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A b s t r a c t : The isoperimetric inequality is one of the oldest and most outstanding
results in mathematics, and can be summarized by saying that the Euclidean balls
minimize the surface areameasure S(⋅) (Minkowski content) among those compact
convex sets with prescribed positive volume vol(⋅) (Lebesgue measure). It admits
the following “neighbourhood form”: for any compact convex set 𝐾 ⊂ ℝ𝑛, and all
𝑡 ≥ 0,

( 1 ) vol(𝐾 + 𝑡𝐵𝑛) ≥ vol(𝑟𝐵𝑛 + 𝑡𝐵𝑛),

where 𝑟 > 0 is such that vol(𝑟𝐵𝑛) = vol(𝐾) and 𝐵𝑛 denotes the (closed) Euclidean
unit ball.

In this talk we discuss and show a discrete analogue of the isoperimetric inequality
in its form (1) for the lattice point enumerator G𝑛(𝐾) = #(𝐾 ∩ ℤ𝑛) of a bounded
subset 𝐾 ⊂ ℝ𝑛: we determine sets minimizing the functional G𝑛(𝐾 + 𝑡[−1, 1]𝑛),
for any 𝑡 ≥ 0, among those bounded sets 𝐾 with given positive lattice point
enumerator. We also show that this new discrete inequality implies the classical
result for compact sets. The results of this talk will appear in [5].

R e s u m e n : La desigualdad isoperimétrica es uno de los resultados más antiguos
de las matemáticas, y puede ser sintetizada en el hecho de que las bolas euclídeas
minimizan la medida de área de superficie S(⋅) (contenido de Minkowski) entre
todos los conjuntos compactos y convexos con volumen positivo prescrito vol(⋅)
(medida de Lebesgue). Admite la siguiente “versión local”: para todo conjunto
compacto y convexo 𝐾 ⊂ ℝ𝑛, y todo 𝑡 ≥ 0,

( 2 ) vol(𝐾 + 𝑡𝐵𝑛) ≥ vol(𝑟𝐵𝑛 + 𝑡𝐵𝑛),

donde 𝑟 > 0 es tal que vol(𝑟𝐵𝑛) = vol(𝐾) y 𝐵𝑛 denota la bola unidad euclídea
(cerrada).

En esta charla discutimos y probamos un análogo discreto de la desigualdad isoperi-
métrica en su forma (2) para el enumerador de puntos de retículoG𝑛(𝐾) = #(𝐾∩ℤ𝑛)
de un conjunto acotado 𝐾 ⊂ ℝ𝑛: determinamos los conjuntos que minimizan
el funcional G𝑛(𝐾 + 𝑡[−1, 1]𝑛) para cualquier 𝑡 ≥ 0, entre todos los conjuntos
acotados 𝐾 con un enumerador de puntos de retículo positivo dado. También mos-
tramos que esta nueva desigualdad discreta implica el correspondiente resultado
clásico para conjuntos compactos. Los resultados de esta charla aparecerán en [5].
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On discrete isoperimetric type inequalities

1 . I n t r o d u c t i o n

The classical isoperimetric inequality in its form for convex bodies (compact and convex sets) in ℝ𝑛 states
that the volume vol(⋅) (Lebesgue measure) and surface area S(⋅) (Minkowski content) of any 𝑛-dimensional
convex body 𝐾 satisfy

( 3 ) (
S(𝐾)
S(𝐵𝑛)

)
𝑛
≥ (

vol(𝐾)
vol(𝐵𝑛)

)
𝑛−1

,

where 𝐵𝑛 denotes the Euclidean (closed) unit ball. In other words, Euclidean balls minimize the surface
area among those convex bodies with prescribed positive volume.

