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A b s t r a c t : In number theory, it is often productive to gather arithmetic data in
order to conjecture new results and discover unknown behaviour. The most no-
table modern case of this is the LMFDB, which contains lots of information on
arithmetically interesting objects such as fields, algebraic curves and modular
functions. Despite such a large collection of data, the isogeny-based cryptography
community still lacks a range of examples of supersingular isogeny graphs. This
work is a first attempt at generating these examples for genus 1, and it involves
exploring elliptic curve isogenies and computing some of their graph invariants.

R e s u m e n : En teoría de números, suele ser productivo recabar datos aritméticos pa-
ra poder conjeturar nuevos resultados y descubrir comportamientos desconocidos.
El caso moderno más notable es el de la base de datos LMFDB, que contiene infor-
mación sobre objetos de interés aritmético tales como cuerpos, curvas algebraicas
o funciones modulares. A pesar de existir tal colección de datos, la comunidad de
criptografía basada en isogenias todavía carece de un repositorio de ejemplos de
grafos de isogenias supersingulares. Este trabajo es un primer intento de generar
estos ejemplos para género 1, e involucra explorar isogenias de curvas elípticas y
computar algunos invariantes de dichos grafos.
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Towards a database of isogeny graphs

1 . I n t r o d u c t i o n

This paper is the starting point of a project to systematically produce data on isogeny graphs. Supersingular
isogeny graphs of elliptic curves are used in proposed postquantum protocols, and having examples of
them can help to further experiment with them. Our end goal is to investigate higher-dimensional abelian
varieties over finite fields, and this is the first step to produce a framework for the task.

Not only we produce adjacency matrices of isogeny graphs, but we also want to list their graph invariants.
Some quantitative work has already been done in [1], and we follow them to compute several of our
metrics. We have used SageMath 9 over Python 3 [6] for our purposes.

2 . E l l i p t i c c u r v e s a n d i s o g e n y g r a p h s

An elliptic curve over a finite field �𝑞 of characteristic 𝑝 ≠ 2, 3 is given by an equation

𝐸∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴,𝐵 ∈ �𝑞

satisfying 4𝐴3 + 27𝐵2 ≠ 0. Such a curve has a group structure, displaying the simplest examples of abelian
varieties. An isogeny between two elliptic curves is an algebraic map 𝐸 → 𝐸′ which is compatible with
the group structures. Isogenies are characterised by the properties of being surjective and having finite
kernel. The degree of a separable isogeny is the size of its kernel. If deg(𝜙) = ℓ, we say 𝜙 is an ℓ-isogeny.
An isomorphism is the case of an isogeny with trivial kernel.

Two elliptic curves are isomorphic over ̄�𝑞 if and only if they have the same 𝑗-invariant, defined as

𝑗(𝐸) = 1728 4𝐴3

4𝐴3 + 27𝐵2 .

For each 𝑗 ∈ ̄�𝑞, there is an elliptic curve with that invariant, which we denote by 𝐸𝑗.

An elliptic curve is said to be supersingular if it has no 𝑝-torsion points. Hence, the supersingular isogeny
graph 𝛤1(ℓ;𝑝), with ℓ ≠ 𝑝 two different primes, is defined as follows:

( i ) Its vertices are the 𝑗-invariants of supersingular elliptic curves over ̄�𝑝. These 𝑗-invariants are all in
�𝑝2, and so they can be represented by two integers modulo 𝑝.

( i i ) Given two vertices 𝑗 and 𝑗′, 𝜙 is an edge from 𝑗 to 𝑗′ if there is an ℓ-isogeny 𝜙∶ 𝐸𝑗 → 𝐸𝑗′. Multiple
edges are allowed, although they are fairly rare in the genus 1 case.

For each ℓ-isogeny 𝜙∶ 𝐸𝑗 → 𝐸𝑗′ there is always a dual ℓ-isogeny ̂𝜙∶ 𝐸𝑗′ → 𝐸𝑗, so we can regard 𝛤1(ℓ;𝑝) as
being an undirected graph.

