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Geometry of polynomial spaces and polynomial inequalities

1 . I n t r o d u c t i o n

This paper contains threemain blocks. Thefirst one is devoted to introducing polynomials in normed spaces.
Although polynomials in a finite number of variables are well known to all undergraduate students, it is not
so clear what polynomials in infinitely many variables are. In this block we will present all definitions and
basic results required to understand polynomials in an arbitrary normed space, including the polarisation
formula and polarisation constants. The second block deals with the geometry of polynomial spaces. The
reader is referred to Dineen’s book [15] for a modern monograph on polynomials on normed spaces. The
characterisation of the extreme points of polynomial spaces is a question that has called the interest of a
significant number of researchers in the last decades [1, 5, 10, 11, 18, 22, 24, 28–31, 33, 34]. This problem
conveys a tremendous difficulty in most infinite (or even finite) dimensional polynomial spaces of interest,
but in very specific cases, a complete and explicit description of the extreme points can be given. We will
focus on a number of these particular examples, providing the reader not only with the extreme points
of several 3-dimensional polynomial spaces, but also with a formula to calculate the polynomial norm,
a parametrisation of the unit sphere and nice pictures of the unit balls of those spaces. Finally, a third
section contains the applications of the geometrical results of the second block. In order to understand
the applications, a precise introduction to several well-known polynomial inequalities will be provided. It
is possible to find a vast diversity of applications in the literature, and therefore we will make a (restrictive)
selection consisting of two types of polynomial inequalities, namely, the polynomial Bohnenblust-Hille
inequality and the Bernstein-Markov type inequalities.

The arrangement described in the previous paragraph respects the structure of the course on geometry of
polynomial spaces and applications delivered during the 9th workshop of Functional Analysis organized
by the Spanish Functional Analysis Network in Bilbao between the 3rd and the 8th of March, 2019, in
memoriam of Prof. Bernardo Cascales.

2 . P o l y n o m i a l s i n n o r m e d s p a c e s

In this section we present the essential definitions and results needed to understand polynomials in
normed spaces. We begin by recalling a number of basic concepts and definitions related to polynomials
in a finite number of variables. In order to handle monomials in �𝑛, we introduce the following notation.
An 𝑛-dimensional multiindex is an 𝑛-tuple 𝛼 = (𝛼1,… ,𝛼𝑛) with 𝛼𝑖 ∈ ℕ ∪ {0} for all 𝑖 = 1,… , 𝑛. If 𝑥 =
(𝑥1,… , 𝑥𝑛) ∈ �𝑛, then |𝛼|, 𝛼! and 𝑥𝛼 represent, respectively,

𝛼1 + … + 𝛼𝑛, 𝛼1!⋯𝛼𝑛! and 𝑥𝛼11 ⋯𝑥𝛼𝑛𝑛 .

With the above notation, a polynomial in �𝑚 of degree at most 𝑛 is a linear combination of monomials of
the form 𝑥𝛼 with 𝑥 ∈ �𝑚 and 𝛼 ∈ (ℕ ∪ {0})𝑚 with |𝛼| ≤ 𝑛. Hence, a polynomial 𝑃 in 𝑚 variables (real or
complex) of degree at most 𝑛 has the form

𝑃(𝑥) = ∑
𝛼∈(ℕ∪{0})𝑚

|𝛼|≤𝑛

𝑎𝛼𝑥𝛼, for all 𝑥 ∈ �𝑚,

with 𝑎𝛼 ∈ �. Accordingly, a polynomial 𝑃 in 𝑚 variables is homogeneous of degree 𝑛 if

𝑃(𝑥) = ∑
𝛼∈(ℕ∪{0})𝑚

|𝛼|=𝑛

𝑎𝛼𝑥𝛼, for all 𝑥 ∈ �𝑚,

with 𝑎𝛼 ∈ �. Our first objective is to recall how to extend the above well-known definition of polynomial
and homogeneous polynomial to arbitrary linear spaces.

Let 𝐸 be a linear space over � (� = ℝ or ℂ). From now on, for each 𝑛 ∈ ℕ, ℒ𝑎 (𝑛𝐸) denotes the space of
all 𝑛-linear forms on 𝐸. Recall that 𝐿 is 𝑛-linear if it is linear in every coordinate. As usual, 𝐸𝑛 ≔ 𝐸 × 𝑛)… ×𝐸.
Also, we consider the diagonal mapping

𝛥𝑛∶ 𝐸 → 𝐸𝑛

𝑥 ↦ (𝑥,… , 𝑥).
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D e f i n i t i o n 1 (homogeneous polynomials). If 𝐸 is a linear space over � and 𝑛 ∈ ℕ, we say that 𝑃 is an
𝒏-homogeneous polynomial if there exists 𝐿 ∈ ℒ𝑎 (𝑛𝐸) with 𝑃 = 𝐿 ∘ 𝛥𝑛. Equivalently, we write 𝑃 = ̂𝐿.
The space of all 𝑛-homogeneous polynomials on 𝐸 is denoted by 𝒫𝑎(𝑛𝐸). We say that 𝑃 is a polynomial of
degree at most 𝑛 on 𝐸 if 𝑃 = 𝑃𝑛 + … + 𝑃1 + 𝑃0, where 𝑃𝑘 ∈ 𝒫𝑎(𝑘𝐸) for 𝑘 = 1,… , 𝑛 and 𝑃0 is a constant. ◀

Observe that, if 𝑃 ∈ 𝒫𝑎(𝑛𝐸), then 𝑃 (𝜆𝑥) = 𝜆𝑛𝑃 (𝑥) for all 𝑥 ∈ 𝐸 and every 𝜆 ∈ �. This property is also
satisfied by all homogeneous polynomials in a finite number of variables. On the other hand, the 𝑛-linear
form that defines a given 𝑛-homogeneous polynomial is not uniquely determined. Let us see this with
an example. First, notice that for all bilinear forms 𝐿 on �𝑛, where 𝑛 ∈ ℕ, there exists an 𝑛 × 𝑛 matrix
with entries in � such that 𝐿 (𝑧,𝑤) = 𝑧𝐴𝑤> for all 𝑧,𝑤 ∈ �𝑛. Here 𝑤> means, as usual, the transpose of 𝑤.
Hence, all 2-homogeneous polynomials on �𝑛 are of the form

𝑃 (𝑧) = 𝐿 (𝑧, 𝑧) =
𝑛
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑧𝑖𝑧𝑗,

where 𝐴 = (𝑎𝑖𝑗)𝑛𝑖,𝑗=1. If we consider now 𝐵 = 1
2 (𝐴 + 𝐴>), then 𝑧𝐴𝑧> = 𝑧𝐵𝑧> for every 𝑧 ∈ �𝑛. The latter

means that the two bilinear forms determined by the matrices 𝐴 and 𝐵 define the polynomial 𝑃.

The previous example motivates the definition of symmetric multilinear forms.

D e f i n i t i o n 2 (symmetric multilinear forms). Let 𝐸 be a linear space over � and let 𝑛 ∈ ℕ. An 𝑛-linear
form 𝐿 is symmetric if

𝐿 (𝑥1,… , 𝑥𝑛) = 𝐿 (𝑥𝜍(1),… , 𝑥𝜍(𝑛))
for all (𝑥1,… , 𝑥𝑛) ∈ 𝐸𝑛 and every permutation 𝜎 of {1,… , 𝑛}. The space of all symmetric 𝑛-linear forms on
𝐸 is denoted by ℒ𝑠

𝑎 (𝑛𝐸). ◀

R e m a r k 3 . Let us consider the mapping 𝑠 from ℒ𝑎 (𝑛𝐸) onto ℒ𝑠
𝑎 (𝑛𝐸) given by

𝑠 (𝐿) (𝑥1,… , 𝑥𝑛) =
1
𝑛! ∑𝜍∈𝑆𝑛

𝐿 (𝑥𝜍(1),… , 𝑥𝜍(𝑛)),

where 𝑆𝑛 is the group of all permutations of {1,… , 𝑛}. Then, 𝑠 is a projection. Furthermore, 𝐿 and 𝑠(𝐿) define
the same homogeneous polynomial. Therefore, if 𝑃 ∈ 𝒫𝑎(𝑛𝐸), it is always possible to choose 𝐿 ∈ ℒ𝑠

𝑎(𝑛𝐸)
such that ̂𝐿 = 𝑃. ◀

Now, using the so-called multinomial formula, it is possible to see that definition 1 does extend the concept
of homogeneous polynomial from a finite number of variables to arbitrary linear spaces.

