On unique-extension renormings

Christian Cobollo Universitat Politècnica de València chcogo@posgrado.upv.es

Abstract: E. Oja, T. Viil, and D. Werner proved that every weakly compactly generated Banach space *X* having a norm with the property that every linear functional on *X* has a unique Hahn-Banach extension to its bidual X^{**} (which R. R. Phelps referred to as "*X* having *property U* in X^{**} ") can be renormed to have the stronger property that every linear continuous functional defined on any linear subspace of *X* has a unique Hahn–Banach extension to X^{**} (the so-called *total smoothness* property of *X*). We proved that, thanks to a deep theorem of M. Raja, the above result can be obtained even in a stronger form and without any extra conditions on the space *X* (i.e., omitting the "weakly compactly generated" on the statement). Here we recall this result and present some extensions in the direction of what is called "weak Hahn-Banach smoothnes". This is partially based on a joint work with A. J. Guirao and V. Montesinos.

Resumen: E. Oja, T. Viil, and D. Werner probaron que todo espacio de Banach débilmente compactamente generado que tenga una norma con la propiedad de que todo funcional lineal y continuo en *X* tenga una única extensión de Hahn-Banach a su bidual X^{**} (es decir, "*X* tiene la *propiedad U* en X^{**} ", en la terminología de R. R. Phelps) puede ser renormado para tener la propiedad más fuerte de que todo funcional lineal y continuo definido en cualquier subespacio lineal de *X* tiene una única extensión de Hahn-Banach a X^{**} (lo que se conoce como *total suavidad* de *X*). Probamos que, gracias a un profundo teorema de M. Raja, se puede obtener una versión incluso más fuerte del resultado anterior sin ninguna condición adicional en el espacio *X* (es decir, omitiendo "débilmente compactamente generado" en el enunciado). Reproducimos el resultado y proponemos algunas extensiones usando el concepto de suavidad Hahn-Banach débil del espacio. Esto está parcialmente basado en un trabajo conjunto con A. J. Guirao y V. Montesinos.

Keywords: renorming, Hahn-Banach extensions, Hahn-Banach smoothness, total smoothness, LUR norm, Kadets-Klee property.

MSC2010: 46B03, 46B20, 46B22, 46B26.

Acknowledgements: The author thanks A. J. Guirao and V. Montesinos for their suggestions and advice during the elaboration of this work.

Reference: COBOLLO, Christian. "On unique-extension renormings". In: *TEMat monográficos*, 2 (2021): *Proceedings* of the 3rd BYMAT Conference, pp. 143-146. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/view/vol2-p143.

1. Introduction

The present contribution —based on the joint work [2]— is motivated by a recent paper [4], where it is proved that *every weakly compactly generated Banach space whose norm has the Hahn-Banach smooth property has an equivalent norm with the (stronger) totally smooth property.* This improved an earlier result of Sullivan [8] proving this statement under the assumption of separability. Our main contribution, that solves an open problem in [4], is that no extra requirement —besides the Hahn-Banach property of the norm— on the space is needed. This is a consequence of an important theorem due to M. Raja [7], where the so-called Kadets-Klee property for the *w* and *w*^{*} topologies in the dual of a Banach space allows for a renorming of the space with the local uniformly rotund property of its dual norm. By "renorming" a Banach space we mean defining an equivalent norm on it —naturally seeking for better geometric or analytic properties. Details and definitions needed are given below.

The basic Hahn-Banach theorem does not ensure uniqueness of the existing norm-preserving extension from a subspace to the whole space. This issue was considered by Phelps, who introduced the following definition:

Definition 1 (Phelps). Let $(X, \|\cdot\|)$ be a Banach space, and *M* a linear (not necessarily closed) subspace of *X*. We will say that *M* has *property U* in *X* if each continuous linear functional on *M* has a unique norm-preserving extension to *X*.

We shall consider every Banach space X canonically embedded in its bidual space X^{**} .

Definition 2 (Sullivan). The norm $\|\cdot\|$ of a Banach space $(X, \|\cdot\|)$ is said to be *Hahn–Banach smooth* (*HBS*, for short) if $(X, \|\cdot\|)$ has property U in X^{**} (i.e., every $x^* \in X^*$ has a unique norm-preserving extension to X^{**}).

Definition 3. The norm $\|\cdot\|$ of a Banach space $(X, \|\cdot\|)$ is said to be *totally smooth* (*TS*, for short) if every linear subspace *M* of *X* has property U in X^{**} (i.e., for every linear subspace *M* of *X*, every $f \in M^*$ has a unique norm-preserving extension to X^{**}).