We can find a supersingular 𝑗-invariant in �𝑝2 in �̃�((log𝑝)3) using Bröker’s algorithm [3]. The graph 𝛤1(ℓ;𝑝)
is always connected, so we can easily list all of its vertices with an exploration algorithm.

There are at least two known methods to compute an isogeny [2]. However, to compute the number
of edges in 𝛤1(ℓ;𝑝) from 𝑗 to 𝑗′ it is sufficient to factor a modular polynomial. This allows us to work
without equations for the curves 𝐸𝑗 and 𝐸𝑗′, which would potentially require working over a larger finite
field. Fix a prime 𝑝, and let 𝑁 be any non-zero integer coprime with 𝑝. The 𝑁th modular polynomial
𝛷𝑁(𝑋,𝑌) is the equation that defines the planar model of the modular curve 𝑋0(𝑁) classifying elliptic
curves over ℂ with a cyclic group of order 𝑁. The function field of this curve is ℂ(𝑗(𝜏), 𝑗(𝑁𝜏)), and so two
curves 𝐸𝑗 and 𝐸𝑗′ over ℂ have an 𝑁-isogeny between them whenever 𝛷𝑁(𝑗, 𝑗′) = 0. In fact, one can prove
that 𝛷𝑁(𝑋,𝑌) ∈ ℤ[𝑋,𝑌]. Reducing the polynomial modulo 𝑝, we get the main result for our purposes: 𝐸
and 𝐸′ over ̄�𝑞 are 𝑁-isogenous via a cyclic isogenies if, and only if, 𝛷𝑁(𝑗(𝐸), 𝑗(𝐸′)) = 0.

Therefore, given 𝑗 = 𝑗(𝐸), the 𝑁-neighbors of 𝐸 are given by the roots of 𝛷𝑁(𝑗,𝑌) ∈ �𝑝2[𝑌]. In the case
𝑁 = ℓ prime, this polynomial has at most ℓ + 1 distinct roots (in general, the number of roots is given by
Dedekind’s 𝜓 function).
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2 . 1 . G r a p h p r o p e r t i e s

Once we have the list of nodes of 𝛤1(ℓ;𝑝) and its adjacency matrix, we want to compute several of its
properties, which we now explain.

( i ) Diameter and largest eigenvalues. The graph 𝛤1(ℓ;𝑝) is (ℓ + 1)-regular and almost-undirected (i.e., it
is undirected at every vertex except for a bounded number of them). Therefore, its diameter can be
controlled by the eigenvalues of the adjacency matrix. More precisely, we know that the eigenvalues
can be ordered as ℓ + 1 = 𝜆1 > 𝜆2 ≥ … ≥ 𝜆𝑛 > −(ℓ + 1).
If we fix the prime ℓ and let 𝜆⋆(𝑝) = max{|𝜆2|, |𝜆𝑛|}, the diameter of the family {𝛤1(ℓ;𝑝)}𝑝 grows like
𝑂(log𝑝) as long as there exists some fixed constant 𝛬ℓ < ℓ + 1 with 𝜆⋆(𝑝) ≤ 𝛬ℓ for all 𝑝. This is
indeed the case for supersingular graphs of elliptic curves (they have the Ramanujan property), but
the result for higher-dimensional varieties is still conjectural [5].

( i i ) Size of the spine. The spine of 𝛤1(ℓ;𝑝) is the induced subgraph of vertices that are defined over �𝑝.
Knowing the structure of the spine is useful since it tends to be a very small subgraph where finding
paths is simpler. If we are able to solve that particular problem, then finding a path between any two
vertices reduces to finding paths to the spine.

( i i i ) Number of isogenous conjugate pairs. Each 𝑗-invariant outside of the spine, 𝑗 ∈ �𝑝2 ⧵ �𝑝, has a
Frobenius conjugate 𝑗𝑝. This corresponds to the Frobenius (inseparable) isogeny 𝐸 → 𝐸(𝑝), given by
(𝑥, 𝑦) ↦ (𝑥𝑝, 𝑦𝑝). An ℓ-isogenous conjugate pair is a pair of vertices (𝑗, 𝑗𝑝) connected by an ℓ-degree
isogeny.