P r o p o s i t i o n 4 (multinomial formula). Let 𝐸 be a real or complex linear space, 𝑃 ∈ 𝒫𝑎 (𝑛𝐸), 𝑥1,… , 𝑥𝑘 ∈ 𝐸
and 𝑎1,… , 𝑎𝑘 ∈ �. Then,

𝑃 (
𝑘
∑
𝑖=1

𝑎𝑖𝑥𝑖) = ∑
𝑚∈(ℕ∪{0})𝑘

|𝑚|=𝑛

𝑛!
𝑚!𝑎

𝑚1
1 ⋯𝑎𝑚𝑘

𝑘 𝐿 (𝑥𝑚1
1 ,… , 𝑥𝑚𝑘

𝑘 ) ,

where 𝐿 ∈ ℒ𝑠
𝑎(𝑛𝐸) satisfies ̂𝐿 = 𝑃 and

𝐿 (𝑥𝑚1
1 ,… , 𝑥𝑚𝑘

𝑘 ) ≔ 𝐿(
𝑚1

⏞⎴⏞⎴⏞𝑥1,… , 𝑥1,… ,
𝑚𝑘

⏞⎴⏞⎴⏞𝑥𝑘,… , 𝑥𝑘 ).

P r o o f . Let 𝑚 = (𝑚1,… ,𝑚𝑘) ∈ {0, 1,… , 𝑘}𝑘 with |𝑚| = 𝑛 and define

𝐴𝑚 = {(𝑖1,… , 𝑖𝑘) ∈ {0, 1,… , 𝑘}𝑘 such that 1 appears 𝑚1 times,… , 𝑘 appears 𝑚𝑘 times}

and
𝑎𝑚 = ∑

(𝑖1,…,𝑖𝑘)∈𝐴𝑚

𝐿(𝑥𝑖1,… , 𝑥𝑖𝑘).

Then, using linearity,

𝑃(𝑎1𝑥1 + … + 𝑎𝑘𝑥𝑘) = 𝐿((𝑎1𝑥1 + … + 𝑎𝑘𝑥𝑘)𝑛) = ∑
𝑚∈(ℕ∪{0})𝑘

|𝑚|=𝑛

𝑎𝑚1
1 ⋯𝑎𝑚𝑘

𝑘 𝑎𝑚.
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Observe that, due to the symmetry of 𝐿, we have

𝑎𝑚 = 𝐿(𝑥𝑚1
1 ,… , 𝑥𝑚𝑘

𝑘 ) ⋅ #(𝐴𝑚),

where#(𝐴𝑚) denotes the cardinality of 𝐴𝑚. Using elementary combinatorics we arrive at#(𝐴𝑚) =
𝑛!

𝑚1!⋯𝑚𝑘!
,

which concludes the proof. ▪

The importance of the multinomial formula in this context relies on the fact that it can be used to extend
the classical definition of polynomials in several variables. Indeed, let 𝐸 be a real or complex linear space
and 𝐹 a finite dimensional subspace of 𝐸. Let {𝑒1,… , 𝑒𝑘} be a Hammel basis for 𝐹 and 𝑥 = 𝑥1𝑒1+…+𝑥𝑘𝑒𝑘 ∈ 𝐹.
Then, using the multinomial formula,

𝑃 (𝑥) = 𝑃 (𝑥1𝑒1 +⋯+ 𝑥𝑘𝑒𝑘)

= ∑
𝑚∈(ℕ∪{0})𝑘

|𝑚|=𝑛

𝑛!
𝑚!𝑥

𝑚1
1 ⋯𝑥𝑚𝑘

𝑘 𝐿 (𝑒𝑚1
1 ,… , 𝑒𝑚𝑘

𝑘 ) = ∑
𝑚∈(ℕ∪{0})𝑘

|𝑚|=𝑛

𝑎𝑚𝑥𝑚,

which shows that the restriction of an 𝑛-homogeneous polynomial in the sense of definition 1 to a
𝑘-dimensional space is an 𝑛-homogeneous polynomial in 𝑘 variables.

2 . 1 . T h e p o l a r i z a t i o n f o r m u l a

If 𝐸 is a linear space and 𝑃 ∈ 𝒫𝑎(𝑛𝐸), we have seen in remark 3 that there exists 𝐿 ∈ ℒ𝑠
𝑎(𝑛𝐸) such that 𝑃 = ̂𝐿.

We can go further and prove that this symmetric 𝑛-linear form that determines 𝑃 is unique, and we call it
polar of 𝑃. The polarization formula does not only prove the uniqueness of the symmetric 𝑛-linear form
that defines a given 𝑛-homogeneous polynomial: additionally, it provides an explicit expression of the
polar in terms of the polynomial it defines. There are many forms of the polarization formula. We have
chosen one taken from Dineen’s book [15] that uses Rademacher functions.

T h e o r e m 5 (polarization formula). Let 𝐸 be a real or complex linear space, 𝑃 ∈ 𝒫𝑎 (𝑛𝐸), 𝐿 ∈ ℒ𝑠
𝑎 (𝑛𝐸) and

assume that ̂𝐿 = 𝑃. If (𝑥1,… , 𝑥𝑛) ∈ 𝐸𝑛, then

( 1 ) 𝐿 (𝑥1,… , 𝑥𝑛) =
1
𝑛!∫

1

0
𝑟1 (𝑡)⋯ 𝑟𝑛 (𝑡) 𝑃 (𝑟1 (𝑡) 𝑥1 + … + 𝑟𝑛 (𝑡) 𝑥𝑛) d𝑡,

where 𝑟𝑗 is the 𝑗-th Rademacher function, defined by

𝑟𝑗 (𝑡) = sign(sin(2𝑗π𝑡)) for all 1 ≤ 𝑗 ≤ 𝑛.

P r o o f . Let 𝑚 = (𝑚1,… ,𝑚𝑛) ∈ (ℕ ∪ {0})𝑛. Recall that the Rademacher functions satisfy

( 2 ) ∫
1

0
𝑟𝑚1+1
1 (𝑡)⋯ 𝑟𝑚𝑛+1

𝑛 (𝑡) d𝑡 = ∫
1

0
𝑟𝑚1+1
1 (𝑡) d𝑡⋯∫

1

0
𝑟𝑚𝑛+1
𝑛 (𝑡) d𝑡

and

( 3 ) ∫
1

0
𝑟
𝑚𝑗+1
𝑗 (𝑡) d𝑡 = {

1 if 𝑚𝑗 + 1 is even,
0 if 𝑚𝑗 + 1 is odd.

