝐵(𝐻), 𝑇 ∈ 𝐵(𝐻) and 𝑇𝑛 → 𝑇 as 𝑛 → ∞ in 𝐵(𝐻), 𝐼 + 𝑇 is invertible and
(𝐼 + 𝑇𝑛)−1 → (𝐼 + 𝑇)−1, as 𝑛 → ∞ in 𝐵(𝐻). ▪
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4 . S p a c e s o f h o l o m o r p h i c f u n c t i o n s

In this section we present the definitions and the main properties of the spaces of holomorphic functions
which will be used to define holomorphic functional calculus in the next section. We recall thatℋ(𝛺)
denotes the space of holomorphic functions on 𝛺.

Let 𝜑 ∈ (0,π]. We say that a function 𝑓 ∈ ℋ(𝑆𝜑) is in the Dunford–Riesz class on 𝑆𝜑, shortly 𝑓 ∈ 𝒟ℛ(𝑆𝜑),
when

i ) 𝑓 ∈ 𝐻∞(𝑆𝜑), that is, 𝑓 is bounded on 𝑆𝜑;
i i ) there exists 𝛼 < 0 such that 𝑓(𝑧) = 𝑂(|𝑧|𝛼), as |𝑧| → ∞ with 𝑧 ∈ 𝑆𝜑;

i i i ) there exists 𝛽 > 0 such that 𝑓(𝑧) = 𝑂(|𝑧|𝛽), as |𝑧| → 0 with 𝑧 ∈ 𝑆𝜑.

If there is no possible confusion about the sector, we may write 𝒟ℛ instead of 𝒟ℛ(𝑆𝜑). Note that, if
𝑓 ∈ 𝒟ℛ(𝑆𝜑), then the function 𝑔(𝑧) = 𝑓(1/𝑧), 𝑧 ∈ 𝑆𝜑, is also in 𝒟ℛ(𝑆𝜑). In short, a holomorphic function
is in𝒟ℛ when it is bounded and tends to zero at the origin and at infinity sufficiently fast. Some examples
of functions in 𝒟ℛ(𝑆𝜑) are the following:

a ) 𝑓1(𝑧) =
𝑧

1+𝑧2 , 𝑧 ∈ 𝑆𝜑, 0 < 𝜑 < π
2 .

b ) 𝑓2(𝑧) = 𝑧e−𝑧, 𝑧 ∈ 𝑆𝜑, 0 < 𝜑 ≤ π
2 .

c ) 𝑓3(𝑧) = √𝑧e−√𝑧, 𝑧 ∈ 𝑆𝜑, 0 < 𝜑 ≤ π. Here, if 𝑧 = 𝑟ei𝜃, with 𝑟 > 0 and 𝜃 ∈ [−π,π), then √𝑧 = √𝑟ei𝜃/2.

In the following proposition, equivalent definitions of the functions in 𝒟𝑅(𝑆𝜑) are stated. The proof of
these characterizations is straightforward from the definition.

P r o p o s i t i o n 1 1 . Let 𝜑 ∈ (0,π]. Suppose that 𝑓 ∈ ℋ(𝑆𝜑). The following properties are equivalent:

1 ) 𝑓 ∈ 𝒟ℛ(𝑆𝜑).
2 ) There exist 𝐶 ≥ 0 and 𝑠 > 0 such that |𝑓(𝑧)| ≤ 𝐶min{|𝑧|𝑠, |𝑧|−𝑠}, 𝑧 ∈ 𝑆𝜑.

3 ) There exist 𝐶 ≥ 0 and 𝑠 > 0 such that |𝑓(𝑧)| ≤ 𝐶 |𝑧|𝑠
1+|𝑧|2𝑠 , 𝑧 ∈ 𝑆𝜑.

We now define another space of functions, namely 𝒟ℛ0. A function 𝑓 ∈ ℋ(𝑆𝜑) is said to be in 𝒟ℛ0(𝑆𝜑)
when

1 ) 𝑓 ∈ 𝐻∞(𝑆𝜑);
2 ) there exist 𝛼 < 0 such that 𝑓(𝑧) = 𝑂(|𝑧|𝛼), as |𝑧| → ∞ with 𝑧 ∈ 𝑆𝜑;
3 ) there exist 𝑟 > 0 and 𝐹 ∈ ℋ(𝐵(0, 𝑟)) such that 𝐹(𝑧) = 𝑓(𝑧), 𝑧 ∈ 𝑆𝜑 ∩ 𝐵(0, 𝑟).

In other words, a function in 𝒟ℛ0 decays at infinity and is holomorphic in a neighborhood of the origin.

Suppose that 𝑓 ∈ 𝒟ℛ(𝑆𝜑) + 𝒟ℛ0(𝑆𝜑), that is 𝑓 = 𝑔 + ℎ with 𝑔 ∈ 𝒟ℛ(𝑆𝜑) and ℎ ∈ 𝒟ℛ0(𝑆𝜑). Since ℎ can
be extended as a holomorphic function to a neighborhood of the origin, there exists 𝑐 ∈ ℂ such that
ℎ(𝑧) = 𝑐 + 𝑂(|𝑧|), as 𝑧 → 0 with 𝑧 ∈ 𝑆𝜑. On the other hand, if 𝑓 ∈ ℋ(𝑆𝜑) and 𝑐 ∈ ℂ, we can write

𝑓(𝑧) = 𝑐
1 + 𝑧 +

𝑓(𝑧) − 𝑐
1 + 𝑧 + 𝑧

1 + 𝑧𝑓(𝑧), 𝑧 ∈ 𝑆𝜑.

