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A b s t r a c t : Hardy kernels are known for being a useful tool to construct bounded
operators on 𝐿𝑝(ℝ+) spaces, property which follows from Hardy’s inequality. Even
more, recently Hardy kernels have also been used to define bounded operators
on Hardy spaces on the half plane 𝐻𝑝

𝑎(ℂ+). In this work, the range spaces in
𝐿𝑝(ℝ+) and 𝐻𝑝

𝑎(ℂ+) of such operators are analysed. We focus on the case 𝑝 = 2,
where under some circumstances, these range spaces arise as reproducing kernel
Hilbert spaces. We show that in the 𝐿2(ℝ+) case, the reproducing kernels of these
spaces turn out to be Hardy kernels as well, whereas in the 𝐻2

𝑎(ℂ+) setting, their
reproducing kernels are holomorphic extensions of Hardy kernels. We also present
how the Laplace transform connects the real and complex settings of this family of
range spaces.

R e s u m e n : Los núcleos de Hardy son conocidos por ser una herramienta útil para
construir operadores acotados en los espacios 𝐿𝑝(ℝ+), hecho que se sigue de la
desigualdad de Hardy. Además, los núcleos de Hardy han sido recientemente utili-
zados para construir operadores acotados en los espacios de Hardy del semiplano
𝐻𝑝
𝑎(ℂ+). En este trabajo, se analizan los espacios rango de dichos operadores en

𝐿𝑝(ℝ+) y 𝐻𝑝
𝑎(ℂ+). En particular, nos centramos en el caso 𝑝 = 2, en el que, bajo

determinadas condiciones, estos espacios rango son de hecho espacios de Hilbert
con núcleo reproductor. Demostramos que, en el caso de 𝐿2(ℝ+), los núcleos re-
productores de dichos espacios son a su vez núcleos de Hardy, y que en el caso
de 𝐻2

𝑎(ℂ+), los núcleos reproductores vienen dados por extensiones holomorfas
de núcleos de Hardy. Por último, mostramos cómo la transformada de Laplace
conecta los escenarios real y complejo de esta familia de espacios rango.
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1 . B a n a c h a l g e b r a o f H a r d y k e r n e l s

Set ℝ+ ≔ (0,∞) and ℂ+ ≔ {𝑧 ∈ ℂ | ℜ𝑧 > 0}.

D e f i n i t i o n 1 . Let 1 ≤ 𝑝 < ∞ and let 𝐻∶ ℝ+ ×ℝ+ → ℂ be a measurable map. 𝐻 is said to be a Hardy kernel
of index 𝑝 if the following conditions hold.

( i ) 𝐻 is homogeneous of degree −1; that is, for all 𝜆 > 0, 𝐻(𝜆𝑟, 𝜆𝑠) = 𝜆−1𝐻(𝑟, 𝑠) for all 𝑟, 𝑠 > 0.
( i i ) ∫∞

0 𝐻(1, 𝑠)𝑠−1/𝑝 d𝑠 < ∞.

Let us denote by ℌ𝑝 the set of Hardy kernels of index 𝑝. ◀

For 1 ≤ 𝑝 < ∞, let 𝐿𝑝(ℝ+) denote the classical Lebesgue space on the positive real line, and 𝐻𝑝
𝑎(ℂ+) the

Hardy space on the right complex half plane. Given a Hardy kernel of index 𝑝, one can construct bounded
operators 𝐴𝐻 and 𝐷𝐻 on 𝐿𝑝(ℝ+) and 𝐻𝑝(ℂ+) respectively, which are given by

(𝐴𝐻𝑓)(𝑟) ≔ ∫
∞

0
𝐻(𝑟, 𝑠)𝑓(𝑠) d𝑠, for a.e. 𝑟 > 0, 𝑓 ∈ 𝐿𝑝(ℝ+),

(𝐷𝐻𝐹)(𝑧) ≔ ∫
∞

0
𝐻(|𝑧|, 𝑠)𝐹(𝑠ei𝜃) d𝑠, 𝑧 = |𝑧|ei𝜃 ∈ ℂ+, 𝐹 ∈ 𝐻𝑝(ℂ+).