If we assume |𝑚| = 𝑛, the product ∫
1

0
𝑟𝑚1+1
1 (𝑡) d𝑡⋯∫

1

0
𝑟𝑚𝑛+1
𝑛 (𝑡) d𝑡 vanishes unless 𝑚1 = … = 𝑚𝑛 = 1, in
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which case its value is 1. Now, using the multinomial formula,

∫
1

0
𝑟1 (𝑡)⋯ 𝑟𝑛 (𝑡) 𝑃 (𝑟1 (𝑡) 𝑥1 + … + 𝑟𝑛 (𝑡) 𝑥𝑛) d𝑡

= ∫
1

0
𝑟1 (𝑡)⋯ 𝑟𝑛 (𝑡) 𝐿 (𝑟1 (𝑡) 𝑥1 + … + 𝑟𝑛 (𝑡) 𝑥𝑛,… , 𝑟1 (𝑡) 𝑥1 + … + 𝑟𝑛 (𝑡) 𝑥𝑛) d𝑡

= ∫
1

0
𝑟1 (𝑡)⋯ 𝑟𝑛 (𝑡) ∑

𝑚∈(ℕ∪{0})𝑛
|𝑚|=𝑛

𝑛!
𝑚!𝑟

𝑚1
1 (𝑡)⋯ 𝑟𝑚𝑛

𝑛 (𝑡) 𝐿 (𝑥1,… , 𝑥𝑛) d𝑡

= ∑
𝑚∈(ℕ∪{0})𝑛

|𝑚|=𝑛

𝑛!
𝑚!∫

1

0
𝑟𝑚1+1
1 (𝑡)⋯ 𝑟𝑚𝑛+1

𝑛 (𝑡) d𝑡𝐿 (𝑥1,… , 𝑥𝑛) = 𝑛!𝐿(𝑥1,… , 𝑥𝑛). ▪

R e m a r k 6 . Let 𝑃 ∈ 𝒫𝑎(𝑛𝐸) and 𝐿 ∈ ℒ𝑠
𝑎(𝑛𝐸) be the polar of 𝑃. It has already been mentioned that there are

many forms of the polarization formula. To see this we just need to replace the Rademacher functions
by any set of functions satisfying the identities (2) and (3). For instance, we may consider any set of 𝑛
independent and orthonormal random variables 𝑟1,… , 𝑟𝑛 on [0, 1] taking values on � and

𝛹 = ̄𝑟1⋯ ̄𝑟𝑛 ⋅ 𝑃 (
𝑛
∑
𝑖=1

𝑟𝑖𝑥𝑖) .

Proceeding as in the proof of theorem 5, the expectancy of 𝛹 would be given by

�[𝛹] = 𝑛!𝐿(𝑥1,… , 𝑥𝑛),

that is,
𝐿(𝑥1,… , 𝑥𝑛) =

1
𝑛!�[𝛹],

which is amuchmore general way to express the polarization formula (1). Thus, if 𝑟1,… , 𝑟𝑛 are 𝑛 independent
Bernouilli random variables taking the value −1 with probability 1/2 and 1 with probability 1/2, we would
have

( 4 ) 𝐿 (𝑥1,… , 𝑥𝑛) =
1

2𝑛𝑛! ∑
𝜀𝑖=±1

𝜀1⋯𝜀𝑛𝑃 (
𝑛
∑
𝑖=1

𝜀𝑖𝑥𝑖).

This is a very convenient form to put down the polarization formula. ◀

2 . 2 . C o n t i n u i t y i n p o l y n o m i a l s p a c e s

All polynomials in finitely many variables are continuous. However, this is far from being true when
polynomials on an infinite dimensional normed space are considered. Actually, continuity fails to be
universal even for linear forms on an infinite dimensional normed space.

Let (𝐸, ‖ ⋅‖) be a normed space over�. We represent the space of continuous 𝑛-homogeneous polynomials,
the space of continuous 𝑛-linear forms and the space of continuous symmetric 𝑛-linear forms, respectively,
by 𝒫 (𝑛𝐸), ℒ (𝑛𝐸) and ℒ𝑠 (𝑛𝐸). Also, for 𝑃 ∈ 𝒫(𝑛𝐸) and 𝐿 ∈ ℒ𝑠(𝑛𝐸), we define

‖𝑃‖ = sup {|𝑃 (𝑥)| ∶ ‖𝑥‖ ≤ 1} ,
‖𝐿‖ = sup {|𝐿 (𝑥1,… , 𝑥𝑛)| ∶ ‖(𝑥1,… , 𝑥𝑛)‖ ≤ 1} ,

where

‖(𝑥1,… , 𝑥𝑛)‖ = sup {‖𝑥𝑖‖ ∶ 1 ≤ 𝑖 ≤ 𝑛} .

These definitions are intended to introduce a norm in 𝒫(𝑛𝐸) and ℒ(𝑛𝐸). However, at this stage we do not
even know whether ‖𝑃‖ or ‖𝐿‖ are finite. As a matter of fact, the finiteness of ‖𝑃‖ or ‖𝐿‖ characterizes the
continuity of 𝑃 or 𝐿, as we will see later. First we present a fundamental result in the theory of polynomials
in normed spaces also known as the polarization inequality. The proof provided below is taken from
Dineen’s book [15].
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T h e o r e m 7 (polarization inequality). Let 𝐸 be a normed space. Then,

‖𝑃‖ ≤ ‖𝐿‖ ≤ 𝑛𝑛

𝑛!
‖𝑃‖

for every 𝐿 ∈ ℒ𝑠 (𝑛𝐸) and 𝑃 ∈ 𝒫 (𝑛𝐸) such that 𝐿 is the polar of 𝑃.

P r o o f . The first inequality is trivial since 𝑃 is a restriction of 𝐿. To prove the second inequality, we use the
polarization formula (4):

‖𝐿‖ = sup {|𝐿 (𝑥1,… , 𝑥𝑛)| ∶ ‖(𝑥1,… , 𝑥𝑛)‖ ≤ 1}

= sup {
||||
1

2𝑛𝑛! ∑
𝜀𝑖=±1

𝜀1⋯𝜀𝑛𝑃 (
𝑛
∑
𝑖=1

𝜀𝑖𝑥𝑖)
||||
∶ ‖(𝑥1,… , 𝑥𝑛)‖ ≤ 1}

≤ 1
2𝑛𝑛! ∑

𝜀𝑖=±1
sup {

|
|
|
𝑃 (

𝑛
∑
𝑖=1

𝜀𝑖𝑥𝑖)
|
|
|
∶ ‖(𝑥1,… , 𝑥𝑛)‖ ≤ 1}

= 𝑛𝑛

2𝑛𝑛! ∑
𝜀𝑖=±1

sup {
|
|
|
𝑃 (

1
𝑛

𝑛
∑
𝑖=1

𝜀𝑖𝑥𝑖)
|
|
|
∶ ‖(𝑥1,… , 𝑥𝑛)‖ ≤ 1}

≤ 𝑛𝑛

𝑛! ‖𝑃‖. ▪

As is well known, boundedness is a characteristic property of continuous linear forms on any normed
space. A similar result holds for homogeneous polynomials, as we are about to see. The proof of the
following result is inspired in Dineen’s book [15].

T h e o r e m 8 . Let 𝐸 be a normed space over � and 𝑃 ∈ 𝒫𝑎 (𝑛𝐸). Then, the following are equivalent:

( i ) 𝑃 is continuous in 𝐸.
( i i ) 𝑃 is continuous at 0.
( i i i ) 𝑃 is bounded over B 𝐸, the closed unit ball of 𝐸.

P r o o f . That (i) implies (ii) is trivial. We prove now that (ii) implies (iii). By continuity at 0, given 𝜀 > 0 there
exists 𝛿 > 0 such that |𝑃 (𝑥) | < 𝜀 whenever ‖𝑥‖ < 2𝛿. Therefore, if 𝑥 ∈ B 𝐸 we have

|𝑃(𝑥)| = |
|𝑃 (𝛿 ⋅

𝑥
𝛿 )
|
| =

1
𝛿𝑛

|𝑃 (𝛿𝑥)| <
𝜀
𝛿𝑛 .