Obviously, if a norm has the HBS property, then it has the TS property. Notice that properties U, HBS, and TS, are of isometric nature. Indeed (some needed definitions will appear in Section 2 below),

- (i) the Hilbertian norm on a Hilbert space *H* has property U. However, as happens in every Banach space, *H* has an equivalent norm $\|\cdot\|$ that fails to be Gâteaux differentiable at some $x_0 \in S_H$. Thus, two different norm-preserving extensions of $x_0^*|_M$ exist, where $M \coloneqq \text{span}\{x_0\}$ and x_0^* belongs to the subdifferential of $\|\cdot\|$ at x_0 . This shows that *U* is not invariant under renormings.
- (ii) On the other hand, it is not hard to prove that a Banach space $(X, \|\cdot\|)$ is reflexive if, and only if, every equivalent norm on X is HBS. If $(X, \|\cdot\|)$ is a Banach space with a separable dual, it is well known (see [3]) that X^* admits an equivalent dual LUR norm $\|\|\cdot\|\|^*$, so the topologies w and w^* coincide on S_{X^*} . Proposition 6 below shows then that $\|\|\cdot\|\|$ on X is HBS. By a previous observation, if moreover the space X is not reflexive, then it has an equivalent norm $|\cdot|$ which is not HBS. Thus, HBS is not invariant under renormings.
- (iii) Finally, Theorem 9 below shows that the property TS of a norm is equivalent to the HBS property plus the strict convexity of its dual norm. Thus, the Hilbertian norm on a Hilbert space *H* is obviously TS, although *H* admits a non-rotund equivalent norm (this is a dualization of the argument in (i) above). This shows that TS is also non-invariant under renormings.

The statement of our main result follows. As we mentioned, this improves results in [8] and [4], and solves a problem in [4].

Theorem 4. Let $(X, \|\cdot\|)$ be a Banach space. Then, the following statements are equivalent:

- (i) X has an equivalent norm with property HBS.
- (ii) X^* has an equivalent w^* -w-Kadets-Klee norm.
- (iii) X has an equivalent norm whose dual norm is LUR.

(iv) X has an equivalent norm with property TS.

The following classes of Banach spaces satisfy one —and then all— of the conditions in Theorem 4: (i) Asplund spaces that are weakly compactly generated, and (ii) spaces whose dual is a subspace of a weakly compactly generated Banach space. In particular, separable Banach spaces satisfy one of the conditions in Theorem 4 if, and only if, they are Asplund.

2. The walkthrough

We shall provide a sketch of the proof of Theorem 4. We shall need some extra definitions. Recall that a norm $\|\cdot\|$ on a Banach space is called *strictly convex* or *rotund* if the unit sphere does not contain non-trivial line segments. It is called *locally uniformly rotund* (*LUR*, for short) if for every $x, x_n \in S_X$, $n \in \mathbb{N}$, such that $\|x + x_n\| \to 2$, then $x_n \to x$.

Definition 5. Let $\|\cdot\|$ be a norm in a Banach space *X* and $\tau_1 \subset \tau_2 \subset \|\cdot\|$ two vector topologies on *X*. We say that $\|\cdot\|$ has the τ_1 - τ_2 -*Kadets-Klee property* if the topologies τ_1 and τ_2 coincide on its unit sphere.

Proof of (i) \iff (ii) in Theorem 4: it will follow from Propositions 6 and 7 below.

Proposition 6 (Godefroy). Let $(X, \|\cdot\|)$ be a Banach space. Then, $x^* \in S_{X^*}$ has a unique norm-preserving extension to X^{**} if, and only if, the w^* and w topologies on S_{X^*} coincide on x^* . In particular, $\|\cdot\|$ is HBS if, and only if, its dual norm has the w^* -w-Kadets-Klee property.

This last proposition suggests that in order to find an equivalent HBS norm on a Banach space X —if possible—, we should try to renorm the dual space X^* with a w^* -w-Kadets-Klee norm. There is an extra requirement that in some cases is hard to achieve: the equivalent norm on the dual space must be a dual norm. In our situation, this is obtained for free: as a particular case of the following result, any w^* -w-Kadets-Klee norm on X^* is already a dual norm.

Proposition 7. Let $\|\cdot\|$ be a τ_1 - τ_2 -Kadets-Klee norm which is τ_2 -lower semicontinuous. Then, it is also τ_1 -lower semicontinuous.

(ii) \iff (iii): this is a consequence of the following deep result proved by Raja [6, 7], a landmark in renorming theory.

Theorem 8 (Raja). Let X be a Banach space. If X admits an equivalent norm whose dual is w^* -w-Kadets-Klee, then it admits an equivalent norm whose dual is LUR.

That $(iv) \Longrightarrow (i)$ was already mentioned above.

To finalize the proof of Theorem 4, the only remaining thing is to prove that (iii) \Longrightarrow (iv). Notice that the norm $\|\cdot\|$ of a Banach space (X, $\|\cdot\|$) has the TS property if, and only if, every linear subspace M of X has property U in X and $\|\cdot\|$ has the HBS property. We need the following result.

Theorem 9 (Taylor-Foguel). Let $(X, \|\cdot\|)$ be a Banach space. Then, every linear subspace *M* of *X* has property *U* on *X* if, and only if, the dual norm $\|\cdot\|^*$ is rotund.

This last theorem and the paragraph above allow us to decompose the TS property in the following way: The norm $\|\cdot\|$ of a Banach space is TS if, and only if, it has HBS property and its dual norm is strictly convex. It is easy to see that the property of having a dual LUR norm is stronger than having those two properties simultaneously. In fact, any LUR norm is already a strictly convex norm, and also, as an easy application of the Riesz lemma, we have that if $\|\cdot\|^*$ is a dual LUR norm then the w^* and the norm topologies (and so, any topology in between them) coincide on its unit sphere. Proposition 6 shows that this implies the HBS property on its predual norm $\|\cdot\|$, and the proof of Theorem 4 is over.

