On circles enclosing many points

Mercè Claverol
Universitat Politècnica de Catalunya
merce.claverol@upc.edu

Clemens Huemer
Universitat Politècnica de Catalunya
clemens.huemer@upc.edu

Abstract

We prove that in every set of n red and n blue points in the plane there are a red and a blue point such that every circle having them in its boundary encloses at least $n(1-1 / \sqrt{2})-o(n)$ other points of the set. This is a bichromatic version of a problem introduced by Neumann-Lara and Urrutia. In addition, we show that every set S of n points contains two points such that every circle passing through them encloses at most $\left\lfloor\frac{2 n-1}{3}\right\rfloor$ other points of S. The results are proved using properties of order- k Voronoi diagrams, in the spirit of the work of Edelsbrunner, Hasan, Seidel and Shen on this problem.

Resumen: Demostramos que en cualquier conjunto de n puntos rojos y n puntos azules en el plano existen un punto rojo y un punto azul tales que cualquier circunferencia que pase por ellos contiene en su interior al menos $n(1-1 / \sqrt{2})-o(n)$ puntos del conjunto. Esta es una versión bicromática de un problema propuesto por Neumann-Lara y Urrutia. También probamos que todo conjunto S de n puntos en el plano contiene dos puntos tales que cualquier circunferencia que pase por ellos contiene como mucho $\left\lfloor\frac{2 n-1}{3}\right\rfloor$ otros puntos de S. Las demostraciones usan propiedades de los diagramas de Voronoi de orden k, al estilo del trabajo de Edelsbrunner, Hasan, Seidel y Shen en este problema.

Keywords: point set, circle containment, Voronoi diagram.
MSC2O1O: 52C99.

Acknowledgements: Mercè Claverol was supported by projects MTM2015-63791-R, PID2019-104129GB-I00, and Gen. Cat. DGR 2017SGR1640. Clemens Huemer was supported by projects MTM2015-63791-R, PID2019-104129GB-I00, and Gen. Cat. DGR 2017SGR1336. Alejandra Martínez-Moraian was funded by the predoctoral contract PRE2018-085668 of the Spanish Ministry of Science, Innovation and Universities, associated to the MINECO Project TIN2016-80622-P, and is suported by project PID2019-104129GB-I00.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

Reference: Claverol, Mercè; Huemer, Clemens, and Martínez-Moraian, Alejandra. "On circles enclosing many points". In: TEMat monográficos, 2 (2021): Proceedings of the 3rd BYMAT Conference, pp. 103-105. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/view/vol2-p103.
(()(1) This work is distributed under a Creative Commons Attribution 4.0 International licence https://creativecommons.org/licenses/by/4.0/

1. Introduction

Let $\ell(n)$ be the largest number such that every set S of n points in general position in the plane has the following property: There exist $p, q \in S$ such that every circle passing through p and q contains at least $\ell(n)$ other points of S. Neumann-Lara and Urrutia [7] introduced this problem and obtained the bound $\ell(n) \geq\left\lceil\frac{n-2}{60}\right\rceil$. This bound was not tight and hence it was improved in a series of papers [$1,4,5$]. The best known bound up-to-date was obtained by Edelsbrunner et al. [3], who proved that $\ell(n) \geq n\left(\frac{1}{2}-\frac{1}{\sqrt{12}}\right)+O(1) \approx \frac{n}{4.7}$. Later, Ramos and Viaña [9] obtained an independent proof of this lower bound and further proved the following result:

Theorem 1 ([9]). Every set S of n points in general position in the plane contains two points such that each circle passing through them encloses at least k and at most $n-k-2$ points of S, for $k=\left(\frac{1}{2}-\frac{1}{\sqrt{12}}\right) n-o(n)$.
We present an alternative proof of Theorem 1 making use of properties of order- k Voronoi diagrams. The techniques that we use in our proof allow us to obtain two new results: An upper bound condition, Theorem 2, and a bichromatic result, Theorem 3, stated below. The chromatic problem was introduced by Prodromou [8] with d dimensions and $\left\lfloor\frac{d+3}{2}\right\rfloor$ colors. In the particular case $d=2$, it is proved that every set of n red points and m blue points contains a red point and a blue point such that every circle passing through them encloses $\frac{n+m}{36}$ other points of the set. Our result improves this bound.
This is an extended abstract of manuscript [2].

