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A b s t r a c t : A Schreier decoration is a combinatorial coding of an action of the free
group 𝐹𝑑 on the vertex set of a 2𝑑-regular graph. We investigate whether a Schreier
decoration exists on various countably infinite transitive graphs as a factor of iid.

We show that the square lattice and also the three other Archimedean lattices of
even degree and ℤ𝑑, 𝑑 ≥ 3, have finitary factor of iid Schreier decorations, and
exhibit examples of transitive graphs of arbitrary even degree in which obtaining
such a decoration as a factor of iid is impossible.

We also prove that non-amenable quasi-transitive unimodular 2𝑑-regular graphs
have a factor of iid balanced orientation, meaning each in- and outdegree is equal
to 𝑑. This result involves extending earlier spectral-theoretic results on Bernoulli
shifts to the Bernoulli graphings of quasi-transitive unimodular graphs. Balanced
orientation is also obtained for symmetrical planar lattices.

R e s u m e n : Una decoración de Schreier es una codificación combinatoria de una
acción del grupo libre 𝐹𝑑 en el conjunto de vértices de un grafo 2𝑑-regular. Investi-
gamos si existe una decoración de Schreier en varios grafos transitivos numerables
infinitos como un factor de iid.

Mostramos que el retículo cuadrado y también los otros tres grafos arquimedianos
de grado par y ℤ𝑑, 𝑑 ≥ 3, tienen decoraciones de Schreier de factor finito de iid,
y mostramos ejemplos de grafos transitivos de grado par arbitrario en los que la
obtención de tal decoración como factor de iid es imposible.

También demostramos que los grafos 2𝑑-regulares unimodulares cuasi transitivos
no amenables tienen un factor de orientación equilibrada iid, lo que significa que
cada grado de entrada y salida es igual a 𝑑. Este resultado implica la extensión
de los resultados espectrales anteriores sobre los desplazamientos de Bernoulli a
los grafos de Bernoulli de los grafos unimodulares cuasi-transitivos. También se
obtiene la orientación equilibrada para retículos planos simétricos.
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Factor of iid Schreier decoration of transitive graphs

1 . I n t r o d u c t i o n , n o t a t i o n , a n d b a s i c s

A Schreier decoration of a 2𝑑-regular graph 𝐺 is a colouring of the edges with 𝑑 colours together with an
orientation such that, at every vertex, there is exactly one incoming and one outgoing edge of each colour.
A partial result towards a Schreier decoration is a balanced orientation of the edges. An orientation of a
graph with all degrees even is balanced if the indegree of any vertex is equal to its outdegree. We investigate
whether an invariant random Schreier decoration or at least balanced orientation can be obtained on
infinite transitive graphs as a factor of iid.

Informally, a Schreier decoration is a factor of iid if it is produced by a certain randomised local algorithm.
To start with, each vertex independently gets a random label from [0, 1]. Then it makes a deterministic
measurable decision about the decoration of its incident edges, based on the labelled graph that it sees
from itself as a root. Adjacent vertices must make a consistent decision regarding the edge between them.

1 . 1 . S c h r e i e r g r a p h s , f a c t o r s o f i i d a n d n o n - e x a m p l e s

Given a group 𝛤 = ⟨𝑆⟩ and an action 𝛤 ↷ 𝑋, the Schreier graph Sch(𝛤 ↷ 𝑋, 𝑆) has 𝑋 as its vertex set, and
for every 𝑥 ∈ 𝑋, 𝑠 ∈ 𝑆, we introduce an oriented 𝑠-labelled edge from 𝑥 to 𝑠 ⋅ 𝑥. A map 𝛷∶ 𝑋 → 𝑌 between
two 𝛤-spaces is a 𝛤-factor if it is measurable and 𝛾 ⋅ 𝛷(𝑥) = 𝛷(𝛾 ⋅ 𝑥) for every 𝛾 ∈ 𝛤, 𝑥 ∈ 𝑋.

D e f i n i t i o n 1 . Let 𝐺 be a graph and u denote the Lebesgue measure on [0, 1]. We endow the space [0, 1]𝑉(𝐺)
with the product measure u𝑉(𝐺). A factor of iid Schreier decoration (respectively, balanced orientation) of
𝐺 is an Aut(𝐺)-factor 𝛷∶ ([0, 1]𝑉(𝐺), u𝑉(𝐺)) → Sch(𝐺) (respectively, to BalOr(𝐺)). ◀

For simple graphs 𝐺1 and 𝐺2, let the graph 𝐺1 × 𝐺2 be defined by having 𝑉(𝐺1 × 𝐺2) = 𝑉(𝐺1) × 𝑉(𝐺2) with
vertices (𝑢, 𝑣) and (𝑢′, 𝑣′) being adjacent if 𝑢 = 𝑢′ and 𝑣𝑣′ ∈ 𝐸(𝐺2) or 𝑣 = 𝑣′ and 𝑢𝑢′ ∈ 𝐸(𝐺1).

