# On circles enclosing many points

Mercè Claverol Universitat Politècnica de Catalunya merce.claverol@upc.edu

Clemens Huemer Universitat Politècnica de Catalunya clemens.huemer@upc.edu

Alejandra Martínez-Moraian Universidad de Alcalá alejandra.martinezm@uah.es **Abstract:** We prove that in every set of *n* red and *n* blue points in the plane there are a red and a blue point such that every circle having them in its boundary encloses at least  $n(1 - 1/\sqrt{2}) - o(n)$  other points of the set. This is a bichromatic version of a problem introduced by Neumann-Lara and Urrutia. In addition, we show that every set *S* of *n* points contains two points such that every circle passing through them encloses at most  $\lfloor \frac{2n-1}{3} \rfloor$  other points of *S*. The results are proved using properties of order-*k* Voronoi diagrams, in the spirit of the work of Edelsbrunner, Hasan, Seidel and Shen on this problem.

**Resumen:** Demostramos que en cualquier conjunto de *n* puntos rojos y *n* puntos azules en el plano existen un punto rojo y un punto azul tales que cualquier circunferencia que pase por ellos contiene en su interior al menos  $n(1 - 1/\sqrt{2}) - o(n)$  puntos del conjunto. Esta es una versión bicromática de un problema propuesto por Neumann-Lara y Urrutia. También probamos que todo conjunto *S* de *n* puntos en el plano contiene dos puntos tales que cualquier circunferencia que pase por ellos contiene como mucho  $\lfloor \frac{2n-1}{3} \rfloor$  otros puntos de *S*. Las demostraciones usan propiedades de los diagramas de Voronoi de orden *k*, al estilo del trabajo de Edelsbrunner, Hasan, Seidel y Shen en este problema.

Keywords: point set, circle containment, Voronoi diagram. MSC2010: 52C99.

Acknowledgements: Mercè Claverol was supported by projects MTM2015-63791-R, PID2019-104129GB-I00, and Gen. Cat. DGR 2017SGR1640. Clemens Huemer was supported by projects MTM2015-63791-R, PID2019-104129GB-I00, and Gen. Cat. DGR 2017SGR1336. Alejandra Martínez-Moraian was funded by the predoctoral contract PRE2018-085668 of the Spanish Ministry of Science, Innovation and Universities, associated to the MINECO Project TIN2016-80622-P, and is suported by project PID2019-104129GB-I00.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

**Reference:** CLAVEROL, Mercè; HUEMER, Clemens, and MARTÍNEZ-MORAIAN, Alejandra. "On circles enclosing many points". In: *TEMat monográficos*, 2 (2021): *Proceedings of the 3rd BYMAT Conference*, pp. 103-105. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/view/vol2-p103.

☺ ① This work is distributed under a Creative Commons Attribution 4.0 International licence https://creativecommons.org/licenses/by/4.0/

## 1. Introduction

Let  $\ell(n)$  be the largest number such that every set *S* of *n* points in general position in the plane has the following property: There exist  $p, q \in S$  such that every circle passing through *p* and *q* contains at least  $\ell(n)$  other points of *S*. Neumann-Lara and Urrutia [7] introduced this problem and obtained the bound  $\ell(n) \ge \lceil \frac{n-2}{60} \rceil$ . This bound was not tight and hence it was improved in a series of papers [1, 4, 5]. The best known bound up-to-date was obtained by Edelsbrunner *et al.* [3], who proved that  $\ell(n) \ge n(\frac{1}{2} - \frac{1}{\sqrt{12}}) + O(1) \approx \frac{n}{4.7}$ . Later, Ramos and Viaña [9] obtained an independent proof of this lower bound and further proved the following result:

**Theorem 1**([9]). Every set *S* of *n* points in general position in the plane contains two points such that each circle passing through them encloses at least *k* and at most n - k - 2 points of *S*, for  $k = (\frac{1}{2} - \frac{1}{\sqrt{12}})n - o(n)$ .

We present an alternative proof of Theorem 1 making use of properties of order-*k* Voronoi diagrams. The techniques that we use in our proof allow us to obtain two new results: An upper bound condition, Theorem 2, and a bichromatic result, Theorem 3, stated below. The chromatic problem was introduced by Prodromou [8] with *d* dimensions and  $\lfloor \frac{d+3}{2} \rfloor$  colors. In the particular case d = 2, it is proved that every set of *n* red points and *m* blue points contains a red point and a blue point such that every circle passing through them encloses  $\frac{n+m}{36}$  other points of the set. Our result improves this bound.