3. Some further topics

We present here some remarks on, and some extensions of the previous results. Most of this can be found in detail in [1].

Remark 10. First of all, it is of key importance to prove that Theorem 4 is a real extension of the result of Oja, Viil and Werner: Indeed, it could happen that all four conditions stated in Theorem 4 would imply the original Banach space *X* being WCG. However, this is not the case. To see this, it is enough to take any Hausdorff non-Eberlein compact space *K* such that $K^{\omega_1} = \emptyset$ (for example, $K = [0, \omega_1]$), and consider the corresponding C(K) space. It is proved in [3] that $C(K)^*$ admits a dual LUR norm (in particular, C(K) admits an HBS norm), but it is not a WCG space (as *K* is not Eberlein).

Some of the work done in Section 2 can be extended to more general cases. For this purpose, we may introduce some extra definitions related to the uniqueness of extensions (if *X* is a Banach space, then the subset of *X*^{*} consisting of all norm-attaining functionals on *X* will be denoted by NA(*X*)): (i) If *M* is a linear (not necessarily closed) subspace of *X*, we will say that *M* has *property wU* in *X* if each element in NA(*M*) has a unique norm-preserving extension to *X*. (ii) The space (*X*, $\|\cdot\|$) is said to be *weak* Hahn–Banach Smooth (*wHBS* for short) if (*X*, $\|\cdot\|$) has property wU in *X*^{**} (i.e., every $x^* \in$ NA(*X*) has a unique norm-preserving extension to *X*. (iii) Let $\|\cdot\|$ be a norm in a Banach space *X*, $A \subset X$ be a cone, and $\tau_1 \subset \tau_2 \subset \|\cdot\|$ two vector topologies on *X*. We say that $\|\cdot\|$ has the τ_1 - τ_2 -Kadets-Klee property with respect to *A* when both topologies τ_1 and τ_2 coincide when restricted to $A \cap S_{(X,\|\cdot\|)}$

These definitions allow us to generalize Proposition 7 and the equivalence (i) \Leftrightarrow (ii) in Theorem 4.

Proposition 11. Let $\|\cdot\|$ be a norm in the Banach space X that is $\tau_1 - \tau_2$ -Kadets-Klee with respect to a cone $A \subset X$ that satisfies $\overline{A \cap B_{(X,\|\cdot\|)}}^{\|\cdot\|}$. Then, if the norm is τ_2 -lower semicontinuous, it is also τ_1 -lower semicontinuous.

Proposition 12. Let $(X, \|\cdot\|)$ be a Banach space. Then, X admits a wHBS norm if, and only if, X^* admits a norm which is w^* -w-Kadets-Klee with respect to NA(X).

There are further similarities between the two properties HBS and wHBS. For example, it can be proved that a norm $\|\cdot\|$ is very smooth if, and only if, $\|\cdot\|$ its simultaneously Gâteaux smooth and wHBS, and this scheme is the analogous version of the TS decomposition above, but for the unique extension of the norm-attaining elements. It is natural to ask if wHBS on *X* also implies the existence of dual norm on X^* with good convexity properties, just as HBS implies the dual LUR norm on X^* . However, this is far from being true, since Talagrand proved that there are some spaces ($C([0, \mu])$) with uncountable μ that admit a Fréchet smooth equivalent norm (a much stronger property than being wHBS and even very smooth) but its dual spaces do not admit a dual strictly convex norm (see [3]).

References

- [1] COBOLLO, Ch. Notes on differentiability, norm-preserving extensions, and renormings in Banach spaces. Tesis de máster. Universitat Politècnica de València, 2020. URL: http://hdl.handle.net/10251/ 153167.
- [2] COBOLLO, Ch.; GUIRAO, A. J., and MONTESINOS, V. "A remark on totally smooth renormings". In: *RACSAM* 114 (2020), n.º 103.
- [3] DEVILLE, R.; GODEFROY, G., and ZIZLER, V. Smoothness and Renormings in Banach Spaces. Pitman Monographs 64, London, Logman, 1993.
- [4] OJA, E.; VIIL, T., and WERNER, D. "Totally smooth renormings". In: *Archiv der Mathematik* 112 (3) (2019), pp. 269–281.
- [5] PHELPS, R. R. "Uniqueness of Hahn–Banach extensions and unique best approximation". In: *Trans. Amer. Math. Soc.* 95 (1960), pp. 238–255.
- [6] RAJA, M. "On locally uniformly rotund norms". In: Mathematika 46 (1999), pp. 343–358.
- [7] RAJA, M. "On dual locally uniformly rotund norms". In: *Israel Journal of Mathematics* 129 (2002), pp. 77–91.
- [8] SULLIVAN, F. "Geometrical properties determined by the higher duals of a Banach space". In: *Illinois J. Math.* 21 (1977), pp. 315–331.