By taking these properties in mind, we can establish the following proposition.

P r o p o s i t i o n 1 2 . Let 𝜑 ∈ (0,π]. Assume that 𝑓 ∈ ℋ(𝑆𝜑). The following assumptions are equivalent:

1 ) 𝑓 ∈ 𝒟ℛ(𝑆𝜑) + 𝒟ℛ0(𝑆𝜑).
2 ) 𝑓 ∈ 𝐻∞ and it satisfies that

a ) there exists 𝛼 < 0 such that 𝑓(𝑧) = 𝑂(|𝑧|𝛼), as |𝑧| → ∞ with 𝑧 ∈ 𝑆𝜑;
b ) there exist 𝛽 > 0 and 𝑐 ∈ ℂ such that 𝑓(𝑧) = 𝑐 + 𝑂(|𝑧|𝛽), as |𝑧| → 0 with 𝑧 ∈ 𝑆𝜑.
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Note that the function 𝑓(𝑧) = 1 is not in 𝒟ℛ(𝑆𝜑) + 𝒟ℛ0(𝑆𝜑).
We introduce the last space of functions. By 𝒜(𝑆𝜑) we denote the function space formed by all those
𝑓 ∈ ℋ(𝑆𝜑) for which there exists 𝑛 ∈ ℕ such that 𝑓(𝑧)(1 + 𝑧)−𝑛 ∈ 𝒟ℛ(𝑆𝜑) + 𝒟ℛ0(𝑆𝜑). The functions in
𝒜(𝑆𝜑) can be characterized as shown in the next proposition.

P r o p o s i t i o n 1 3 . Let 𝜑 ∈ (0,π]. Suppose that 𝑓 ∈ ℋ(𝑆𝜑). The following properties are equivalent:

1 ) 𝑓 ∈ 𝒜(𝑆𝜑).
2 ) 𝑓 has the following properties:

a ) 𝑓 ∈ ℋ𝑐(𝑆𝜑), that is, for every 0 < 𝑟 < 𝑅 < ∞, 𝑓 is bounded on 𝑆𝜑 ∩ {𝑧 ∈ ℂ ∶ 𝑟 ≤ |𝑧| ≤ 𝑅};
b ) There exists 𝛼 < 0 such that 𝑓(𝑧) = 𝑂(|𝑧|𝛼), as 𝑧 →∞ with 𝑧 ∈ 𝑆𝜑;
c ) There exist 𝛽 > 0 and 𝑐 ∈ ℂ such that 𝑓(𝑧) = 𝑐 + 𝑂(|𝑧|𝛽), as 𝑧 → 0 with 𝑧 ∈ 𝑆𝜑.

3 ) There exist 𝑐 ∈ ℂ, 𝑛 ∈ ℕ and 𝐹 ∈ 𝒟ℛ(𝑆𝜑) such that

𝑓(𝑧) = 𝑐 + (1 + 𝑧)𝑛𝐹(𝑧), 𝑧 ∈ 𝑆𝜑.

If, in addition, 𝑓 is bounded, 3) holds with 𝑛 = 1.

If 𝜔 ∈ [0,π) andℳ represents either 𝒟ℛ,𝒟ℛ0, or 𝒜 we define

ℳ[𝑆𝜔] = ⋃
𝜔<𝜑≤π

ℳ(𝑆𝜑).

5 . H o l o m o r p h i c f u n c t i o n a l c a l c u l u s f o r s e c t o r i a l o p e r a t o r s

In this section we develop a holomorphic functional calculus for sectorial operators and functions in the
spaces defined in the previous section. We will be able to give a meaning to the expression 𝑓(𝑇) when 𝑇 is
a sectorial operator and 𝑓 is in the function spaces from the previous section. The basic tool is the Cauchy
integral formula. We begin by defining the contours of the integrals.
Let 𝜑 ∈ (0,π) and 𝛿 > 0. We define the path 𝛤𝜑 ≔ 𝛤+𝜑 + 𝛤−𝜑 , where

𝛤+𝜑 (𝑡) = −𝑡ei𝜑, 𝑡 ∈ (−∞, 0], and 𝛤−𝜑 (𝑡) = 𝑡e−i𝜑, 𝑡 ∈ (0,∞).

Thus, 𝛤𝜑 is the boudnary of the sector 𝑆𝜑 oriented in the positive sense. We also consider the path
𝛤𝜑,𝛿 = 𝛤+𝜑,𝛿 + 𝛤0𝜑,𝛿 + 𝛤−𝜑,𝛿, where

𝛤+𝜑,𝛿(𝑡) = −𝑡ei𝜑, 𝑡 ∈ (−∞,−𝛿]; 𝛤0𝜑,𝛿(𝜃) = 𝛿ei𝜃, 𝜃 ∈ (𝜑, 2π − 𝜑]; 𝛤−𝜑,𝛿(𝑡) = 𝑡ei𝜑, 𝑡 ∈ (𝛿,∞).

See figure 2. Note that 𝛤𝜑,𝛿 is the boundary of 𝑆𝜑 ∪ 𝐵(0, 𝛿) positively oriented. We can think that the paths
𝛤𝜑 and 𝛤𝜑,𝛿 go around the sector 𝑆𝜔 when 0 < 𝜔 < 𝜑.

𝛤𝜑

𝜑

𝛤𝜑,𝛿

𝛿

𝜑

F i g u r e 2 : The contours 𝛤𝜑 and 𝛤𝜑,𝛿, for 𝜑 = 3π/4.