The boundedness of 𝐴𝐻 ∈ ℬ(𝐿𝑝(ℝ+)) follows from Hardy’s inequality [3, Theorem 319], and the bound-
edness of 𝐷𝐻 ∈ ℬ(𝐻𝑝(ℂ+)) was shown in the recent work about Hausdorff operators [5]. In fact, these
families of operators (𝐴𝐻)𝐻∈ℌ𝑝 and (𝐷𝐻)𝐻∈ℌ𝑝 may be labelled as Hardy-Hausdorff operators since they
are a particular case of Hausdorff operators, see the survey article [6] for more details.

It is part of folklore that the family of operators given by (𝐴𝐻)𝐻∈ℌ𝑝 can be described as convolution
operators by identifying a Hardy kernel 𝐻 with a Lebesgue integrable function 𝑔𝐻 ∈ 𝐿1(ℝ), see for example
the paper about the spectra of 𝐴𝐻 [1]. More precisely, let 𝐻 be a Hardy kernel of index 𝑝, and set 𝑔𝐻(𝑡) ≔
𝐻(1, e−𝑡)e−𝑡/𝑝′ for all 𝑡 ∈ ℝ, where 𝑝′ is such that 1/𝑝 + 1/𝑝′ = 1. It is readily seen that 𝑔𝐻 ∈ 𝐿1(ℝ), with
‖𝑔𝐻‖1 = ∫∞

0 |𝐻(1, 𝑠)|𝑠−1/𝑝 d𝑠. Moreover, if one takes certain equivalence classes on ℌ𝑝, it is straightforward
to obtain that the mapping 𝐻 ↦ 𝑔𝐻 is a bijection from ℌ𝑝 onto 𝐿1(ℝ), see the forthcoming paper [8]
for more details. Therefore, one obtains that this set of equivalence classes of Hardy kernels of index 𝑝
entails a commutative Banach algebra structure, isomorphic to 𝐿1(ℝ), whose norm and product are given,
respectively, by

‖𝐻‖ℌ𝑝 ≔ ∫
∞

0
|𝐻(1, 𝑠)|𝑠−1/𝑝 d𝑠, 𝐻 ∈ ℌ𝑝,

(𝐻 • 𝐺)(𝑟, 𝑠) ≔ ∫
∞

0
𝐻(𝑟, 𝑡)𝐺(𝑡, 𝑠) d𝑡, 𝑟, 𝑠 > 0, 𝐻,𝐺 ∈ ℌ𝑝.

Notice that the multiplication • resembles typical formulas about the construction of reproducing kernel
Hilbert spaces, see for example the expression [9, (2.1)].

For the purposes of this work, two subsets ofℌ𝑝must be pointed out. First, set ℐ𝑝 ≔ {𝐻 ∈ ℌ𝑝 ∣ 𝑔𝐻 ∈ 𝐿𝑝′(ℝ)},
which is a dense ideal of ℌ𝑝. Second, let ℌHol

𝑝 denote the subspace of ℌ𝑝 of Hardy kernels 𝐻 of index 𝑝 that
admit a (unique) extension 𝐻Hol from ℝ+ ×ℝ+ to ℂ+ × ℂ+ such that 𝐻Hol(𝑧,𝑤) is holomorphic in 𝑧 and
anti-holomorphic in 𝑤. The following will also be needed.

D e f i n i t i o n 2 . Let 1 < 𝑝 < ∞, and𝐻 ∈ ℌ𝑝. Set𝐻𝑡(𝑟, 𝑠) ≔ 𝐻(𝑠, 𝑟) and𝐻∗(𝑟, 𝑠) ≔ 𝐻(𝑠, 𝑟) for all 𝑟, 𝑠 > 0, where
𝑧 denotes the conjugate of a complex number 𝑧. ◀

It is readily seen that both 𝐻𝑡, 𝐻∗ belong to ℌ𝑝′.