3 . D i s t r i b u t e d c o m p u t a t i o n

Due to the great computational cost of calculating the data, the task has to be performed in parallel.
Parallel programming on a single computer has been useful for graphs with relatively small 𝑝, where they
could be calculated using a typical 4-core personal computer in a reasonable time. In order to calculate
the graphs with 𝑝 ≈ 30 000, we needed to scale the computational power beyond a single computer and
use distributed computing. Therefore, the calculations have been carried out in a parallel and distributed
way, having more than 500 threads of parallel execution in a distributed way1.

3 . 1 . G r a p h c o m p u t a t i o n p r o c e d u r e

The computation of each graph and its properties has been divided in five sequential stages (i.e., a stage
can only be run after the previous ones). We now describe them.

The first step to start working with graphs is computing the nodes of the ℓ-isogeny graph, so for a given 𝑝we
want to compute a list with all the nodes from 𝛤1(ℓ;𝑝). To discover the nodes we use a slight modification
of the breadth-first search algorithm (BFS) starting from an initial node. Given a node 𝑗, we obtain all
its neighbours by factoring 𝛷ℓ(𝑗,𝑌). Because the node list depends exclusively on 𝑝, and for efficiency
reasons, we explore the graph 𝛤1(ℓ;𝑝) with ℓ = 2. The BFS algorithm is not well suited to be run in parallel,
so parallelization has been achieved by just exploring multiple graphs simultaneously.

Checks over the node list. On the one hand, we know we must have [𝑝−1
12
] + 𝜀 nodes in 𝛤1(ℓ;𝑝) (with

𝜀 = 0, 1, 1, 2 according to 𝑝 ≡ 1, 5, 7, 11 mod 12). On the other hand, we can test any given node for
supersingularity with SageMath’s function E.is_supersingular. Using these two facts, we can guarantee
that the computed node list is complete and correct.

Computation of the adjacency matrix of 𝛤1(ℓ;𝑝). Given 𝑝 and ℓ, we compute all the neighbours of each
node in 𝛤1(ℓ;𝑝). This task is highly parallelizable, since it is enough to split the list of nodes into batches of
similar size and assign one batch to every thread of execution. Once we have the list of neighbours for
every node it can be easily converted to the adjacency matrix.

1Code can be found at https://github.com/gfinol/IsogenyGraph.

TEMat monogr., 2 (2021) e-ISSN: 2660-6003 161

https://github.com/gfinol/IsogenyGraph


Towards a database of isogeny graphs

Checks on adjacency matrix. We check that the matrix is square, has correct dimensions and all nodes
have out-degree ℓ + 1. It is important to notice that these are sanity checks to discard possible errors on
the computation rather than checks to prove the correctness of the whole matrix.

Finally, we compute the graph metrics using the adjacency matrices. Similarly to our other tasks, we
compute them for several graphs simultaneously.

3 . 2 . L i t h o p s

To scale computational power beyond one machine we have used the Lithops2 framework, which provides
an API mimicking the Python multiprocessing library and allows us to execute our code transparently [7]
in a distributed serverless environment without having a physical computer cluster nor having to manage
one. Thanks to the similar APIs, the code can be executed in parallel on a single machine or distributed
using FaaS by just changing the module import from multiprocessing to Lithops. This also allows us to use
SageMath in a distributed environment.

4 . R e s u l t s a n d f u t u r e w o r k

We have computed all graphs 𝛤1(ℓ;𝑝) for primes 13 ≤ 𝑝 < 30 000 and degrees ℓ ∈ {2, 3, 5, 7, 11}, along
with the graph properties specified in Section 2.1. The data has been uploaded to Zenodo [4].

We have built a framework to compute examples for larger 𝑝 and ℓ in the future, and that will also allow us
to explore isogeny graphs of higher-dimensional abelian varieties. This will provide us with data to further
confirm existing conjectures [5] on such graphs.
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