In the sequel of this section we assume that 𝑇 ∈ Sect(𝜔), where 𝜔 ∈ (0,π]. Our objective is to define the
operator 𝑓(𝑇) for every 𝑓 ∈ 𝒜[𝑆𝜔]. Note that we cannot assure that 𝜎(𝑇) ⊂ 𝑆𝜑 when 𝜑 ∈ (𝜔,π].
We first define 𝑓(𝑇) when 𝑓 ∈ 𝒟ℛ(𝑆𝜑) and 𝜑 ∈ (𝜔,π].
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P r o p o s i t i o n 1 4 . Let 𝜑 ∈ (𝜔,π]. Suppose that 𝑓 ∈ 𝒟ℛ(𝑆𝜑). If 𝜔 < 𝜆 < 𝜑, the 𝐵(𝐻)-Bochner integral

∫
𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇) d𝑧

converges absolutely (with the 𝐵(𝐻) norm). Moreover, if 𝜔 < 𝜆, 𝜆′ < 𝜑, then

∫
𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇) d𝑧 = ∫
𝛤𝜆′

𝑓(𝑧)𝑅(𝑧,𝑇) d𝑧.

P r o o f . The convergence of the integral can be shown using proposition 11.2) and splitting the integral
near zero and near infinity. The second statement follows from the Hahn-Banach theorem and the Cauchy
integral theorem. ▪

Following proposition 14, we define the following functional calculus. If 𝜑 ∈ (𝜔,π] and 𝑓 ∈ 𝒟ℛ(𝑆𝜑), we
define 𝑓(𝑇) by

𝑓(𝑇) = 1
2πi∫𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇) d𝑧,

where 𝜆 ∈ (𝜔,𝜑). Thus 𝑓(𝑇) ∈ 𝐵(𝐻) when 𝑓 ∈ 𝒟ℛ(𝑆𝜑) and 𝜑 ∈ (𝜔,π].

Assume now that 𝑓 ∈ 𝒟ℛ0(𝑆𝜑). We cannot ensure that the integral in proposition 14 converges if 𝑓(0) ≠ 0.
We choose 𝛿 > 0 so that 𝑓 can be holomorphically extended to 𝐵(0, 𝛿) ⧵ 𝑆𝜑. Proceeding similarly we can
define

𝑓(𝑇) = 1
2πi∫𝛤𝜆,𝛿

𝑓(𝑧)𝑅(𝑧,𝑇) d𝑧,

where 𝛿, 𝜆 are as above, since one can check that the integral is absolutely convergent. Thus, 𝑓(𝑇) ∈ 𝐵(𝐻).
Note that if 𝑓(0) = 0, then 𝑓 ∈ 𝒟ℛ ∩𝒟ℛ0 and both definitions for 𝑓(𝑇) coincide, by the Cauchy integral
theorem. If 𝑓 = 𝑔 + ℎ with 𝑔 ∈ 𝒟ℛ and ℎ ∈ 𝒟ℛ0, we define 𝑓(𝑇) = 𝑔(𝑇) + ℎ(𝑇). This definition does
not depend on the choice of 𝑔 and ℎ. Some properties of the functional calculus we have defined are
contained in the following proposition.

P r o p o s i t i o n 1 5 . Let 𝜑 ∈ (𝜔,π].

1 ) Suppose that 𝑥 ∈ 𝑁(𝑇) and 𝑓 = 𝑔+ℎ, where 𝑔 ∈ 𝒟ℛ(𝑆𝜑) and ℎ ∈ 𝒟ℛ0(𝑆𝜑). Then, 𝑓(𝑇)(𝑥) = ℎ(0)𝑥.
2 ) The mapping 𝛹∶ 𝒟ℛ(𝑆𝜑) + 𝒟ℛ0(𝑆𝜑) → 𝐵(𝐻) defined by 𝛹(𝑓) = 𝑓(𝑇) is a homomorphism of

algebras.
3 ) If 𝑓𝜇(𝑧) =

1
𝜇−𝑧 , where 𝜇 ∉ 𝑆𝜑, then 𝑓𝜇 ∈ 𝒟ℛ0(𝑆𝜑) and 𝑓𝜇(𝑇) = 𝑅(𝜇,𝑇).

4 ) Suppose that 𝐴 ∈ 𝐶(𝐻) commutes with 𝑅(𝜆,𝑇) for every 𝜆 ∈ 𝜌(𝑇). Then, 𝐴𝑓(𝑇) = 𝑓(𝑇)𝐴 for every
𝑓 ∈ 𝒟ℛ +𝒟ℛ0.

P r o o f .

1 ) Since 𝑥 ∈ 𝑁(𝑇), we can write, for any 𝑧 ∈ 𝜌(𝑇),

𝑧𝑅(𝑧,𝑇)𝑥 = 𝑧𝑅(𝑧,𝑇)𝑥 − 𝑅(𝑧,𝑇)𝑇𝑥 = (𝑧𝑅(𝑧,𝑇) − 𝑇𝑅(𝑧,𝑇))𝑥 = (𝑧 − 𝑇)𝑅(𝑧,𝑇)𝑥 = 𝑥.

Then, by taking 𝜆 ∈ (𝜔,𝜑) and 𝛿 > 0 such that ℎ can be holomorphically extended to 𝐵(0, 𝛿) ⧵ 𝑆𝜑,

𝑓(𝑇)𝑥 = 1
2πi∫𝛤𝜆

𝑔(𝑧)𝑅(𝑧,𝑇)𝑥 d𝑧 + 1
2πi∫𝛤𝜆,𝛿

ℎ(𝑧)𝑅(𝑧,𝑇)𝑥 d𝑧

= (
1
2πi∫𝛤𝜆

𝑔(𝑧)
𝑧 d𝑧 + 1

2πi∫𝛤𝜆,𝛿

ℎ(𝑧)
𝑧 d𝑧) 𝑥.