Thus, 𝑃 is bounded on B 𝐸.
Finally, we show that (iii) implies (i). Choose an arbitrary 𝑥0 in 𝐸 and take 𝑥 ∈ 𝐸 with ‖𝑥 − 𝑥0‖ ≤ 1. In
particular, ‖𝑥‖ ≤ 1 + ‖𝑥0‖. Then, by Newton’s binomial formula and Martin’s theorem, we have

|𝑃 (𝑥) − 𝑃 (𝑥0)| = |𝑃 ((𝑥 − 𝑥0) + 𝑥0) − 𝑃(𝑥0)|

=
||||

𝑛−1
∑
𝑗=0

(
𝑛
𝑗
)𝐿 (𝑥𝑗0, (𝑥 − 𝑥0)

𝑛−𝑗)
||||

≤
𝑛−1
∑
𝑗=0

(
𝑛
𝑗
) ‖𝐿‖ ‖𝑥0‖

𝑗 ‖𝑥 − 𝑥0‖
𝑛−𝑗

≤ 𝑛𝑛

𝑛!
‖𝑃‖ ‖𝑥 − 𝑥0‖

𝑛−1
∑
𝑗=0

(
𝑛
𝑗
) ‖𝑥0‖

𝑗

≤ 𝑛𝑛

𝑛! (1 + ‖𝑥0‖)
𝑛 ‖𝑃‖ ‖𝑥 − 𝑥0‖ .

Recall that ‖𝑃‖ is finite since 𝑃 is bounded on B 𝐸. Without loss of generality, we may also assume that
‖𝑃‖ > 0. Hence, for an arbitrary 𝜀 > 0 we can take

𝛿 = min {1, 𝑛!
𝑛𝑛(1 + ‖𝑥0‖)𝑛‖𝑃‖

} > 0

and we have that |𝑃(𝑥) − 𝑃(𝑥0)| < 𝜀 whenever ‖𝑥 − 𝑥0‖ < 𝛿, that is, 𝑃 is continuous at 𝑥0. ▪
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R e m a r k 9 . Let 𝐸 be a real or complex normed space. Theorems 5 and 8 show two relevant facts:

1 . If 𝑃 ∈ 𝒫𝑎(𝑛𝐸) and 𝐿 ∈ ℒ𝑠
𝑎(𝑛𝐸) is its polar, then 𝑃 is bounded (continuous) if and only if 𝐿 is bounded

(continuous).
2 . The spaces 𝒫(𝑛𝐸) and ℒ𝑠(𝑛𝐸) are topologically isomorphic and ℒ𝑠(𝑛𝐸) ∋ 𝐿 ↦ ̂𝐿 ∈ 𝒫(𝑛𝐸) is a natural

isomorphism whose inverse is provided by the polarization formula. ◀

Using the axiom of choice it is easy to construct non-bounded (and therefore non-continuous) polynomials.

E x a m p l e 1 0 . Let 𝐸 be any normed space of dimension 𝔠 (here 𝔠 is the continuum, or the cardinality of ℝ).
Let ℬ = {𝑒𝑥 ∶ 𝑥 ∈ ℝ} be a Hammel basis of normalized vectors of 𝐸 indexed in ℝ and define 𝐿 ∈ ℒ𝑠

𝑎(𝑛𝐸)
on ℬ by 𝐿(𝑒𝑥1,… , 𝑒𝑥𝑛) = 𝑥1⋯𝑥𝑛. On the rest of 𝐸, 𝐿 is defined by linearity. Then, the 𝑛-homogeneous
polynomial induced by 𝐿 is not bounded on B 𝐸, since ℬ ⊂ B 𝐸, but

lim
𝑥→∞

𝑃(𝑒𝑥) = lim
𝑥→∞

𝑥𝑛 = ∞. ◀

In general, for any normed space 𝐸, the algebraic size, measured in terms of dimension, of the set of non-
bounded 𝑛-homogeneous polynomials (respectively non-bounded symmetric 𝑛-linear forms) is maximal.
Consider the sets𝒩ℬℒ𝑠 (𝑛𝐸) and𝒩ℬ𝒫(𝑛𝐸) of, respectively, all the non-bounded symmetric 𝑛-linear forms
and all the non-bounded 𝑛-homogeneous polynomials on 𝐸. Then, Gámez-Merino, Muñoz-Fernández,
Pellegrino, and Seoane-Sepúlveda [16] proved in 2012 the following.

T h e o r e m 1 1 . If 𝑛 ∈ ℕ and 𝐸 is a normed space of infinite dimension 𝜆, then the sets 𝒩ℬℒ𝑠 (𝑛𝐸) ∪ {0} and
𝒩ℬ𝒫(𝑛𝐸) ∪ {0} contain a 2𝜆-dimensional subspace. We say then that the sets 𝒩ℬℒ𝑠 (𝑛𝐸) and 𝒩ℬ𝒫(𝑛𝐸)
are 2𝜆-lineable.

2 . 3 . P o l a r i z a t i o n c o n s t a n t s

If 𝐸 is a real or complex normed space 𝑃 ∈ 𝒫(𝑛𝐸) and 𝐿 ∈ ℒ𝑠(𝑛𝐸) is the polar of 𝑃, according to Martin’s
theorem (theorem 7),

‖𝐿‖ ≤ 𝑛𝑛

𝑛! ‖𝑃‖.

The constant 𝑛𝑛
𝑛! cannot be replaced by a smaller constant in general since equality can be attained for

the space 𝐸 = ℓ𝑛1 and the polynomial 𝛷𝑛(𝑥1,… , 𝑥𝑛) ≔ 𝑥1⋯𝑥𝑛 and its polar. However, 𝑛𝑛
𝑛! can indeed be

replaced by a smaller estimate for specific spaces. This motivates the following definition.

D e f i n i t i o n 1 2 (polarization constants). If 𝐸 is a normed space over �, we define the 𝒏-th polarization
constant of 𝐸 as

�(𝑛;𝐸) ≔ inf{𝐾 > 0 ∶ ‖𝐿‖ ≤ 𝐾‖𝑃‖, ∀𝑃 ∈ 𝒫(𝑛𝐸) and ̂𝐿 = 𝑃}. ◀

A somewhat more general concept than that of polarization constant arises from the following result by
Harris [19].

T h e o r e m 1 3 . Let 𝐸 be a complex normed space and 𝑛1,… , 𝑛𝑘 ∈ ℕ. If 𝑛 = 𝑛1 +⋯+ 𝑛𝑘 and 𝐿 ∈ ℒ𝑠(𝑛𝐸),
then

sup{|𝐿(𝑥𝑛11 ,… , 𝑥
𝑛𝑘
𝑘 )| ∶ ‖𝑥𝑖‖ = 1, 1 ≤ 𝑖 ≤ 𝑘} ≤

𝑛1!⋯𝑛𝑘! 𝑛𝑛

𝑛𝑛11 ⋯𝑛𝑛𝑘𝑘 𝑛!
‖ ̂𝐿‖.

A similar result with a different constant can be proved when 𝐸 is a real normed space. All this serves as a
motivation for the following definition.

D e f i n i t i o n 1 4 (generalized polarization constants). Let 𝐸 be a normed space over � and 𝑛, 𝑛1,… , 𝑛𝑘 ∈ ℕ

with 𝑛 = 𝑛1 +⋯+ 𝑛𝑘. Then, we define the generalized polarization constant�(𝑛1,… , 𝑛𝑘;𝐸) as

�(𝑛1,… , 𝑛𝑘;𝐸) ≔ inf{𝑐 ∶ |𝐿(𝑥𝑛11 ,… , 𝑥
𝑛𝑘
𝑘 )| ≤ 𝑐‖ ̂𝐿‖, ∀𝐿 ∈ ℒ𝑠(𝑛𝐸), ‖𝑥𝑖‖ = 1}. ◀
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From theorem 7 we deduce that
1 ≤ �(𝑛;𝐸) ≤ 𝑛𝑛

𝑛!
for any normed space 𝐸 over �, but the exact value of �(𝑛;𝐸) for many choices of 𝐸 has remained as an
unresolved problem until today. The calculation of the exact value of the polarization constants of specific
spaces seems to be a challenging problem and yet, significant progress has been made. Of particular
interest are the works of Sarantopoulos [37] and Kirwan, Sarantopoulos, and Tonge [23], where the spaces
satisfying �(𝑛;𝐸) = 𝑛𝑛

𝑛! are studied. At the other end of the scale, according to an old result, if 𝐸 is an
Euclidean space over �, then �(𝑛;𝐸) = 1 [2, 21, 38] (see Dineen’s book [15] for a modern exposition).
Furthermore, Benítez and Sarantopoulos [4] proved that ℝ(𝑛;𝐸) = 1 implies that 𝐸 is a real Euclidean
space. However, ℂ(𝑛;𝐸) = 1 does not necessarily imply that 𝐸 is a complex Euclidean space. The value of
�(𝑛; ℓ𝑝) is known for some choices of 𝑝 (see for instance [36]), but most of the polarization constants of
the classical spaces are still unknown nowadays. For a complete account on polarization constants, we
recommend Rodríguez-Vidanes’s work [35].