P r o p o s i t i o n 2 . Let 𝐻 be a finite (2𝑑 − 2)-regular graph with an odd number of vertices. The 2𝑑-regular
graph 𝐻 × 𝑃, where 𝑃 is the bi-infinite path, has no factor of iid balanced orientation.

Being quasi-isometric to 𝑃 is a necessary condition in our non-examples. It is, however, not sufficient.

P r o p o s i t i o n 3 . Let 𝐻 be a finite bipartite (2𝑑 − 2)-regular graph. Then, the 2𝑑-regular graph 𝐻 × 𝑃, where
𝑃 is the bi-infinite path, has a factor of iid Schreier decoration.

2 . I n f i n i t e a m e n a b l e g r a p h s

To obtain Schreier decorations of the Archimedean lattices later in this section, we partition their vertex
set 𝑉 into finite clusters such that, for each cluster 𝐶, there is a unique cluster 𝐶+ surrounding it.

D e f i n i t i o n 4 (Hierarchy). Let 𝐺 be a graph and H a partition of 𝑉(𝐺). We say that two distinct parts
𝐶,𝐷 ∈ H are adjacent if and only if there is 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐷which are adjacent in 𝐺. Then,H is a hierarchy
on 𝐺 if the following hold for every 𝐶 ∈ H: 1) 𝐶 is finite, 2) there is a unique 𝐶+ ∈ H such that 𝐶 and 𝐶+

are adjacent and, for all 𝑣 ∈ 𝑉(𝐺) but finitely many, any path from 𝐶 to 𝑣 contains a vertex from 𝐶+, and
3) whenever 𝐵 ∈ H is adjacent to 𝐶, either 𝐵 = 𝐶+ or 𝐶 = 𝐵+. ◀

A key feature of our hierarchies is that any two non-adjacent clusters are far from one another. But starting
with any hierarchy, we can obtain one in which such clusters are as far from one another as we wish.

P r o p o s i t i o n 5 . Let 𝐺 be a graph and 𝑘 ∈ ℕ. A hierarchy H on 𝐺 is 𝑘-spaced if, for all non-adjacent
𝐵,𝐶 ∈ H, the graph distance 𝑑(𝐵,𝐶) = minᵆ∈𝐵,𝑣∈𝐶 𝑑𝐺(𝑢, 𝑣) is at least 𝑘. Suppose there is a factor of iid
hierarchy H on 𝐺. Then, for all 𝑘 ∈ ℕ, there is a factor of iid 𝑘-spaced hierarchy H𝑘 on 𝐺.

Moreover, for all 𝑐, 𝑘 ∈ ℕ, there is a factor of iid pair (𝐽𝑐,𝑘, 𝜂∶ 𝐽𝑐,𝑘 → [𝑐]) where 𝐽𝑐,𝑘 is a 𝑘-spaced hierarchy
and 𝜂∶ 𝐽𝑐,𝑘 → [𝑐] is a colouring with 𝑐 colours such that, for all 𝐶 ∈ 𝐽𝑐,𝑘, if 𝐶 has colour 𝑖, then 𝐶+ has
colour 𝑖 + 1 (mod 𝑐).

For a general planar lattice 𝛬, we wish to use site percolation to obtain a hierarchy.
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T h e o r e m 6 ([1]). Let 𝛬 be a plane lattice with 𝑚-fold symmetry for some 𝑚 ≥ 2 and 𝛬× be its matching
lattice, i.e., the graph obtained from 𝛬 by adding all diagonals to all faces of 𝛬. Then, for every 𝑝 ∈ [0, 1],
the probabilities 𝜃𝑠𝛬(𝑝), 𝜃𝑠𝛬×(𝑝) satisfy that 𝜃𝑠𝛬(𝑝) = 0 or 𝜃𝑠𝛬×(𝑝) = 0. Furthermore, 𝑝𝑠𝐻(𝛬) + 𝑝𝑠𝐻(𝛬×) = 1.

So if 𝛬 has 𝑚-fold symmetry, we can add a vertex to every non-triangular face and connect it to all the
vertices of that face. The resulting lattice 𝛬• also has 𝑚-fold symmetry and is self-matching, so Theorem 6
tells us that 𝑝𝑠𝐻(𝛬•) = 1

2
and percolation does not occur at criticality. This gives us a hierarchy on 𝛬 as

follows. Colour the vertices of 𝛬 yellow or green uniformly at random. For each face, decide randomly
whether either all its yellow or all its green vertices will be treated as if they were connected through the
face. This results in a hierarchy, which together with Proposition 5 gives basis for the following.