By using the Cauchy integral theorem, since 𝑔 ∈ 𝒟ℛ and ℎ ∈ 𝒟ℛ0, we conclude that

1
2πi∫𝛤𝜆

𝑔(𝑧)
𝑧 d𝑧 = 0 and 1

2πi∫𝛤𝜆,𝛿

ℎ(𝑧)
𝑧 d𝑧 = ℎ(0).

The first statement is proved.
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2 ) All the properties of an algebra homomorphism are straightforward to prove except for

(𝑓𝐹)(𝑇) = 𝑓(𝑇) ∘ 𝐹(𝑇),

for every 𝑓,𝐹 ∈ 𝒟ℛ+𝒟ℛ0. The proof is easy but fairly long; it can be done by using some properties
of the resolvent operator and the Fubini and Cauchy integral theorems.

3 ) Let 𝜇 ∉ 𝑆𝜑. It is clear that 𝑓𝜇 ∈ 𝒟ℛ0(𝑆𝜑). We have that

𝑓𝜇(𝑇) =
1
2πi∫𝛤𝜆,𝛿

𝑅(𝑧,𝑇)
𝜇 − 𝑧 d𝑧,

where 𝜆 ∈ (𝜔,𝜑) and 𝛿 < |𝜇|. The function 𝛹(𝑧) = 𝑅(𝑧,𝑇) is holomorphic in 𝜌(𝑇) taking values in
𝐵(𝐻). We finish by using the Hahn-Banach and Cauchy integral theorems.

4 ) Suppose that 𝑓 ∈ 𝒟ℛ(𝑆𝜑). In the general case we could proceed in a similar way. We have that

𝑓(𝑇)𝑥 = 1
2πi∫𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇)𝑥 d𝑧, 𝑥 ∈ 𝐻,

where 𝜆 ∈ (𝜔,𝜑). Let 𝑥 ∈ 𝐷(𝐴). It follows that

𝑓(𝑇)𝐴𝑥 = 1
2πi∫𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇)𝐴𝑥 d𝑧.

The last 𝐵(𝐻)-Bochner integral is absolutely convergent in the 𝐻−norm. The standard properties of
the 𝐵(𝐻)-Bochner integral lead to 𝑓(𝑇)𝐴𝑥 = 𝐴𝑓(𝑇)𝑥. ▪

Finally, we define 𝑓(𝑇) for every 𝑓 ∈ 𝒜(𝑆𝜑). Let 𝑓 ∈ 𝒜(𝑆𝜑) with 𝜑 ∈ (𝜔,π]. There exists 𝑛 ∈ ℕ such that
𝑓(𝑧)(1 + 𝑧)𝑛 ∈ 𝒟ℛ +𝒟ℛ0. Therefore, we can define the operator 𝑓𝑛(𝑇) by

𝑓𝑛(𝑇) = (𝐼 + 𝑇)𝑛 (
𝑓
𝑝𝑛 ) (𝑇),

where 𝑝(𝑧) = 1 + 𝑧. We make two small remarks about this definition. Note firstly that, since (𝐼 + 𝑇)−𝑛 ∈
𝐵(𝐻), (𝐼 + 𝑇)𝑛 is a closed operator. Then, the operator 𝑓𝑛(𝑇) is closed because (𝑓/𝑝𝑛)(𝑇) ∈ 𝐵(𝐻). Secondly,
one can prove that the definition of 𝑓𝑛 does not really depend on 𝑛, as long as 𝑓𝑝−𝑛 ∈ 𝒟ℛ + 𝒟ℛ0. The
proof is not difficult but it is a bit technical, so we omit it. Therefore, we define 𝑓(𝑇) = 𝑓𝑛(𝑇) for any
admissible 𝑛.

Some properties of this functional calculus are summarized in the following proposition. For the sake of
conciseness, we omit the proof, which is easy but tedious.

P r o p o s i t i o n 1 6 . Let 𝜑 ∈ (𝜔,π], and 𝑓 ∈ 𝒜(𝑆𝜑).

i ) If 𝑇 ∈ 𝐵(𝐻), then 𝑓(𝑇) ∈ 𝐵(𝐻).
i i ) If 𝑆 ∈ 𝐵(𝐻) and 𝑆 commutes with 𝑇, then 𝑆 commutes with 𝑓(𝑇).
i i i ) Suppose that 𝑔 ∈ 𝒜(𝑆𝜑). We have that

𝑓(𝑇) + 𝑔(𝑇) ⊂ (𝑓 + 𝑔)(𝑇) and 𝑓(𝑇)𝑔(𝑇) ⊂ (𝑓𝑔)(𝑇).

Furthermore, 𝐷((𝑓𝑔)(𝑇)) ∩ 𝐷(𝑔(𝑇)) = 𝐷(𝑓(𝑇)𝑔(𝑇)).