The use of the Krein-Milman approach (which will be described right after theorem 15) in combination
with a description of the extreme points of certain polynomial spaces may produce good results in the
difficult task of calculating polarization constants. The next section is devoted to the study of the geometry
of certain polynomial spaces.

3 . G e o m e t r y o f s o m e 3- d i m e n s i o n a l p o l y n o m i a l s p a c e s
Let 𝐸 be a finite dimensional normed space. Recall that 𝐶 ⊂ 𝐸 is a convex body if it is a compact convex set
with nonempty interior. A point 𝑒 ∈ 𝐶 is an extreme point of 𝐶 if it is not an interior point of any segment
contained in 𝐶. We use the notation ext(𝐶) to represent the set of all the extreme points of 𝐶. According
to the Krein-Milman theorem (or its finite dimensional version proved by Minkowski in 3-dimensional
spaces and by Steinitz for any dimension), the set of the extreme points of a convex body 𝐶 in the finite
dimensional normed space 𝐸 determines 𝐶. The precise formulation of this result is the following.

T h e o r e m 1 5 (Minkowski-Steinitz). If 𝐸 is a finite dimensional normed space and 𝐶 ⊂ 𝐸 is a convex body,
then

( i ) ext(𝐶) ≠ ∅.
( i i ) 𝐶 = co(ext(𝐶)).

Note that co(𝐴) is the convex hull of the set 𝐴.

This result has been used in a large variety of settings to optimize convex functions. In fact, the result that
allows the optimization is the following:

If 𝐶 ⊂ 𝐸 is a convex body in the real finite dimensional normed space 𝐸 and 𝑓∶ 𝐶 → ℝ is
a convex function that attains its maximum in 𝐶, then there is a point 𝑒 ∈ ext(𝐶) such that
𝑓(𝑒) = min{𝑓(𝑥) ∶ 𝑥 ∈ 𝐶}.

We will address to this result as the Krein-Milman approach from now on. A combination of the Krein-
Milman approach and an exhaustive description of the extreme points of the unit ball of a polynomial
space provides, in many cases, sharp polynomial inequalities. The previous argument motivates the study
of the geometry of polynomial spaces. As a matter of fact, many publications have dealt with this question
in the past. Konheim and Rivlin [24], as late as in 1966, characterised the extreme points of the space of
real polynomials of degree not exceeding 𝑛, namely 𝒫𝑛(ℝ), endowed with the norm

‖𝑃‖ = sup{|𝑃(𝑥)| ∶ 𝑥 ∈ [−1, 1]}.

Unfortunately, Konheim and Rivlin’s results do not provide an explicit representation of the extreme points
of 𝒫𝑛(ℝ). Choi, Kim, and Ki [11], on the one hand, and Choi and Kim [10] on the other, characterised
the extreme points of 𝒫(2ℓ21 ) and 𝒫(2ℓ2∞). Grecu [18] extended those results to 𝒫(2ℓ2𝑝) for arbitrary 𝑝 ≥ 1.
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Aron and Klimek [1] characterised the extreme points of the space of the real quadratic polynomials on
[−1, 1] and the unit disk in ℂ. Muñoz-Fernández and Seoane-Sepúlveda [33] studied the extreme points of
the real trinomials on [−1, 1], whereas Neuwirth [34] did the same thing on the unit disk in ℂ. Kim [22]
studied polynomials on an hexagon or an octagon. Special attention has also been given to polynomials
on non-balanced convex bodies. Thus, Muñoz-Fernández, Révész, and Seoane-Sepúlveda [31] studied
the geometry of the space 𝒫(2𝛥) of the 2-homogeneous polynomials on the simplex 𝛥 (the triangle of
vertices (0, 0), (1, 0) and (0, 1)). Milev and Naidenov [28, 29] studied the extreme points of the space of
polynomials (homogeneous or not) of degree at most 2 on 𝛥. Gámez-Merino, Muñoz-Fernández, Sánchez,
and Seoane-Sepúlveda [17] studied the geometry of the space𝒫(2�) of the 2-homogeneous polynomials on
the unit square� = [0, 1]2. Muñoz-Fernández, Pellegrino, Seoane-Sepúlveda, andWeber [30] characterised
the extreme points of the space 𝒫(2𝐷(𝛼, 𝛽)) of the 2-homogeneous polynomials on the circular sectors
𝐷(𝛼, 𝛽) = {𝑟ei𝜃 ∶ 𝑟 ∈ [0, 1], 𝜃 ∈ [𝛼, 𝛽]} for 𝛽 − 𝛼 = π

4 ,
π
2 ,

3π
4 and 𝛽 − 𝛼 ≥ π. These results have been

generalised in a recent work by Bernal-González, Muñoz-Fernández, Rodríguez-Vidanes, and Seoane-
Sepúlveda [5] for an arbitrary length of the interval [𝛼, 𝛽].

In the rest of this section we will provide a few illustrative examples representing a tiny fraction of the
results mentioned above about geometry of polynomial spaces.

3 . 1 . T h e g e o m e t r y o f 𝒫2(ℝ)

Here we consider the space 𝒫2(ℝ) of the real polynomials 𝑎𝑥2+𝑏𝑥+𝑐 of degree not greater than 2, endowed
with he norm

‖𝑃‖𝒫2(ℝ) = sup{|𝑃(𝑥)| ∶ |𝑥| ≤ 1}.

Elementary calculus shows that

‖(𝑎, 𝑏, 𝑐)‖𝒫2(ℝ) = {
||
𝑏2
4𝑎 − 𝑐|| if 𝑎 ≠ 0, || 𝑏2𝑎 || < 1 and 𝑐

𝑎 + 1 < 1
2 ( ||

𝑏
2𝑎
|| − 1)2,

|𝑎 + 𝑐| + |𝑏| otherwise.

The geometry of this 3-dimensional space was investigated by Aron and Klimek [1] (see also the work
of Muñoz-Fernández and Seoane-Sepúlveda [33]). The conclusions extracted from these papers are
summarised in the following result. From now on, if 𝐸 is a normed space, B 𝐸 and S 𝐸 stand for the closed
unit ball and the unit sphere of 𝐸, respectively. Also, graph(𝑓) stands for the graph of the function 𝑓.

T h e o r e m 1 6 . Define 𝛤(𝑎) = 2(√2𝑎 − 𝑎) and

𝑈 = {(𝑎, 𝑏) ∈ ℝ2 ∶ 𝑎 < 0 and |𝑏| ≤ min {|𝑎|,𝛤(|𝑎|)}} ,

𝑉 = {(𝑎, 𝑏) ∈ [−
1
2 ,

1
2] × [−1, 1] ∶ |𝑏| ≥ |𝑎|} ,

𝑊 = {(𝑎, 𝑏) ∈ ℝ2 ∶ 𝑎 > 0 and |𝑏| ≤ min {|𝑎|,𝛤(|𝑎|)}} .