T h e o r e m 7 . Let 𝛬 be a planar lattice with 𝑚-fold symmetry,𝑚 ≥ 2, in which all degrees are even. There is
a finitary factor of iid which is a balanced orientation of 𝛬 almost surely.

2 . 1 . S c h r e i e r d e c o r a t i o n s o f A r c h i m e d e a n l a t t i c e s a n d ℤ𝑑
, 𝑑 ≥ 3, a s f a c t o r s o f i i d

T h e o r e m 8 . Let 𝛬 be ℤ𝑑, 𝑑 ≥ 3, or any of the four Archimedean lattices with even degrees: the square
lattice, the triangular lattice, the Kagomé lattice or the (3, 4, 6, 4) lattice. There is a finitary factor of iid
which is a.s. a Schreier decoration of 𝛬. Moreover, it has almost surely no infinite monochromatic paths.

Our approach is the same throughout. We break the lattices into a hierarchy of finite pieces. Then, for
each piece independently, we choose an edge-𝑑-colouring scheme such that we can ensure that every
monochromatic connected subgraph is a finite cycle. Each cycle will orient itself strongly.

Both in the case of the triangular lattice and ℤ𝑑, 𝑑 ≥ 3, once we have a spaced enough hierarchy, we reuse
the patterns developed for 𝛬�. Unlike in the proofs for Archimedean lattices, we do not use percolation as
our starting point for ℤ𝑑, 𝑑 ≥ 3, but instead the results of Gao, Jackson, Krohne and Seward [3].

C o r o l l a r y 9 . For every 𝑑 ≥ 2, there is a factor of iid which is a proper 2𝑑-colouring of the edges of ℤ𝑑 a.s.
Subsequently, there is a factor of iid which is a perfect matching on ℤ𝑑 a.s.

3 . B a l a n c e d o r i e n t a t i o n o f n o n - a m e n a b l e q u a s i - t r a n s i t i v e g r a p h s

T h e o r e m 1 0 . Every non-amenable quasi-transitive unimodular 2𝑑-regular graph 𝐺 has a factor of iid
orientation that is balanced almost surely.

For example, the regular trees are unimodular. For 𝑑 > 1, the 2𝑑-regular tree 𝑇2𝑑 is also non-amenable, so
it is covered by Theorem 10. For 𝑑 > 2, Theorem 10 allows us to remark the following too.

P r o p o s i t i o n 1 1 . If 𝑇𝑑 has a factor of iid proper edge 𝑑-colouring, then 𝑇2𝑑 has a factor of iid Schreier
decoration.

Despite this connection, it remains open whether there is a factor of iid Schreier decoration of 𝑇2𝑑.

To prove Theorem 10, we first reduce a balanced orientation of 𝐺 to a perfect matching in an auxiliary
bipartite graph 𝐺∗. Then, we extend earlier matching results on Cayley graphs to the case of unimodular
quasi-transitive graphs. The key step for us, as it is for the earlier results [2, 4], is to use spectral theory to
show stabilisation of an infinite algorithm.

T h e o r e m 1 2 . Let 𝐺 be a connected, unimodular, quasi-transitive graph. If 𝐺 is non-amenable, then its
Bernoulli graphing 𝒢 has positive spectral gap.

The interpretation of spectral gap differs depending on the Bernoulli graphing being bipartite or not. See
Theorems 14 and 15 for exact statements.

C o r o l l a r y 1 3 . Let 𝐺 be a connected, unimodular, quasi-transitive non-amenable 𝑑-regular bipartite graph.
Then, 𝐺 has a factor of iid subset of the edges which is a perfect matching almost surely.
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3 . 1 . U n i m o d u l a r q u a s i - t r a n s i t i v e g r a p h s , B e r n o u l l i g r a p h i n g s a n d s p e c t r a l g a p

Let 𝐺 be a locally finite quasi-transitive graph, 𝛤 = Aut(𝐺). 𝐺 is unimodular if |Stab𝛤(𝑥) ⋅ 𝑦| = |Stab𝛤(𝑦) ⋅ 𝑥|
for any 𝑥, 𝑦 ∈ 𝑉(𝐺) that are in the same 𝛤 orbit. Let 𝑇 = {𝑜1,… , 𝑜𝑡} be a set of representatives of the orbits
of 𝛤 ↷ 𝑉(𝐺). We set 𝑝(𝑜𝑖) = 𝜇(𝑜𝑖)−1 and scale such that∑𝑖 𝑝(𝑜𝑖) = 1.
The notion of unimodularity comes hand in hand with the Mass Transport Principle, which allows us to
set up a Markov chain𝑀𝑇 mimicking the transitions of the random walk on 𝐺 between 𝛤-orbits. Let its
states be 𝑇 and transition probabilities 𝑝𝑀𝑇(𝑜𝑖, 𝑜𝑗) =

|{(𝑣,𝑜𝑖)∈𝐸∣𝑣∈𝛤⋅𝑜𝑗}|

deg(𝑜𝑖)
.