We cannot say that the natural functional calculus commutes with the sum and the product of functions
(see proposition 16.iii)). But if 𝑓, 𝑔 ∈ 𝒜(𝑆𝜑), we can see that

𝑓(𝑇) + 𝑔(𝑇) = (𝑓 + 𝑔)(𝑇),
𝑓(𝑇)𝑔(𝑇) = (𝑓𝑔)(𝑇),

provided that 𝑔(𝑇) ∈ 𝐵(𝐻). For instance, if 𝑓(𝑧) = 𝑐 + (1 + 𝑧)𝑛𝑔(𝑧), 𝑧 ∈ 𝑆𝜑, where 𝑐 ∈ ℂ, 𝑛 ∈ ℕ, and
𝑔 ∈ 𝐷𝑅(𝑆𝜑), then 𝑓(𝑇) = 𝑐 + (1 + 𝑇)𝑛𝑔(𝑇).
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If 0 < 𝜑 ≤ π and 𝑓 ∈ 𝐻(𝑆𝜑), we define the function 𝑓∗ by

𝑓∗(𝑧) = 𝑓(𝑧), 𝑧 ∈ 𝑆𝜑.

Thus, 𝑓∗ ∈ ℋ(𝑆𝜑), where 𝑓∗ is named the conjugate of the function 𝑓. It is clear that the function spaces
that we have considered in section 4 are invariant with respect to conjugation.

In the following proposition we show how the natural functional calculus acts on adjoints.

P r o p o s i t i o n 1 7 . Let 𝜑 ∈ (𝜔,π] and 𝑓 ∈ 𝒜(𝑆𝜑). Then, 𝑓(𝑇∗) = (𝑓∗(𝑇))∗.

P r o o f . Suppose firstly that 𝑓 ∈ 𝒟ℛ(𝑆𝜑). We have that

𝑓∗(𝑇) = 1
2πi∫𝛤𝜆

𝑓∗(𝑧)𝑅(𝑧,𝑇) d𝑧 ∈ 𝐵(𝐻).

Here 𝜔 < 𝜆 < 𝜑. For every 𝑥, 𝑦 ∈ 𝐻,

⟨𝑓∗(𝑇)𝑥, 𝑦⟩ = ⟨
1
2πi∫𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇)𝑥 d𝑧, 𝑦⟩

= 1
2πi∫𝛤𝜆

𝑓(𝑧)⟨𝑅(𝑧,𝑇)𝑥, 𝑦⟩ d𝑧

= 1
2πi∫𝛤𝜆

𝑓(𝑧)⟨𝑥,𝑅(𝑧,𝑇∗)𝑦⟩ d𝑧

= ⟨𝑥, 1
2πi∫𝛤𝜆

𝑓(𝑧)𝑅(𝑧,𝑇∗)𝑦 d𝑧⟩

= ⟨𝑥,𝑓(𝑇∗)𝑦⟩.

We have taken into account that all the Böchner integrals that appear are absolutely convergent. Then,
(𝑓∗(𝑇))∗ = 𝑓(𝑇∗).

If 𝑓 ∈ 𝒟ℛ0(𝑆𝜑) we can proceed in a similar way. Assume now that 𝑓 ∈ 𝒜(𝑆𝜑). There exist 𝑛 ∈ ℕ,
𝑔 ∈ 𝒟ℛ(𝑆𝜑) and ℎ ∈ 𝒟ℛ0(𝑆𝜑) such that

𝑓(𝑧)
(1+𝑧)𝑛 = 𝑔(𝑧) + ℎ(𝑧), 𝑧 ∈ 𝑆𝜑. Then,

𝑓(𝑇∗) = (1 + 𝑇∗)𝑛𝐹(𝑇∗),

where 𝐹 = 𝑔 + ℎ. Here (𝐹∗(𝑇))∗ = (𝑔∗(𝑇))∗ + (ℎ∗(𝑇))∗ ∈ 𝐵(𝐻). Moreover, we can write

(1 + 𝑇∗)𝑛 = (−1)𝑛(1 + 𝑇∗)𝑛[𝑅(−1,𝑇))𝑛]∗[(1 + 𝑇)𝑛]∗

= (−1)𝑛(1 + 𝑇∗)𝑅(−1,𝑇∗)𝑛[(1 + 𝑇)𝑛]∗ = [(1 + 𝑇)𝑛]∗.

We get
𝑓(𝑇∗) = [(1 + 𝑇)𝑛]∗(𝐹∗(𝑇))∗ = (𝐹∗(𝑇)(1 + 𝑇)𝑛)∗.

According to proposition 15.4), for every 𝑥 ∈ 𝐷(𝑇𝑛) = 𝐷((1 + 𝑇)𝑛), we have

𝐹∗(𝑇)(1 + 𝑇)𝑛𝑥 = (1 + 𝑇)𝑛𝐹∗(𝑇)𝑥,

or, in other words, 𝐷(𝑇𝑛) ⊂ 𝐷(𝑓∗(𝑇)). Since 𝐷(𝑇) = ℋ, using proposition 7.2), we deduce that (𝑡 + (𝑡 +
𝑇)−1)𝑛𝑥 → 𝑥, as 𝑡 → ∞, and 𝑓∗(𝑇)(𝑡+(𝑡+𝑇)−1)𝑛𝑥 = (𝑡(𝑡+𝑇)−1)𝑛𝑓∗(𝑇)𝑥 → 𝑓∗(𝑇)𝑥, as 𝑡 → ∞. Furthermore,
(𝑡 + (𝑡 + 𝑇)−1)𝑛𝑥 ∈ 𝐷(𝑇𝑛), for every 𝑡 > 0.

