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A b s t r a c t : Yano’s extrapolation theory provides a tool to obtain estimates on 𝐿1
spaces starting from information on estimates for 𝐿𝑝 spaces for every 1 < 𝑝 < 𝑝0, for
some 𝑝0 > 1. This document provides an introduction to this theory by sketching
the proof of Yano’s extrapolation theorem [3]. The main tool developed in the proof
of this theorem is the technique known as layer cake, which is nowadays used in
many other proofs in Fourier analysis.

R e s u m e n : La teoría de extrapolación de Yano da una herramienta para obtener
estimaciones en espacios 𝐿1 partiendo de información sobre estimaciones para
espacios 𝐿𝑝 para todo 1 < 𝑝 < 𝑝0, para algún 𝑝0 > 1. Este documento da una
introducción a esta teoría esbozando la demostración del teorema de extrapo-
lación de Yano [3]. La herramienta principal desarrollada en la prueba de este
teorema es la técnica conocida como layer cake, que se usa a día de hoy en muchas
demostraciones en análisis de Fourier.

K e y w o r d s : extrapolation theory, Yano’s theorem, endpoint estimates, layer cake
method.
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Yano’s extrapolation theorem

1 . I n t r o d u c t i o n

If you are familiar with functional analysis, or more specially with the theory of bounding operators, you
have probably heard about operator interpolation techniques, where we use operator bounding at the
“ends” of a family of spaces, to get bounds on the rest of the spaces of the family.

However, when it comes to extrapolation techniques, the intention is precisely the opposite. That is, use
what we know about the bounds of a certain operator in the “interior” of a family of spaces to obtain
bounds of this operator at the endpoints of the family. Beyond concrete points, what characterizes this
type of theorems is the use of a specific type of techniques. In this sense, two great schools stand out:
Yano’s and Rubio de Francia’s.

In these pages, we intend to present in a simple way the extrapolation technique of Yano, by explaining
the theorem that he published in 1951 [3]. The various applications of this method to the study of the
bounding of several operators is a unique knowledge paradigm in the field of Fourier analysis.

2 . C o n t e x t u a l i z a t i o n o f t h e p r o b l e m

D e f i n i t i o n 1 (𝐿 log 𝐿 space). For a measurable function 𝑓 defined in (𝑎, 𝑏), we will say that 𝑓 ∈ 𝐿∗𝑘 [𝑎, 𝑏] if

∫
𝑏

𝑎
|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) d𝑥, 𝑘 > 0. ◀

Note that this is not a norm, even though it allows us to characterize the functions in that space.

D e f i n i t i o n 2 . As usual, for two normed spaces (𝑋, ‖⋅‖𝑋) and (𝑌, ‖⋅‖𝑌), for an operator

𝑇∶ 𝑋 → 𝑌,

we are going to define the norm of 𝑇 as

‖𝑇‖ = sup
‖𝑓‖𝑋≤1

‖𝑇𝑓‖𝑌
‖𝑓‖𝑋

. ◀

In Fourier analysis, we are often concerned with operators 𝑇 which transform a measurable function 𝑓
defined in [0, 2π] into another measurable function also defined in [0, 2π] such that

( i ) for every 𝑝 > 1 we have
‖𝑇‖𝐿𝑝 ≤ 𝐴𝑝,

( i i ) for every 𝑓 ∈ 𝐿∗𝑘[0, 2π] we have

‖𝑇𝑓‖𝐿1[0,2π] ≤ 𝐴𝑘∫
2π

0
|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) d𝑥 + 𝐵𝑘,

where 𝐴𝑝,𝐴𝑘 and 𝐵𝑘 are constants depending only on 𝑝, 𝑘 and 𝑘, respectively.

Usually, given an operator 𝑇, it is checked that 𝑇 satisfies each one of the above conditions separately. But,
what if we could deduce that 𝑇 satisfied the last condition based on 𝑇 satisfying the first one? This is what
Yano’s theorem allows us to do.