There exist various facets of the isoperimetric inequality, due to its different versions and extensions.
Among other analogues of it we emphasize its equivalent analytic version, the Sobolev inequality (see
e.g. [4, Section 5]), and its form formixed volumes, the so-calledMinkowski first inequality (see e.g. [10,
Theorem 7.2.1]). Diskant’s inequality, which can be regarded as an improvement of the latter, and the
Bonnesen-type inequalities in the plane also deserve special attention (see e.g. [10, Section 7.2] and the
references therein). The isoperimetric inequality also has various ramifications into other settings, such
as its versions in the spherical and hyperbolic spaces (see e.g. [2]); it has been the starting point for new
engaging related results, such as a reverse isoperimetric inequality (see [1]), and it has led to various
remarkable consequences not only in geometry but also in analysis (see e.g. [3]). For an extensive survey
article on this inequality we refer the reader to [7].

Let us denote by + the Minkowski sum of sets, i.e., 𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for any non-empty sets
𝐴,𝐵 ⊂ ℝ𝑛. Also denote by 𝑟𝐴 the set {𝑟𝑎 ∶ 𝑎 ∈ 𝐴}, for any 𝑟 ≥ 0. The isoperimetric inequality (3) admits
the following “neighbourhood form” (see e.g. [6, Proposition 14.2.1]): for any 𝑛-dimensional convex body
𝐾 ⊂ ℝ𝑛, and all 𝑡 ≥ 0, we have

( 4 ) vol(𝐾 + 𝑡𝐵𝑛) ≥ vol(𝑟𝐵𝑛 + 𝑡𝐵𝑛),

where 𝑟𝐵𝑛, 𝑟 > 0, is a ball of the same volume as 𝐾. In fact, by subtracting vol(𝐾) = vol(𝑟𝐵𝑛) and dividing
by 𝑡 in both sides of (4), and taking limits as 𝑡 → 0+, one immediately gets (3) from (4).

The neighbourhood 𝐾 + 𝑡𝐵𝑛, 𝑡 ≥ 0, of the 𝑛-dimensional convex body 𝐾 coincides with the set of all points
ofℝ𝑛 having (Euclidean) distance from 𝐾 at most 𝑡. Exchanging the role of the unit ball 𝐵𝑛 in (4) by another
(𝑛-dimensional) convex body 𝐸 ⊂ ℝ𝑛, i.e., changing the involved “distance”, one is naturally led to the fact

( 5 ) vol(𝐾 + 𝑡𝐸) ≥ vol(𝑟𝐸 + 𝑡𝐸)

for all 𝑡 ≥ 0, where again 𝑟 > 0 is such that 𝑟𝐸 has the same volume as 𝐾. Thus, the advantage of using the
volume of a neighbourhood of 𝐾, instead of its surface area, is that it can be extended to other spaces in
which the latter notion makes no sense; it just suffices to consider a metric and a measure on the given
space. Relevant examples of spaces in which isoperimetric inequalities in this form hold are the unit
sphere, the Gauss space or the 𝑛-dimensional discrete cube {0, 1}𝑛 (see e.g. [6, Section 14.2]).

2 . M a i n r e s u l t s

Let us start by defining a family of sets which will be shown to be optimal under the hypothesis of the
discrete isoperimetric inequality. Given a vector 𝑢 = (𝑢1… , 𝑢𝑛) ∈ ℤ𝑛 and fixing 𝑖ᵆ ∈ {1,… , 𝑛}, we will
write

𝑢′ = (𝑢1… , 𝑢𝑖𝑢−1, 𝑢𝑖𝑢+1,… , 𝑢𝑛) ∈ ℤ𝑛−1.