This fact allows us to conclude that the closure 𝑓∗(𝑇)|𝐷(𝑇𝑛) = 𝑓∗(𝑇) can be written as

𝑓(𝑇∗) = (𝑓∗(𝑇)|𝐷(𝑇𝑛))∗ = (𝑓∗(𝑇)|𝐷(𝑇𝑛))∗ = (𝑓∗(𝑇))∗. ▪

We can find in the literature extensions of the natural functional calculus. There exists a trade-off between
operators and function spaces. When the operator is better we can define a functional calculus for a wider
class of functions and vice-versa. We finish this section with the following definition.
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D e f i n i t i o n 1 8 . Let 𝜑 ∈ (𝜔,π]. Suppose that ℱ is an algebra contained in 𝒜(𝑆𝜑) ∩ 𝐻∞(𝑆𝜑). The natural
functional calculus on ℱ for 𝑇 is said to be bounded when 𝑓(𝑇) ∈ 𝐵(𝐻), for every 𝑓 ∈ ℱ, and there exists
𝐶 > 0 such that

‖𝑓(𝑇)‖ ≤ 𝐶‖𝑓‖∞, ∀𝑓 ∈ ℱ. ◀

6 . A n o p e r a t o r w i t h o u t a b o u n d e d 𝐻∞
- c a l c u l u s

McIntosh and Yagi [18] presented the first example of a sectorial operator without a bounded 𝐻∞-calculus.
We are going to give an example that can be found in the work of Le Merdy [11] (see also Haase’s thesis [7,
p. 49]).

Suppose that 𝐻 is a separable Hilbert space. We can think for instance 𝐻 = ℓ2(ℕ). We say that a sequence
{𝑒𝑛}∞𝑛=1 in 𝐻 is a conditional basis in 𝐻 when the following two properties hold:

i ) For every 𝑥 ∈ 𝐻 there exists a unique sequence (𝜇𝑛)∞𝑛=1 ⊂ ℂ such that 𝑥 = ∑∞
𝑛=1 𝜇𝑛𝑒𝑛.

i i ) There exist a sequence (𝜇𝑛)∞𝑛=1 ⊂ ℂ of complex numbers and a sequence (𝜃𝑛)∞𝑛=1 ⊂ {−1, 1} of signs
such that∑∞

𝑛=1 𝜇𝑛𝑒𝑛 converges in 𝐻, but∑
∞
𝑛=1 𝜃𝑛𝜇𝑛𝑒𝑛 does not converge in 𝐻.

According to Lindenstrauss and Tzafriri [16, Proposition 2.b.11], there exists a conditional basis {𝑒𝑛}∞𝑛=1 of
𝐻. We may assume that ‖𝑒𝑛‖ = 1 for all 𝑛 ∈ ℕ. We define the 𝑛-th projection operator 𝑃𝑛 in the standard
way:

𝑃𝑛∶ 𝐻⟶ 𝐻

𝑥 =
∞
∑
𝑘=1

𝜇𝑘𝑒𝑘 ⟼𝑃𝑛(𝑥) =
𝑛
∑
𝑘=1

𝜇𝑘𝑒𝑘.

For every 𝑛 ∈ ℕ, 𝑃𝑛 ∈ 𝐵(𝐻). Also, one can prove that the sequence {𝑃𝑛}∞𝑛=1 is bounded in 𝐵(𝐻). The constant
𝑀𝐷 = sup𝑛∈ℕ ‖𝑃𝑛‖ is known as the constant basis for {𝑒𝑛}

∞
𝑛=1. This constant plays an important role in the

theory of basis, but we will only use that𝑀𝐷 is finite.

Let 𝑎 = (𝑎𝑛)∞𝑛=1 be a complex sequence. We define the multiplier operator associated to 𝑎 as follows: if
𝑥 = ∑∞

𝑛=1 𝜇𝑛𝑒𝑛 ∈ 𝐻 is such that∑∞
𝑛=1 𝑎𝑛𝜇𝑛𝑒𝑛 converges in 𝐻, then we set

𝑇𝑎𝑥 =
∞
∑
𝑛=1

𝑎𝑛𝜇𝑛𝑒𝑛.

These multipliers operators were studied by Venni [23]. Note that the domain

𝐷(𝑇𝑎) = {
∞
∑
𝑛=1

𝜇𝑛𝑒𝑛 ∶
∞
∑
𝑛=1

𝑎𝑛𝜇𝑛𝑒𝑛 ∈ 𝐻}

is dense in 𝐻 because the dense set {∑𝑀
𝑛=1 𝜇𝑛𝑒𝑛 ∈ 𝐻 ∶ 𝜇𝑛 ∈ ℂ,𝑀 ∈ ℕ} is contained in 𝐷(𝑇𝑎).

P r o p o s i t i o n 1 9 . Themultiplier operator 𝑇𝑎 is a closed operator.

P r o o f . Suppose that {𝑥𝑘}∞𝑘=1 ⊂ 𝐷(𝑇𝑎) is such that 𝑥𝑘 → 𝑦 and 𝑇𝑎𝑥𝑘 → 𝑧 as 𝑘 → ∞, for some 𝑦, 𝑧 ∈ 𝐻. Then,

𝑃1(𝑥𝑘)
𝑘→∞
−−−→ 𝑃1𝑦,

𝑃1(𝑇𝑎𝑥𝑘) = 𝑎1𝑃1𝑥𝑘
𝑘→∞
−−−→ 𝑃1𝑧,

and, in general, for every 𝑛 ∈ ℕ

𝑃𝑛+1(𝑥𝑘) − 𝑃𝑛(𝑥𝑘)
𝑘→∞
−−−→ 𝑃𝑛+1(𝑦) − 𝑃𝑛(𝑦),

𝑃𝑛+1(𝑇𝑎𝑥𝑘) − 𝑃𝑛(𝑇𝑎𝑥𝑘)
𝑘→∞
−−−→ 𝑃𝑛+1(𝑧) − 𝑃𝑛(𝑧).