This is an extended abstract of manuscript [2].

## 2. Circles and Voronoi diagrams

An order-*k* Voronoi diagram of a point set *S* is a subdivision of the plane into regions such that all the points in the same region have the same *k* closest points of *S*. The borders between regions are segments of the perpendicular bisectors between pairs of points in *S*. This is a key concept in our proof of Theorem 1 because the segments of the order-*k* Voronoi diagram of *S* are precisely the centers of the circles through two points of *S* that enclose exactly k - 1 other points of *S* [6]. We say that a segment of the perpendicular bisector  $b_{pq}$  of *p* and *q* has weight *k* if all the circles through *p* and *q* with center in such segment enclose *k* other points of *S*. Thus, the segments of the order-*k* Voronoi diagram have weight k - 1, see Figure 1.

#### 3. New results

Following the ideas in the previous section, we study an upper bound version of the circle containment problem. Let u(n) be the smallest number such that every set *S* of *n* points in general position in the plane has the following property: There exist  $p, q \in S$  such that every circle passing through *p* and *q* contains at most u(n) other points of *S*. In Theorem 2 we prove that  $u(n) \leq \lfloor \frac{2n-1}{2} \rfloor$ .

**Theorem 2.** Let *S* be a set of  $n \ge 3$  points in general position in the plane. Then, *S* contains two points such that every circle passing through them encloses at most  $\lfloor \frac{2n-1}{3} \rfloor$  points of *S*.

Adapting the proof of Theorem 1 to only consider circles passing through a red point and a blue point, we obtain the following result.

**Theorem 3.** Every set *S* of *n* red points and  $m = \lfloor cn \rfloor$ , for  $c \in (0, 1]$ , blue points in general position in the plane contains a red point *p* and a blue point *q* such that any circle passing through them encloses at least  $\frac{n+m-\sqrt{n^2+m^2}}{2} - o(n+m)$  points of *S*.

For n = m, Theorem 3 gives the bound  $n(1 - \frac{1}{\sqrt{2}}) - o(n) \approx \frac{n}{3.4}$ .



**Figure 1**: Relation between the order-*k* Voronoi diagram and the circle containment problem. (a) The segments of weight 2 are edges of the order-3 Voronoi diagram; (b) The segments of weight 3 are edges of the order-4 Voronoi diagram.

#### References

- [1] BÁRÁNY, I.; SCHMERL, H.; SIDNEY, S.J., and URRUTIA, J. "A combinatorial result about points and balls in Euclidean space". In: *Discrete Comput. Geom.* 4 (1989), pp. 259–262.
- [2] CLAVEROL, M.; HUEMER, C., and MARTÍNEZ-MORAIAN, A. "On circles enclosing many points". In: *arXiv e-prints* (2019). arXiv: 1907.06601 [cs.CG].
- [3] EDELSBRUNNER, H.; HASAN, N.; SEIDEL, R., and SHEN, X.J. "Circles through two points that always enclose many points". In: *Geom. Dedicata* 32 (1989), pp. 1–12.
- [4] HAYWARD, R. "A note on the circle containment problem". In: *Discrete Comput. Geom.* 4 (1989), pp. 263–264.
- [5] HAYWARD, R.; RAPPAPORT, D., and WENGER, R. "Some extremal results on circles containing points". In: *Discrete Comput. Geom.* 4 (1989), pp. 253–258.
- [6] LEE, D.T. "On k-nearest neighbor Voronoi diagrams in the plane". In: *IEEE Trans. Comput.* 31 (1982), pp. 478–487.
- [7] NEUMANN-LARA, V. and URRUTIA, J. "A combinatorial result on points and circles on the plane". In: *Discrete Math.* 69 (1988), pp. 173–178.
- [8] PRODROMOU, M.N. "A combinatorial property of points and balls, a colored version". In: *Discrete Comput. Geom.* 38 (2007), pp. 641–650.
- [9] RAMOS, P.A. and VIAÑA, R. "Depth of segments and circles through points enclosing many points: a note". In: *Comput. Geom. Theory Appl.* 42 (2009), pp. 338–341.