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What is Sparse Domination and why is it so plentiful?

& Gianmarco Brocchi Abstract: Many operators in analysis are non-local, in the sense that a perturbation

University of Birmingham of the input near a point modifies the output everywhere; consider for example

gianmarcobrocchi@gmail.com the operator that maps the initial data to the corresponding solution of the heat
equation.

Sparse Domination consists in controlling such operators by a sum of positive,
local averages. This allows to derive plenty of estimates, which are often optimal.

In this work we will introduce this concept, and we will discuss the case of operators
that are beyond Calderén-Zygmund theory.

Resumen: Muchos operadores en andlisis son no locales, en el sentido de que una
perturbacién de la entrada cerca de un punto modifica la salida en todas partes;
consideremos, por ejemplo, el operador que mapea los datos iniciales a la solucién
correspondiente de la ecuacién del calor.

La dominacién dispersa consiste en controlar estos operadores mediante una
suma de medias locales positivas. Esto permite derivar multitud de estimaciones
que a menudo son 6ptimas.

En este trabajo introduciremos este concepto y discutiremos el caso de los opera-
dores que estdn mas alla de la teoria de Calderén-Zygmund.
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What is Sparse Domination?

1. Weighted estimates

In Harmonic Analysis, weighted inequalities allow us to better understand the action of operators on
different domains, and they have many applications to PDEs [12], approximation theory, complex analysis
and operator theory [1].

We call weight a positive, locally integrable function. You might be interested in understanding how your
operator depends on the weight in the underlying measure. Given a (sub)linear operator T from IP to
itself, you can start asking the following questions:

(i) For which weights w is the operator bounded from IP(w) to IP(w)?
(i) Can we characterise all such weights?

(iii) How does the operator norm depend on the weight?

Since the '90s there have been a lot of efforts towards answering these questions and to quantify this
dependence, also in relation to a problem in quasiconformal theory [2, 17].

A key step towards this goal was a representation of the action of the operator in terms of simpler dyadic
operators. This representation was first obtained for the Hilbert transform [16], and later for general
Calder6n-Zygmund operators [13]. Today we know that a domination, rather than a representation, is
often enough for deriving optimal weighted estimates with less effort. Such domination is popular as
sparse domination.

Sparse domination is having a tremendous impact on Harmonic Analysis [4, 7-10]. It has simplified the
proof of the A,-conjecture [13], has found applications beyond the classical theory [4], in the discrete
setting [10], and has resolved long-standing questions in operator theory [1].

1.1. Maximal operators

The questions posed above were first answered by Benjamin Muckenhoupt [15] for the maximal operator:

MIG) = sup o f Ol dy,
Q

Q>x

where the supremum is taken over cubes Q with sides parallel to the coordinate axis.

If we could control an operator T by the maximal operator M, we could derive weighted estimates for T
from the ones for M. Unfortunately, contrarily to maximal operators, singular integral operators are not
bounded in L*. Thus we cannot hope to control them (pointwise) by a single maximal average.

Sparse domination consists in controlling non-local operators by a sum of positive averages. This allows
to derive plenty of unweighted, weighted, and vector valued estimates (which are often optimal) from
weighted IP estimates for maximal operators, while the L*-norm is still allowed to blow up.

This domination can be performed by constructing a sparse family of cubes for a given input function.
Roughly speaking, a sparse family is a collection of cubes having a subcollection of sets that are disjoint
and not too small. More precisely, for a fixed T € (0, 1) we say that:

Definition 1. A collection of dyadic cubes § is 7-sparse if for any Q € 8 there exists a subset E; C Q such
that {Eg}oes are pairwise disjoint and the ratio |Eq|/|Q| is bounded below by 7.

Given a function f and a cube Q,, one can construct a sparse collection inside Q, by selecting maximal
cubes covering the superlevel set:

F(Qo) = {x € Qy : Mf(x)> 1 f .
|Q0| QO

The weak boundedness of M ensures that we can choose 4 > 0 so that the measure of the complement
Eg, = Q \ F(Qp) is not too small. By iterating this procedure, one obtains a collection of nested cubes
organised in generations.
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Then, our operator is controlled by the desired average on Eg . At each iteration, the remaining area
shrinks geometrically, leading to the pointwise domination for x € Q,

() ITf(x) <C D, (ﬁflfl)ﬂo(x),
Q

Qes

where the collection § is the union of all maximal cubes in each iteration, and it is sparse as in definition 1.

The same method can be used to bound bilinear expressions, leading to a domination by a sparse bilinear
form:

1 1
@ | fQ TF g SCQ%(@ fQ |f|)(@ fQ |g|)|o|.

The sparse collections § in (1) and (2) depend on the input functions.

How does one recover bounds in terms of the maximal function? When we integrate sparse operators, the

sparseness property allows to reduce the sum over 8 to a sum over disjoint sets. The averages are then
. 1 .

controlled by the maximal averages. For example, for a 5-sparse family § we have that |Q| < 2|Eg], so

1 1
— <2 — Ep|l <2 Mf <2 Mf.
Q%(|Q|fo|f|)|o| Q%S(meIfI)I ol Q%fb_o rez | s

In a similar fashion, one recovers IP estimates from IP bounds of the maximal operator. One can then take
a1 : . . .
the supremum over all possible 5 -sparse collections § obtaining the same weighted estimates.

2. Further applications

2.1. Sparse T'1 theorems

In the ’80s, David and Journé [11] showed that I?-boundedness of singular integral operators follows
from the uniform boundedness on characteristic functions. This result is known as the “T(1) theorem”, as
the operator is tested on constant functions. The analogous condition for classical square functions is a
Carleson measure condition [6].

These classical results have recently been recast to give a sparse domination [5, 14]. Thus, instead of just I?
boundedness, these theorems imply all weighted IP-bounds with optimal dependence on the weight.

2.2. Sparse domination of non-integral operators

Classical operators in Harmonic Analysis come with an integral representation and a kernel. On the other
hand, many operators coming from elliptic PDEs are “non-integral”, in the sense that they do not possess
such an explicit representation.

Recently, the sparse paradigm has been successfully applied also in this context [4], where the usual
assumptions on the kernel are replaced by hypotheses on the action of the operator on the semigroup
e~ 'L generated by the elliptic operator L.

For non-integral square functions, optimal weighted estimates are deduced form a different sparse form [3],
which reflects the quadratic nature of these operators. This quadratic sparse domination yields estimates
for square functions associated with divergence forms and Laplace-Beltrami operators on Riemannian
manifolds as particular examples.
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