2. Circles and Voronoi diagrams

An order- k Voronoi diagram of a point set S is a subdivision of the plane into regions such that all the points in the same region have the same k closest points of S. The borders between regions are segments of the perpendicular bisectors between pairs of points in S. This is a key concept in our proof of Theorem 1 because the segments of the order- k Voronoi diagram of S are precisely the centers of the circles through two points of S that enclose exactly $k-1$ other points of S [6]. We say that a segment of the perpendicular bisector $b_{p q}$ of p and q has weight k if all the circles through p and q with center in such segment enclose k other points of S. Thus, the segments of the order- k Voronoi diagram have weight $k-1$, see Figure 1.

3. New results

Following the ideas in the previous section, we study an upper bound version of the circle containment problem. Let $u(n)$ be the smallest number such that every set S of n points in general position in the plane has the following property: There exist $p, q \in S$ such that every circle passing through p and q contains at most $u(n)$ other points of S. In Theorem 2 we prove that $u(n) \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$.

Theorem 2. Let S be a set of $n \geq 3$ points in general position in the plane. Then, S contains two points such that every circle passing through them encloses at most $\left\lfloor\frac{2 n-1}{3}\right\rfloor$ points of S.
Adapting the proof of Theorem 1 to only consider circles passing through a red point and a blue point, we obtain the following result.

Theorem 3. Every set S of n red points and $m=\lfloor c n\rfloor$, for $c \in(0,1]$, blue points in general position in the plane contains a red point p and a blue point q such that any circle passing through them encloses at least $\frac{n+m-\sqrt{n^{2}+m^{2}}}{2}-o(n+m)$ points of S.

For $n=m$, Theorem 3 gives the bound $n\left(1-\frac{1}{\sqrt{2}}\right)-o(n) \approx \frac{n}{3.4}$.

Figure 1: Relation between the order- k Voronoi diagram and the circle containment problem. (a) The segments of weight 2 are edges of the order-3 Voronoi diagram; (b) The segments of weight 3 are edges of the order-4 Voronoi diagram.

References

[1] Bárány, I.; Schmerl, H.; Sidney, S.J., and Urrutia, J. "A combinatorial result about points and balls in Euclidean space". In: Discrete Comput. Geom. 4 (1989), pp. 259-262.
[2] Claverol, M.; Huemer, C., and Martínez-Moraian, A. "On circles enclosing many points". In: arXiv e-prints (2019). arXiv: 1907.06601 [cs.CG].
[3] Edelsbrunner, H.; Hasan, N.; Seidel, R., and Shen, X.J. "Circles through two points that always enclose many points". In: Geom. Dedicata 32 (1989), pp. 1-12.
[4] Hayward, R. "A note on the circle containment problem". In: Discrete Comput. Geom. 4 (1989), pp. 263264.
[5] Hayward, R.; Rappaport, D., and Wenger, R. "Some extremal results on circles containing points". In: Discrete Comput. Geom. 4 (1989), pp. 253-258.
[6] Lee, D.T. "On k-nearest neighbor Voronoi diagrams in the plane". In: IEEE Trans. Comput. 31 (1982), pp. 478-487.
[7] Neumann-Lara, V. and Urrutia, J. "A combinatorial result on points and circles on the plane". In: Discrete Math. 69 (1988), pp. 173-178.
[8] Prodromou, M.N. "A combinatorial property of points and balls, a colored version". In: Discrete Comput. Geom. 38 (2007), pp. 641-650.
[9] Ramos, P.A. and Viaña, R. "Depth of segments and circles through points enclosing many points: a note". In: Comput. Geom. Theory Appl. 42 (2009), pp. 338-341.