We deduce that 𝑎1𝑃1(𝑦) = 𝑃1(𝑧) and, for every 𝑛 ∈ ℕ, 𝑎𝑛+1(𝑃𝑛+1(𝑦)−𝑃𝑛(𝑦)) = 𝑃𝑛+1(𝑧)−𝑃𝑛(𝑧). Hence 𝑦 ∈ 𝐷(𝑇𝑎)
and 𝑇𝑎𝑦 = 𝑧. ▪
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Let (𝑎𝑛)∞𝑛=1 be a sequence of complex numbers. We define

‖𝑎‖ = lim sup
𝑛→∞

|𝑎𝑛| +
∞
∑
𝑛=1

|𝑎𝑛+1 − 𝑎𝑛|.

This quantity can be infinite. When∑∞
𝑛=1 |𝑎𝑛+1 − 𝑎𝑛| < ∞ we say that (𝑎𝑛)∞𝑛=1 has bounded variation, and

in this case (𝑎𝑛)∞𝑛=1 is convergent.

P r o p o s i t i o n 2 0 . Let 𝑎 = (𝑎𝑘) be a complex sequence and 𝑇𝑎 the associatedmultiplier operator. If ‖𝑎‖ < ∞,
then 𝑇𝑎 ∈ 𝐵(𝐻) and ‖𝑇𝑎‖ ≤ 𝑀0‖𝑎‖.

P r o o f . Suppose that 𝑥 = ∑∞
𝑘=1 𝜇𝑘𝑒𝑘 ∈ 𝐻 with (𝜇𝑘)∞𝑘=1 ⊂ ℂ. For 𝑛 ∈ ℕ, we have

𝑛
∑
𝑘=1

𝑎𝑘𝜇𝑘𝑒𝑘 =
𝑛
∑
𝑘=1

𝑎𝑘(𝑃𝑘 − 𝑃𝑘−1)𝑥 + 𝑎1𝑃1𝑥 =
𝑛−1
∑
𝑘=1

(𝑎𝑘 − 𝑎𝑘+1)𝑃𝑘𝑥 + 𝑎𝑛𝑃𝑛𝑥.

Since ‖𝑎‖ < ∞, {𝑎𝑛𝑃𝑛𝑥}∞𝑛=1 converges and {∑
∞
𝑘=1 (𝑎𝑘−𝑎𝑘+1)𝑃𝑘𝑥}

∞
𝑘=1 is absolutely convergent in norm. Hence,

∑∞
𝑘=1 𝑎𝑘𝜇𝑘𝑒𝑘 converges and

‖
‖
‖

∞
∑
𝑘=1

𝑎𝑘𝜇𝑘𝑒𝑘
‖
‖
‖
≤ 𝑀0‖𝑎‖‖𝑥‖. ▪

Let 𝜆 ∈ ℂ such that 𝜆 ≠ 𝑎𝑛, 𝑛 ∈ ℕ. Then, the multiplier operator associated to the sequence 𝜆 − 𝑎 =
{𝜆 − 𝑎𝑛}∞𝑛=1 is 𝑇𝜆−𝑎 = 𝜆𝐼 − 𝑇𝑎 and it is injective. Moreover, (𝜆𝐼 − 𝑇𝑎)−1 is the multiplier operator associeated
to the sequence { 1

𝜆−𝑎𝑛
}∞𝑛=1.

P r o p o s i t i o n 2 1 . Let 𝑎 = (𝑎𝑛)∞𝑛=1 be an increasing sequence of real numbers satisfying that 𝑎1 > 0 and
lim𝑛→∞ 𝑎𝑛 = ∞. Then, the associated multiplier operator 𝑇𝑎 is sectorial of angle 0.

P r o o f . Let 𝜆 ∈ ℂ ⧵ [𝑎1,∞). We define 𝑎(𝜆) = ( 1
𝜆−𝑎𝑛

)∞𝑛=1. We can write

‖𝑎(𝜆)‖ =
∞
∑
𝑛=1

|||
1

𝜆 − 𝑎𝑛+1
− 1
𝜆 − 𝑎𝑛

||| =
∞
∑
𝑛=1

||||
∫

𝑎𝑛+1

𝑎𝑛

d𝑡
(𝜆 − 𝑡)2

||||
≤ ∫

∞

𝑎1

d𝑡
|𝜆 − 𝑡|2 .

Hence, 𝜆 ∈ 𝜌(𝑇𝑎). We conclude that 𝜎(𝑇𝑎) ⊂ [𝑎1,∞). Also, if 𝜆 = 𝑟ei𝜃, with 𝑟 > 0 and 𝜈 ∈ [−π,π) we get

‖𝜆(𝜆𝐼 − 𝑇𝑎)−1‖ ≤ 𝑀0|𝜆|‖𝑎(𝜆)‖ ≤ 𝑀0∫
∞

0

𝑟 d𝑡
𝑟ei𝜃 − 𝑡|2

= 𝑀0∫
∞

0

d𝑢
|ei𝜃 − 𝑢|2

.