With this notation, in [8] the following well-order ≺ in ℤ𝑛 is defined:

D e f i n i t i o n 1 . If 𝑛 = 1 we define the order ≺ given by

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ ⋯ ≺ 𝑚 ≺ −𝑚 ≺ …
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For 𝑛 ≥ 2 we set, for 𝑤 = (𝑤1,… ,𝑤𝑛) ∈ ℤ𝑛,

𝑀(𝑤) = max
≺

{𝑤𝑖 ∶ 𝑖 = 1,… , 𝑛} and 𝑖𝑤 = min{𝑖 ∶ 𝑤𝑖 = 𝑀(𝑤)},

and we define ≺ recursively as follows: for any 𝑢, 𝑣 ∈ ℤ𝑛 with 𝑢 ≠ 𝑣,

( i ) if𝑀(𝑢) ≺ 𝑀(𝑣), then 𝑢 ≺ 𝑣;
( i i ) if𝑀(𝑢) = 𝑀(𝑣), then 𝑢 ≺ 𝑣 if either 𝑖𝑣 < 𝑖ᵆ or (𝑖𝑣 = 𝑖ᵆ and) 𝑢′ ≺ 𝑣′.

Moreover, we write 𝑢 ⪯ 𝑣 if either 𝑢 ≺ 𝑣 or 𝑢 = 𝑣. ◀

This order will allow us to define the extended lattice cube ℐ𝑟 of 𝑟 points as the initial segment in ℤ𝑛

with respect to ≺. To define the sets 𝒞𝑟, which will be referred to as extended cubes, first we need the
following definition, which can be seen as a particular case of the family of weakly unconditional sets, first
introduced in [9] (we refer the reader to this work for further properties and relations of them with certain
Brunn-Minkowski type inequalities): for any non-empty finite set 𝐴 ⊂ ℝ𝑛, we write

𝒞𝐴 = {(𝜆1𝑥1,… , 𝜆𝑛𝑥𝑛) ∈ ℝ𝑛 ∶ (𝑥1,… , 𝑥𝑛) ∈ 𝐴, 𝜆𝑖 ∈ [0, 1] for 𝑖 = 1,… , 𝑛}.

(see Figure 1).

F i g u r e 1 : Sets 𝒞𝐴 ⊂ ℝ2 for different finite sets 𝐴 ⊂ ℤ2.

D e f i n i t i o n 2 . Let 𝑟 ∈ ℕ. By ℐ𝑟 we denote the initial segment in (ℤ𝑛,≺) of length 𝑟, i.e., the set of the first 𝑟
points with respect to the order ≺ in ℤ𝑛 (see Figure 2, left). Moreover, by 𝒞𝑟 we denote the set given by
𝒞𝑟 ≔ 𝒞ℐ𝑟 (see Figure 2, right). ◀
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F i g u r e 2 : The extended lattice cube ℐ23 in ℤ2 (left) and the corresponding extended cube 𝒞23 in ℝ2 (right).
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We note that if 𝑟 = 𝑚𝑛 for some 𝑚 ∈ ℕ then ℐ𝑟 is indeed a lattice cube. More precisely, ℐ𝑟 = {−𝑚/2 +
1,−𝑚/2+ 2,… ,𝑚/2− 1,𝑚/2}𝑛 if𝑚 is even and ℐ𝑟 = {−(𝑚− 1)/2,−(𝑚− 1)/2+ 1,… , (𝑚− 1)/2, (𝑚− 1)/2}𝑛

if𝑚 is odd (cf. Figure 2, left). This further implies that 𝒞𝑟 is a cube whenever 𝑟 = 𝑚𝑛 for some 𝑚 ∈ ℕ.

We are now ready to present the two main results. First, we obtain a discrete analogue of the classical
isoperimetric inequality.

T h e o r e m 3 . Let 𝐾 ⊂ ℝ𝑛 be a bounded set with G𝑛(𝐾) > 0 and let 𝑟 ∈ ℕ be such that G𝑛(𝒞𝑟) = G𝑛(𝐾).
Then,

( 6 ) G𝑛(𝐾 + 𝑡[−1, 1]𝑛) ≥ G𝑛(𝒞𝑟 + 𝑡[−1, 1]𝑛)

for all 𝑡 ≥ 0.

And finally, we show that this result is, in a sense, stronger than the classical one.

T h e o r e m 4 . The discrete isoperimetric inequality (6) implies the classical isoperimetric inequality (5),
with 𝐸 = [−1, 1]𝑛, for non-empty compact sets.
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