List the eigenvalues of 𝑀𝑇 in decreasing order, 1 = 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑡. We say 𝑀𝑇 is bipartite if 𝜆𝑡 = −1.
When𝑀𝑇 is not bipartite, we set 𝜌𝑇 = max(|𝜆2|, |𝜆𝑡|). When it is, we set 𝜌𝑇 = max(|𝜆2|, |𝜆𝑡−1|).
Let 𝛺 denote the space of [0, 1]-labelled rooted connected graphs. Elements of 𝛺 are of the form (𝐻, 𝑢,𝜔),
where (𝐻, 𝑢) is a bounded-degree rooted graph and 𝜔∶ 𝑉(𝐻) → [0, 1]. We connect (𝐻, 𝑢,𝜔)with (𝐻′, 𝑢′,𝜔′)
if and only if we can obtain (𝐻′, 𝑢′,𝜔′) from (𝐻, 𝑢,𝜔) bymoving the root to one of its neighbours. We denote
the resulting edge set by ℰ. To define the probability measure on 𝛺, pick the rooted graph (𝐺, 𝑜𝑖) with
probability 𝑝(𝑜𝑖). Then pick a labelling 𝜔 ∈ [0, 1]𝑉(𝐺) according to u𝑉(𝐺). Let 𝜈𝐺 denote the distribution of
(𝐺, 𝑜𝑖,𝜔). Then, the Bernoulli graphing of 𝐺 is 𝒢 = (𝛺,ℰ, 𝜈𝐺).
The Markov operatorℳ is a self-adjoint operator on 𝐿2(𝛺, 𝜈st). Similarly, denote the Markov operator of 𝐺
on ℓ2(𝐺,𝑚st) as𝑀. Here 𝜈st and𝑚st denote the degree-biased versions of 𝜈 and of the counting measure
on 𝑉(𝐺). The following two theorems deal with the non-bipartite and bipartite cases separately.

T h e o r e m 1 4 . Let 𝐺 be as in Theorem 12, and assume also that 𝑀𝑇 is not bipartite. Let 𝜌 < 1 denote the
spectral radius of 𝐺 on ℓ2(𝐺,𝑚st). Then, the spectral radius of ℳ on 𝐿20(𝛺, 𝜈st) is at most max(𝜌, 𝜌𝑇) < 1.

T h e o r e m 1 5 . Let 𝐺 be as in Theorem 12, and assume that 𝑀𝑇 is bipartite. Let 𝜌 < 1 denote the spectral
radius of 𝐺 on ℓ2(𝐺,𝑚st). The Bernoulli graphing 𝒢 is measurably bipartite, with bipartition 𝑋1∪𝑋2 = 𝑉(𝒢).
Let 𝐿200(𝛺, 𝜈st) denote the orthogonal complement of the subspace generated by the functions 1𝑋 and
1𝑋1 − 1𝑋2. Then, the spectral radius of ℳ on 𝐿200(𝛺, 𝜈st) is at most max(𝜌, 𝜌𝑇) < 1.

3 . 2 . P e r f e c t m a t c h i n g s a n d b a l a n c e d o r i e n t a t i o n s

To proveTheorem 10, we relate balanced orientations of our 2𝑑-regular𝐺 to perfect matchings of a bipartite
graph 𝐺∗. 𝐺∗ is constructed from 𝐺 by local transformations, which makes sure that it remains unimodular.
In particular, the bipartite 𝐺∗ = (𝑆,𝑇,𝐸∗) is obtained by setting 𝑆 = 𝐸(𝐺) and 𝑇 = 𝑉(𝐺) × [𝑑]. Edges of 𝐺∗

are defined by connecting 𝑒 ∈ 𝑆 to (𝑣, 𝑖) ∈ 𝑇 if and only if 𝑒 is incident to 𝑣 in 𝐺.

L e m m a 1 6 . The graph 𝐺∗ is quasi-isometric to 𝐺. If 𝐺 is unimodular quasi-transitive, then so is 𝐺∗.
Crucially, any perfect matching 𝑀 in 𝐺∗ defines a balanced orientation of 𝐺 by orienting the edge 𝑒 ∈ 𝑆
towards its endpoint 𝑣 if and only if 𝑒 and (𝑣, 𝑖) are matched by 𝑀 for some 𝑖 ∈ [𝑑].

P r o o f o f T h e o r e m 1 0 . We construct 𝐺∗, which Lemma 16 tells us is bipartite, unimodular, quasi-transitive,
and quasi-isometric to 𝐺. As amenability is a quasi-isometry invariant property, 𝐺∗ is non-amenable. By
Corollary 13, 𝐺∗ has a perfect matching, which by Lemma 16 gives a balanced orientation of 𝐺. ▪
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