T h e o r e m 3 . Let 𝑇 be a sublinear operator which transforms every integrable function to a measurable
function, both being defined in a finite interval (𝑎, 𝑏) such that

( i ) |𝑇𝑓| = |𝑇(−𝑓)|,
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( i i ) the inequality
‖𝑇‖𝐿𝑝[𝑎,𝑏] ≤

𝐴
(𝑝 − 1)𝑘

,

holds for 1 < 𝑝 ≤ 2, for some 𝑘 > 0 and the constant 𝐴 depending only on the length of the interval
(𝑎, 𝑏).

Then, we have that for every 𝑓 ∈ 𝐿∗𝑘[𝑎, 𝑏]

‖𝑇𝑓‖𝐿1[𝑎,𝑏] ≤ 𝐴𝑘∫
2π

0
|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) d𝑥 + 𝐵𝑘,

where 𝐴𝑘 and 𝐵𝑘 are constants depending only on 𝑘 and the lenght of the interval 𝑏 − 𝑎.

For the proof, we only need to check the theorem in the case where 𝑓 ≥ 1 because for any other function,
we can decompose it into the difference of two functions greater than one and apply the condition (i) in
order to obtain the desired result. Indeed,

𝑓 = (𝑓𝜒𝑓≥0 + 1) − (1 − 𝑓𝜒𝑓<0) = 𝑔1 − 𝑔2,

where 𝑔1, 𝑔2 ≥ 1.

So, given an arbitrary function 𝑓 ≥ 1, we decompose it in the following way:

𝑓 = ∑
𝑛≥0

2𝑛𝑓𝑛, where 𝑓𝑛 = 2−𝑛𝑓𝜒{2𝑛≤𝑓<2𝑛+1}.

The sublinearity of the operator 𝑇 allow us to work with these special functions 𝑓𝑛 which have the particu-
larity that 1 ≤ 𝑓𝑛(𝑥) < 2 for every 𝑛 ≥ 0 and any 𝑥 ∈ [𝑎, 𝑏]. Moreover, the definition of these functions
makes it possible for us to return to the initial function 𝑓 if desired.

In fact, from the above decomposition and applying the Hölder inequality, it is easy to see that for any
sequence {𝑝𝑛} of exponents such that 1 < 𝑝𝑛 ≤ 2 it is satisfied that

‖𝑇𝑓‖𝐿1[𝑎,𝑏] ≤ 𝐶∑
𝑛
2𝑛‖𝑇𝑓𝑛‖𝐿𝑝𝑛[𝑎,𝑏] ≤ 𝐶∑

𝑛

2𝑛

(𝑝𝑛 − 1)𝑘
‖𝑓𝑛‖𝐿𝑝𝑛[𝑎,𝑏],

with the constant 𝐶 only depending on the length of the interval and on the constant 𝐴 which appears on
the second hypothesis of the theorem.

At this point, it only remains to choose the exponent 𝑝𝑛, not fixed yet, to conclude the desired theorem.
For instance, we choose

𝑝𝑛 = {
2 if 𝑛 = 0,

1 + 1
𝑛 if 𝑛 ≠ 0.

For the end of the theorem we only need to use Young’s inequality in the right way and the fact that

2𝑛𝑓𝑛(𝑥)𝑛𝑘 ≤ 𝐶|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) ,

for every 𝑥 ∈ [𝑎, 𝑏].

This way of treating a function, by decomposing it into simpler and control-bounded functions, is known as
the layer cake method. This technique has been used in many other proofs in order to obtain extrapolation
theorems, but also in other areas of Fourier analysis. See, for example [1] or the proof of Lemma 1.4.20 in
[2, page 56], where the partition made is a little bit different since it considers the sets

𝐴𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑓∗(2𝑛+1) < |𝑓(𝑥)| ≤ 𝑓∗(2𝑛)},

where 𝑓∗ denotes the rearrangement invariant of 𝑓.
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