If 𝜑 ∈ (0, π2 ) we have that

∫
∞

0

d𝑢
|ei𝜃 − 𝑢|2

= ∫
∞

0

d𝑢
(cos 𝜃 − 𝑢)2 + sin2 𝜃

is bounded by

∫
∞

0

d𝑢
𝑢2 + sin2 𝜑

, for 𝜃 ∈ [π/2,π − 𝜑] ∪ [𝜑 − π,−π/2];

∫
∞

0

d𝑢
(cos𝜑 + 𝑢)2

, for 𝜃 ∈ (π − 𝜑,π) ∪ [−π,𝜑 − π];

∫
2 cos𝜃

0

d𝑢
sin2 𝜑

+∫
∞

2 cos𝜃

d𝑢
(cos 𝜃 − 𝑢)2 + sin2 𝜑

≤ 2 cos 𝜃
sin2 𝜑

+∫
∞

0

d𝑢
1
4𝑢2 + sin2 𝜑

, for 𝜃 ∈ [𝜑,π/2] ∪ [−π/2,−𝜑].

Hence, ‖𝜆(𝜆𝐼 − 𝑇𝑎)−1‖ ≤ 𝐶𝜑, 𝜆 ∉ 𝑆𝜑. Thus, we prove that 𝑇𝑎 ∈ Sect(0). ▪
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ξλ,δ

δ λ
•

a1

F i g u r e 3 : The contour 𝜉𝜆,𝛿 and 𝑎1.

Finally, let us show that if 𝑎 = (2𝑛)∞𝑛=1, then the operator 𝑇𝑎 does not have a bounded functional calculus.
Let 𝑓 ∈ 𝒜(𝑆𝜑) ∩𝐻∞(𝑆𝜑) where 𝜑 ∈ (0,π]. There exists𝑚 ∈ ℕ such that 𝑓(𝑧)(1+ 𝑧)−𝑚 = 𝑔(𝑧) ∈ 𝒟ℛ+𝒟ℛ0.
Since 𝜎(𝑇𝑎) ⊂ [𝑎1,+∞) we can write

𝑔(𝑇𝑎) =
1
2πi∫𝜉𝜆,𝛿

𝑔(𝑧)𝑅(𝑧,𝑇𝑎) d𝑧,

where the path 𝜉𝜆,𝛿 = 𝜉+𝜆,𝛿 + 𝜉0𝜆,𝛿 + 𝜉−𝜆,𝛿, with 0 < 𝜆 < 𝜑, 0 < 𝛿 < 𝑎1 and

𝜉+𝜆,𝛿(𝑡) = −𝑡ei𝜆, 𝑡 ∈ (−∞,−𝛿], 𝜉−𝜆,𝛿(𝑡) = 𝑡e−i𝜆, 𝑡 ∈ [𝛿,∞), 𝜉0𝜆,𝛿(𝑡) = 𝛿e−i𝜃, 𝜃 ∈ (−𝜆,+𝜆).

See figure 3. By using the Hahn-Banach and Cauchy integral theorems we deduce that

𝑔(𝑇𝑎)(𝑒𝑛) =
1
2πi∫𝜉𝜆,𝛿

𝑔(𝑧)𝑅(𝑧,𝑇𝑎)𝑒𝑛 d𝑧 =
1
2πi∫𝜉𝜆,𝛿

𝑔(𝑧)
𝑎𝑛 − 𝑧 d𝑧 𝑒𝑛 = 𝑔(𝑎𝑛) 𝑒𝑛.

Then, if (𝜇𝑘)𝑛𝑘=1 ⊂ ℂ with 𝑛 ∈ ℕ,

𝑓(𝑇𝑎) (
𝑛
∑
𝑘=1

𝜇𝑘𝑒𝑘) =
𝑛
∑
𝑘=1

𝜇𝑘(1 + 𝑇)𝑚𝑔(𝑎𝑘) 𝑒𝑘 =
𝑛
∑
𝑘=1

𝜇𝑘𝑓(𝑎𝑘) 𝑒𝑘.

If the natural functional calculus on𝒜(𝑆𝜑)∩𝐻∞(𝑆𝜑) for 𝑇𝑎 were bounded, then wewould have 𝑓(𝑇𝑎) ∈ 𝐵(𝐻)
and, hence, the series∑∞

𝑘=1 𝜇𝑘𝑓(𝑎𝑘)𝑒𝑘 would converge in 𝐻 provided that∑∞
𝑘=1 𝜇𝑘𝑒𝑘 ∈ 𝐻.

Now, take the sequence 𝑎𝑛 = 2𝑛, 𝑛 ∈ ℕ. Since {𝑒𝑛} is a conditional basis, there exist two sequences
(𝜇𝑛)∞𝑛=1 ⊂ ℂ and (𝜃𝑛)∞𝑛=1 ⊂ {−1, 1} such that∑∞

𝑛=1 𝜇𝑛𝑒𝑛 converges in 𝐻 and∑∞
𝑛=1 𝜃𝑛𝜇𝑛𝑒𝑛 does not converge

in 𝐻. According to Garnett [6, Theorem 1.1, VII.1], there exists 𝑓 ∈ 𝐻∞(𝑆𝜋/2) ∩𝒜(𝑆𝜋/2) such that 𝑓(2𝑛) = 𝜃𝑛,
𝑛 ∈ ℕ. We conclude that, if 𝑇𝑎 is the multiplier operator associated with {𝑎𝑛}∞𝑛=1, 𝑓(𝑇𝑎) ∉ 𝐵(𝐻). Hence, the
natural functional calculus on 𝒜(𝑆𝜑) ∩ 𝐻∞(𝑆𝜑) for 𝑇𝑎 is not bounded.

Multiplier operators like those we have just studied have also been considered to obtain examples related
to certain operator theoretical problems [2, 9, 10, 12, 21, 23].
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