If for every (𝑎, 𝑏) ∈ ℝ2 we define

𝑓+(𝑎, 𝑏) = 1 − 𝑎 − |𝑏|, 𝑓−(𝑎, 𝑏) = −𝑓+(−𝑎, 𝑏),

and for every (𝑎, 𝑏) ∈ ℝ2 with 𝑎 ≠ 0 we define

𝑔+(𝑎, 𝑏) =
𝑏2

4𝑎 − 1, 𝑔−(𝑎, 𝑏) = −𝑔+(−𝑎, 𝑏),

then

( a ) S 𝒫2(ℝ) = graph (𝑓+|𝑊∪𝑉) ∪ graph (𝑓−|𝑈∪𝑉) ∪ graph (𝑔+|𝑊) ∪ graph (𝑔−|𝑈).
( b ) ext(B 𝒫2(ℝ)) = {±(𝑡,±𝛤(𝑡), 1 − 𝑡 − 𝛤(𝑡)) ∶ 𝑡 ∈ [1/2, 2]} ∪ {±(0, 0, 1)}.

We show a picture of S 𝒫2(ℝ) in figure 1.

For fixed 𝑚 > 𝑛 in ℕ, the geometry of the space {𝑎𝑥𝑚 + 𝑏𝑥𝑛 + 𝑐 ∶ 𝑎, 𝑏, 𝑐 ∈ ℝ} endowed with the sup norm
on [−1, 1] has been studied by Muñoz-Fernández and Seoane-Sepúlveda [33] for all possible choices of
𝑚, 𝑛. The results depend strongly on whether 𝑚 and 𝑛 are even or odd.
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F i g u r e 1 : Unit sphere of 𝒫2(ℝ).

3 . 2 . T h e g e o m e t r y o f 𝒫(2𝛥)

Recall first that 𝒫(2𝛥) is the space of polynomials 𝑃(𝑥, 𝑦) = 𝑎𝑥2+𝑏𝑦2+𝑐𝑥𝑦 endowed with the norm defined
by

‖𝑃‖𝛥 = sup{|𝑃(x)| ∶ x ∈ 𝛥},

where 𝛥 represents the region enclosed by the triangle in ℝ2 of vertices (0, 0), (0, 1) and (1, 0) (or simplex,
for short). All the results in this section are taken from the work of Muñoz-Fernández, Révész, and
Seoane-Sepúlveda [31]. First, it is convenient to have a formula to calculate the norm ‖ ⋅ ‖𝛥.

T h e o r e m 1 7 . Let 𝑎, 𝑏, 𝑐 ∈ ℝ and 𝑃(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦. Then,

( 5 ) ‖𝑃‖𝛥 = {
max {|𝑎|, |𝑏|, ||

𝑐2−4𝑎𝑏
4(𝑎−𝑐+𝑏)

||} if 𝑎 − 𝑐 + 𝑏 ≠ 0 and 0 < 2𝑏−𝑐
2(𝑎−𝑐+𝑏) < 1,

max{|𝑎|, |𝑏|} otherwise.

Now we provide a parametrisation of S 𝒫(2𝛥) and describe the geometry of B 𝒫(2𝛥). We use the notations S 𝛥
and B 𝛥 for short.

T h e o r e m 1 8 . If we define the mappings

𝑓+(𝑎, 𝑏) = 2 + 2√(1 − 𝑎)(1 − 𝑏)

and
𝑓−(𝑎, 𝑏) = −𝑓+(−𝑎,−𝑏) = −2 − 2√(1 + 𝑎)(1 + 𝑏),

for every (𝑎, 𝑏) ∈ [−1, 1]2, and the set

𝐹 = {(𝑎, 𝑏, 𝑐) ∈ ℝ3 ∶ (𝑎, 𝑏) ∈ 𝜕[−1, 1]2 and 𝑓−(𝑎, 𝑏) ≤ 𝑐 ≤ 𝑓+(𝑎, 𝑏)},

where 𝜕[−1, 1]2 is the boundary of [−1, 1]2, then

( a ) S 𝛥 = graph(𝑓+|[−1,1]2) ∪ graph(𝑓−|[−1,1]2) ∪ 𝐹.

( b ) ext(B 𝛥) = {±(1, 𝑡,−2 − 2√2(1 + 𝑡)),±(𝑡, 1,−2 − 2√2(1 + 𝑡)) ∶ 𝑡 ∈ [−1, 1]}.

You can find a picture of S 𝛥 in figure 2.
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F i g u r e 2 : Unit sphere of 𝒫(2𝛥).

3 . 3 . T h e g e o m e t r y o f 𝒫(2𝐷(𝛼, 𝛽))

First, recall that 𝒫(2𝐷(𝛼, 𝛽)) is the 3-dimensional space of the polynomials 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 endowed with
the norm

‖𝑃‖𝐷(𝛼,𝛽) ≔ sup{|𝑃(x)| ∶ x ∈ 𝐷(𝛼, 𝛽)}.

It is a simple exercise to show that the spaces 𝒫(2𝐷(𝛼,𝛼 + 𝛽)) and 𝒫(2𝐷(0, 𝛽)) are isometric. We write 𝐷(𝛽)
instead of 𝐷(0, 𝛽) for simplicity. Actually, the isometry is given by the matrix

(
cos2 𝛼 sin2 𝛼 sin 2𝛼

2
sin2 𝛼 cos2 𝛼 − sin 2𝛼

2
− sin 2𝛼 sin 2𝛼 cos 2𝛼

) .

This isometry allows us to restrict our attention to the study of the geometry of B 𝐷(𝛽).

A moment’s thought reveals that, if 𝛽 ≥ π, then B 𝐷(𝛽) = B 𝒫(2ℓ22), where B 𝒫(2ℓ22) stands for the closed unit ball
of the space 𝒫(2ℓ22) of 2-homogeneous polynomials on ℝ2 endowed with the sup norm over the unit disk.
The extreme points of B 𝒫(2ℓ22) were described by Choi and Kim [10]. An alternative approach was provided
by Muñoz-Fernández, Pellegrino, Seoane-Sepúlveda, and Weber [30].

T h e o r e m 1 9 . Let 𝛽 ≥ π and define 𝑓(𝑎, 𝑏) = 2√1 + 𝑎𝑏 − |𝑎 + 𝑏| on [−1, 1]2. Then,

( a ) ‖𝑃‖𝐷(𝛽) =
1
2 (|𝑎 + 𝑏| + √(𝑎 − 𝑏)2 + 𝑐2), for all 𝑃 ∈ 𝒫(2𝐷(𝛽)).

( b ) S 𝒫(2𝐷(𝛽)) = graph(𝑓) ∪ graph(−𝑓).

( c ) ext(B 𝒫(2𝐷(𝛽))) = {±(𝑡,−𝑡, 2√1 − 𝑡2) ∶ 𝑡 ∈ [−1, 1]} ∪ {±(1, 1, 0)}.

The reader can find a graph of S 𝒫(2ℓ22) in figure 3.

Let us give just another example in this section, taken from the work of Muñoz-Fernández et al. [30].

TEMat monogr., 1 (2020) e-ISSN: 2660-6003 89



Geometry of polynomial spaces and polynomial inequalities

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

b
a

c

F i g u r e 3 : S 𝒫(2ℓ22). The extreme points of B 𝒫(2ℓ22) are drawn with a thick line and dots.

T h e o r e m 2 0 . If we define the mappings

𝐺1(𝑎, 𝑏) = 2√(1 − 𝑎)(1 − 𝑏)

and
𝐺2(𝑎, 𝑏) = −𝐺1(−𝑎,−𝑏) = −2√(1 + 𝑎)(1 + 𝑏),

for every (𝑎, 𝑏) ∈ [−1, 1]2, and the set

𝐹 = {(𝑎, 𝑏, 𝑐) ∈ ℝ3 ∶ (𝑎, 𝑏) ∈ 𝜕[−1, 1]2 and 𝐺2(𝑎, 𝑏) ≤ 𝑐 ≤ 𝐺1(𝑎, 𝑏)},

where 𝜕[−1, 1]2 is the boundary of [−1, 1]2, then

( a ) ‖𝑃‖𝐷( π2 ) = max {|𝑎|, |𝑏|, 12 |𝑎 + 𝑏 + sign(𝑐)√(𝑎 − 𝑏)2 + 𝑐2|} for every 𝑃 ∈ 𝒫 (2𝐷 (π2 )).

