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Best approximations and greedy algorithms

1. Introduction

Let L, be a space of functions f which are 27-periodic and summable to a power q, 1 < q < oo (resp.,
essentially bounded for g = ), on the segment [—7, t]. The norm in this space is defined as follows:

1 T 1/q
(—f |f(x)|qu> , 1<qg< o,
_ _J\2=n
Iz, = 1fllqg = -
esssup |f(x)], q = oo.
x€[—-n,m]

For a function f € L;, we consider its Fourier series
Z f(k)eikx,
kez

where f(k) = Zi f_’r7t f(x)e~** dx are the Fourier coefficients of the function f. In what follows, we always
7T
assume that the function f € L, satisfies the condition

f_nf(x)dx =0.

Further, let ¢ # 0 be an arbitrary function of natural argument and let 8 be an arbitrary fixed real number.
If a series .
Z f(k) ei(kx+[:’§ sign k)
iy VD

is the Fourier series of a summable function, then, following Stepanets [3], we can introduce the (3, 8)-

derivative of the function f and denote it by fgb . By Llé we denote the set of functions f satisfying this

condition. In what follows, we assume that the function f belongs to the class Lzé,p iffe Llé,p and

Rel=w:pelylel, <1}, 1<p<co.

If (k) = |k|™", r > 0, and k € Z \ {0}, then the (3, §)-derivative of the function f coincides with its
(r, B)-derivative (denoted by ]76’ ) in the Weyl-Nagy sense.

We give the definition of the greedy approximation under investigation. Let {f (k(D)}i2, be the Fourier
coefficients {f(k)}xez of the function f € L;, arranged in non-increasing order of their absolute value, i.e.,

|f (k@) > |f (k)] > ...
Denote for f € L,
m
Gu(f, x) = Y flk(l))elk®x
=1
and, if F C Lg is a certain function class, then we set

0] Gm(F)q = sup|f(-) = Gm(f, g-
feF

At present, there are many works devoted to the investigation of quantity (1) for important classes of
functions. For details and the corresponding references, see, e.g., [7].

By B we denote the set of functions ¥ satisfying the following conditions:

(i) 9 is positive and nonincreasing;

YO < creN.

(i) there exists a constant C > 0 such that e
T

Thus, the functions 1/7", r > 0; In” (t + 1)/7", y € R, r > 0, T € N, and some other functions belong to the
set B.

For the quantities A and B, the notation A < B means that there exist positive constants C; and C, such that
ClA<B<(GA.IfB<(C,A (B> C,A), then we can write B<< A (B> A).AllC;,i = 1,2, ..., encountered
in our paper may depend only on the parameters appearing in the definitions of the class and metric in
which we determine the error of approximation.
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2. Main results

The following assertion is true:

Theorem. Let1 < p<q<2,9 € B, € R and let, in addition, there exist € > 0 such that the sequence
1

1
———+ . . , ,
P()er 4 E, t € N, does not increase. Then, the following order estimate is true:

1 1
(L ) = Pmyme ™ 2.

Proof. The upper bounds follow from the estimate for the approximation of functions from the classes
¢ p by their Fourier sums [3]:

= d)(m)mp 2.

En(Lhp)e = sup “f(X)— Z faoe|

feLﬁp

We now determine the lower bounds. We will use the Rudin-Shapiro polinomials R,;(x):

21
Ri(x) = Z se”x g==x1, x€R
j= =2l-1
satisfying the order estimate (see, e.g., [1]) | R[]l < 2Y2.
We also need the well-known de la Vallee-Poussin kernels

2m—1
Vu(x) = - Z Di(x), xeR, meN,

where Dy(x) = ZI K<l e'k* is the Dirichlet kernel.

Further, for e = +1 we set A, = {k : R,(k) = 1}, and let ¢ = +1 be such that |A,| > |A_,|. Then, for
given m, we take I € N from the relation 2/-2 < m < 2!, take a small positive parameter § and consider a
function

£ = 2 VR, ¢ >o,

where f;(x) = Vj,(x) + e6R,,(x) and 0 < § < m? ».
We now show that, for a certain choice of the constant C; > 0, the function f belongs to the class Llé o

this end, it suffices to verify that || fép < 1.

llp

For this purpose, we use the estimate [2] ||tg||p < ¢~ (n)|t|, (for any polynomial t € T,,, 1 < p < o), and
-1

the well-known relation (see, e.g., [4]) [[Va]l, < 2 a P), 1<p<oco.

Hence, we can write

121, < 97 mlfll, < 97 mp)2" e Vol + SR ml,)
<9 mp@)2" Vel + 1R alleo)
< zp—l(m)zp(zl)zl(z%_1)(21(1 P +2G 20 « 1.

This implies that, for a proper choice of the constant C; > 0, function f € ng,p.
By using the estimate (see, e.g., [5, p. 581]) that, for1 <g<2and1 < p <2,

1fi = Gu(llg > m?,
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we obtain
B l(2=1) 1,1 1.1
sup |lf = Gm(llq > $2H277 “lfi = Gu(fidllq > Yp(myme mz = Pp(m)mp 2.
f eLgp
The required lower bound is established, which proves the theorem. (]

Remark. The assertion of the theorem for a special case of the classes Wp’ 5 Was established by Temlyakov [6].
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