( b ) S 𝐷( π2 )
= graph(𝐺1) ∪ graph(𝐺2) ∪ 𝐹.

( c ) ext(B 𝐷( π2 )) = {± (1, 𝑡,−2√2(1 + 𝑡)) ,± (𝑡, 1,−2√2(1 + 𝑡)) ∶ 𝑡 ∈ [−1, 1]} ∪ {±(1, 1, 0)}.

The reader can find a sketch of S 𝒫(2𝐷( π2 )) in figure 4.

4 . P o l y n o m i a l i n e q u a l i t i e s

A number of polynomial inequalities can be tackled using the Krein-Milman approach described right
after theorem 15. In this section we will introduce some problems of interest together with a sample of the
type of results that can be achieved using the Krein-Milman approach.
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F i g u r e 4 : S 𝐷( π2 )
. The extreme points of B 𝐷( π2 ) are drawn with a thick line and dots.

4 . 1 . T h e B o h n e n b l u s t - H i l l e i n e q u a l i t y a n d r e l a t e d p r o b l e m s

The ℓ𝑞 norm of the coefficients of polynomials in 𝒫(𝑚�𝑛) is given by

|𝑃|𝑞 ≔ {(∑|𝛼|=𝑚 |𝑎𝛼|𝑞)
1
𝑞 if 1 ≤ 𝑞 < +∞,

max{|𝑎𝛼| ∶ |𝛼| = 𝑚} if 𝑞 = +∞,

for every 𝑃 ∈ 𝒫(𝑚�𝑛) with coefficients 𝑎𝛼. Observe that

| ⋅ |𝑞 ≤ | ⋅ |𝑠 ≤ 𝑑
1
𝑠−

1
𝑞 | ⋅ |𝑞,

for 1 ≤ 𝑠 ≤ 𝑞, where 𝑑 is the dimension of 𝒫(𝑚�𝑛). These norms appear in a number of problems of
interest. They can also be used to estimate the difficult-to-calculate polynomial norm of the spaces 𝒫(𝑚ℓ𝑛𝑝).
Let us denote the norm in 𝒫(𝑚ℓ𝑛𝑝) by ‖ ⋅ ‖𝑝. Since the norms | ⋅ |𝑞 and ‖ ⋅ ‖𝑝 are equivalent for all 𝑝, 𝑞 ≥ 1,
there exist 𝑘 and 𝐾 depending on 𝑝, 𝑞,𝑚, 𝑛 such that

𝑘‖𝑃‖𝑝 ≤ |𝑃|𝑞 ≤ 𝐾‖𝑃‖𝑝,

for all 𝑃 ∈ 𝒫(𝑚ℝ𝑛). The optimal values of the constants 𝑘 and 𝐾 can be calculated in many situations using
the Krein-Milman approach. Indeed, as for the constant 𝐾, the target function to which the Krein-Milman
approach could be applied is

𝐵‖⋅‖𝑝 ∋ 𝑃 ↦ |𝑃|𝑞.
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Here is where the geometry of 𝐵‖⋅‖𝑝 can be used to optimise the target functions in the case when we have
a description of its extreme points.

The equivalence constants which we have just introduced are closely related to the famous polynomial
Bohnenblust-Hille constants. Let us call 𝐾𝑚,𝑛,𝑞,𝑝 the best (smallest) value of 𝐾 in (4.1). The𝑚-th polynomial
Bohnenblust-Hille constant is nothing but an upper bound for 𝐾𝑚,𝑛, 2𝑚𝑚+1 ,∞

. The reason why the specific
choice 𝑞 = 2𝑚

𝑚+1 and 𝑝 = ∞ is of interest rests on the fact that, if 𝑞 ≥ 2𝑚
𝑚+1 , then there exists a constant

𝐷𝑚,𝑞 > 0 depending only on 𝑚 and 𝑞 such that

( 6 ) |𝑃|𝑞 ≤ 𝐷𝑚,𝑞‖𝑃‖∞,

for all 𝑃 ∈ 𝒫(𝑚�𝑛) and every 𝑛 ∈ ℕ. Moreover, any constant fitting in (6) for 𝑞 < 2𝑚
𝑚+1 depends necessarily

on 𝑛. This result was proved by Bohnenblust and Hille [7] in 1931. Observe that any plausible choice for
𝐷𝑚,𝑞 in (6) must satisfy 𝐷𝑚,𝑞 ≥ sup{𝐾𝑚,𝑛,𝑞,∞ ∶ 𝑛 ∈ ℕ}. The best (in the sense of smallest) possible choice
for 𝐷𝑚,𝑞 in (6) when 𝑞 = 2𝑚

𝑚+1 is called the polynomial Bohnenblust-Hille constant. It is interesting to
notice that there exists a considerable difference between the polynomial Bohnenblust-Hille constants for
real and complex polynomials. For this reason, the polynomial Bohnenblust-Hille constants are usually
denoted by 𝐷�,𝑚.

Moreover, if we keep 𝑛 ∈ ℕ fixed, the best (smallest) 𝐷𝑚(𝑛) > 0 in

|𝑃| 2𝑚
𝑚+1

≤ 𝐷𝑚(𝑛)‖𝑃‖∞,

for all 𝑃 ∈ 𝒫(𝑚�𝑛), is denoted by 𝐷�,𝑚(𝑛). Observe that 𝐷�,𝑚(𝑛) = 𝐾𝑚,𝑛, 2𝑚𝑚+1 ,∞
. The calculation of the

Bohnenblust-Hille constants 𝐷�,𝑚 and 𝐷�,𝑚(𝑛) has motivated a large amount of papers, but their exact
values are still unknown except for very restricted choices of 𝑚 and 𝑛. The best lower and upper estimates
on 𝐷�,𝑚 and 𝐷�,𝑚(𝑛) known nowadays can be found in the literature [3, 8, 9, 12–14, 20, 25].

We present below a simple application of the Krein-Milman approach to calculate the value of 𝐷ℝ(2) based
on the following result by Choi, Kim, and Ki [11].

T h e o r e m 2 1 . The set ext(B 𝒫(2ℓ2∞(ℝ))) of extreme points of the unit ball of 𝒫(2ℓ2∞(ℝ)) is given by

ext(B 𝒫(2ℓ2∞(ℝ))) = {±𝑥2, ±𝑦2, ±(𝑡𝑥2 − 𝑡𝑦2 ± 2√𝑡(1 − 𝑡)𝑥𝑦) ∶ 𝑡 ∈ [1/2, 1]}.

T h e o r e m 2 2 . Let 𝑓 be the real-valued function given by

𝑓(𝑡) = [2𝑡
4
3 + (2√𝑡(1 − 𝑡))

4
3 ]

3
4 .

We have that 𝐷ℝ,2(2) = 𝑓(𝑡0) ≈ 1.837 373, where

𝑡0 =
1
36 (2

3
√107 + 9√129 +

3
√856 − 72√129 + 16) ≈ 0.867 835.

Moreover, the following normalized polynomials are extreme for this problem:

𝑃2(𝑥, 𝑦) = ± (𝑡0𝑥2 − 𝑡0𝑦2 ± 2√𝑡0(1 − 𝑡0)𝑥𝑦) .

P r o o f . We just have to notice that, due to the convexity of the ℓ𝑝-norms and theorem 21, we have

𝐷ℝ,2(2) = sup{|a| 4
3
∶ a ∈ B 𝒫(2ℓ2∞ℝ)} = sup{|a| 4

3
∶ a ∈ ext(B 𝒫(2ℓ2∞ℝ))} = sup

𝑡∈[1/2,1]
𝑓(𝑡).

The function 𝑓 is maximized using elementary calculus. The help of computer packages of symbolic
calculus such as Matlab may be helpful to prove that 𝑓 attains its maximum in [1/2, 2] at 𝑡 = 𝑡0, thus
concluding the proof. ▪
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4 . 2 . B e r n s t e i n a n d M a r k o v t y p e i n e q u a l i t i e s

Bernstein and Markov inequalities are estimates on the growth of the derivatives of polynomials. The
famous Russian chemist D. Mendeleev (the author of the periodic table of elements) was among the
pioneers that studied these types of estimates. In particular, he was interested in the following problem:

If 𝑝(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝛼, 𝛽 ∈ ℝ with 𝛼 < 𝛽, and we define ‖𝑝‖[𝛼,𝛽] ≔
max{|𝑝(𝑥)| ∶ 𝑥 ∈ [𝛼, 𝛽]}, then what is the smallest possible constant 𝑀2(𝛼, 𝛽) > 0 so that
|𝑝′(𝑥)| ≤ 𝑀2(𝛼, 𝛽)‖𝑝‖[𝛼,𝛽] for every 𝑥 ∈ [𝛼, 𝛽] and every quadratic polynomial 𝑝?

Considering an appropriate change of variable, namely 𝑥 → [𝛼 + 𝛽 + (𝛽 − 𝛼)𝑥]/2, it can be seen that
𝑀2(𝛼, 𝛽) = 2/(𝛽 − 𝛼)𝑀2(−1, 1) and, hence, we can restrict ourselves to (quadratic) polynomials on the
standard interval [−1, 1]. Mendeleev gave his own solution to the problem proving that 𝑀2(−1, 1) = 4.
Mendeleev’s result was generalised by A. A. Markov in 1889 for polynomials of arbitrary degree [26]. What
A. A. Markov proved was that

( 7 ) ‖𝑃′‖[−1,1] ≤ 𝑛2‖𝑃‖[−1,1],

with equality for the 𝑛-th Chebyshev polynomial of the first kind, defined, for 𝑥 ∈ [−1, 1], by 𝑇𝑛(𝑥) =
cos(𝑛 arccos 𝑥). V. A. Markov [27] (brother of A. A. Markov) provided in 1892 a sharp estimate on the norm
of the 𝑘-th derivative of a polynomial of arbitrary degree. A. A. Markov’s inequality (7) can be improved in
the inner points of [−1, 1]. Let 𝑀𝑛(𝑥) be the optimal constant in

|𝑃′(𝑥)| ≤ 𝑀‖𝑃‖[−1,1], for all 𝑃 ∈ 𝒫𝑛(ℝ).

According to a classical result due to Bernstein [6], we have 𝑀𝑛(𝑥) ≤
𝑛

√1−𝑥2
in (−1, 1). Both the uniform

Markov type estimates on the norm of the derivative and the pointwise estimates due to Bernstein have
been generalised in many different ways in the last century. One of the most popular generalisations is
due to Harris in 2010 [19]. He proved that the old A. A. Markov constant 𝑛2 is valid for polynomials on
any real Banach space, that is, if 𝑃 is a polynomial of arbitrary degree 𝑛 on a real Banach space 𝐸, then
‖𝐷𝑃(𝑥)‖ ≤ 𝑛2‖𝑃‖. Obviously, the constant 𝑛2 is optimal in the general case too. Many Bernstein and
Markov type estimates can be obtained by applying the Krein-Milman approach. We present here a worked
out example where the Markov and Bernstein optimal estimates are obtained for the space of trinomials
𝒫𝑚,𝑛 = {𝑎𝑥𝑚 + 𝑏𝑥𝑛 + 𝑐} endowed with the norm

‖𝑎𝑥𝑚 + 𝑏𝑥𝑛 + 𝑐‖𝑚,𝑛 = sup{|𝑎𝑥𝑚 + 𝑏𝑥𝑛 + 𝑐| ∶ 𝑥 ∈ [−1, 1]}.

Observe that the polynomial 𝑎𝑥𝑚 + 𝑏𝑥𝑛 + 𝑐 in 𝒫𝑚,𝑛 can be identified with (𝑎, 𝑏, 𝑐) in ℝ3. The geometry of
the space 𝒫𝑚,𝑛 was studied by Muñoz-Fernández and Seoane-Sepúlveda [33], and the optimal value of
the Markov constant 𝑀𝑚,𝑛 and the Bernstein function 𝑀𝑚,𝑛(𝑥) where calculated by Muñoz-Fernández,
Sarantopoulos, and Seoane-Sepúlveda [32] when 𝑚 is odd and 𝑛 is even. We reproduce here the complete
reasoning, based on the Krein-Milman approach and the following characterisation of the extreme points
of B 𝑚,𝑛 (unit ball of 𝒫𝑚,𝑛) when 𝑚 is odd and 𝑛 is even.

T h e o r e m 2 3 . If 𝑚, 𝑛 ∈ ℕ are such that 𝑚 is odd, 𝑛 is even and 𝑚 > 𝑛, the extreme points of the unit ball
of (ℝ3, ‖ ⋅ ‖𝑚,𝑛) are

{±(0, 2,−1),±(1, 1,−1),±(1,−1, 1),±(0, 0, 1)} .

T h e o r e m 2 4 . Let 𝑚, 𝑛 ∈ ℕ be such that 𝑚 is odd, 𝑛 is even and 𝑚 > 𝑛. Then,

( 8 ) 𝑀𝑚,𝑛(𝑥) = {
2𝑛|𝑥|𝑛−1 if 0 ≤ |𝑥| ≤ ( 𝑛𝑚 )

1
𝑚−𝑛 ,

𝑚𝑥𝑚−1 + 𝑛|𝑥|𝑛−1 if ( 𝑛𝑚 )
1

𝑚−𝑛 ≤ |𝑥| ≤ 1.

P r o o f . If 𝑥 ∈ [−1, 1], by definition we have that

𝑀𝑚,𝑛(𝑥) = sup
𝑝∈B 𝑚,𝑛

|𝑝′(𝑥)|.
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It suffices to work just with the extreme polynomials of 𝑀𝑚,𝑛, which are given in theorem 23. Notice that
the contribution of ±1 to 𝑀𝑚,𝑛(𝑥) is irrelevant. Hence, it suffices to consider the polynomials

𝑝1(𝑥) = ±(2𝑥𝑛 − 1), 𝑝2(𝑥) = ±(𝑥𝑚 + 𝑥𝑛 − 1) and 𝑝3(𝑥) = ±(𝑥𝑚 − 𝑥𝑛 + 1).

Therefore,

𝑀𝑚,𝑛(𝑥) = max{|𝑝′1(𝑥)|, |𝑝′2(𝑥)|, |𝑝′3(𝑥)|}
= max{2𝑛|𝑥|𝑛−1, |𝑚𝑥𝑚−1 + 𝑛𝑥𝑛−1|, |𝑚𝑥𝑚−1 − 𝑛𝑥𝑛−1|}
= max{2𝑛|𝑥|𝑛−1,𝑚𝑥𝑚−1 + 𝑛|𝑥|𝑛−1}
= |𝑥|𝑛−1max{2𝑛,𝑚|𝑥|𝑚−𝑛 + 𝑛},

and since 2𝑛 ≤ 𝑚|𝑥|𝑚−𝑛 + 𝑛 and ( 𝑛𝑚 )
1

𝑚−𝑛 ≤ |𝑥| are equivalent, the result follows immediately. ▪

C o r o l l a r y 2 5 . If 𝑚, 𝑛 ∈ ℕ are such that 𝑚 is odd, 𝑛 is even and 𝑚 > 𝑛, then

𝑀𝑚,𝑛 = 𝑀𝑚,𝑛(±1) = 𝑚 + 𝑛,

and equality is attained for the polynomials 𝑝(𝑥) = ±(𝑥𝑚 + 𝑥𝑛 − 1) and 𝑝(𝑥) = ±(𝑥𝑚 − 𝑥𝑛 + 1).
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