2 . R a n g e s p a c e s o f H a r d y - H a u s d o r f f o p e r a t o r s

In this section, we proceed to study the range spaces of Hardy-Hausdorff operators on 𝐿2(ℝ+) and 𝐻2
𝑎(ℂ+)

as reproducing kernel Hilbert spaces, that is, Hilbert spaces of functions for which point evaluations
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define continuous functionals. This is partly motivated by the forthcoming work [2], where range spaces
of fractional Cesàro operators are analysed. Let us recall that if 𝛺 is a reproducing kernel Hilbert space
(RKHS from now on) of complex functions with domain 𝑋, its reproducing kernel 𝐾 is given by

𝐾(𝑥, 𝑦) = 𝑘𝑦(𝑥), 𝑥, 𝑦 ∈ 𝑋,

where 𝑘𝑦 ∈ 𝛺 is such that 𝑓(𝑦) = ⟨𝑓|𝑘𝑦⟩ for all 𝑓 ∈ 𝛺. One of themain interesting properties of reproducing
kernels is that one can recover the whole Hilbert space 𝛺 from its reproducing kernel 𝐾, see for example
Chapter I in [7].

2 . 1 . H a r d y k e r n e l s a s r e p r o d u c i n g k e r n e l s o n ℝ+ ×ℝ+

First, we shall study the 𝐿𝑝(ℝ+) scenario. Recall that 𝐿𝑝(ℝ+) denotes the Banach space of functions 𝑓
defined a.e. on ℝ+, such that ‖𝑓‖𝐿𝑝 ≔ (∫∞

0 |𝑓(𝑟)|𝑝 d𝑟)1/𝑝 < ∞.

D e f i n i t i o n 3 . Let 1 ≤ 𝑝 < ∞, and 𝐻 ∈ ℌ𝑝. Set the range space 𝒜(𝐻) ≔ 𝐴𝐻(𝐿𝑝(ℝ+)), and endow it with the
canonical Banach space structure 𝒜(𝐻) ≅ 𝐿𝑝(ℝ+)/ ker𝐴𝐻. ◀

Notice that since 𝒜(𝐻) ⊂ 𝐿𝑝(ℝ+), one cannot guarantee that point evaluations are well defined on 𝒜(𝐻).
Let 𝐶(ℝ+) denote the set of complex continuous functions on ℝ+.

L e m m a 4 . Let 1 ≤ 𝑝 < ∞ and let 𝐻 ∈ ℐ𝑝 ⊂ ℌ𝑝. One has that 𝒜(𝐻) ⊂ 𝐶(ℝ+), in the sense that, if
𝑓 ∈ 𝒜(𝐻), then there is a (unique) continuous function 𝑔 ∈ 𝐶(ℝ+) such that 𝑓 = 𝑔 a.e.

Therefore, if 𝐻 ∈ ℐ𝑝 and 𝑟 > 0, one can define point evaluations on 𝒜(𝐻) by 𝑓(𝑟) ≔ 𝑔(𝑟), where 𝑓 ∈ 𝒜(𝐻)
and 𝑔 ∈ 𝐶(ℝ+) are as in the lemma above. The proposition below shows that these are all the Hardy kernels
for which one can define continuous point evaluations on 𝒜(𝐻).

P r o p o s i t i o n 5 . Let 1 ≤ 𝑝 < ∞, and 𝐻 ∈ ℌ𝑝. Then, one can define continuous point evaluations on 𝒜(𝐻)
if and only if 𝐻 ∈ ℐ𝑝. If this is the case, it follows that for all 𝑓 ∈ 𝒜(𝐻)

|𝑓(𝑟)| ≤ 𝑟−1/𝑝‖𝑔𝐻‖𝐿𝑝′‖𝑓‖𝒜(𝐻), 𝑟 > 0.

Next we give the reproducing kernel of this family of range spaces with continuous point evaluations.

T h e o r e m 6 . Let 𝐻 ∈ ℌ2. Then, 𝒜(𝐻) is a RKHS if and only if 𝐻 ∈ ℐ2, and in this case its reproducing
kernel 𝐾𝐻 is separately continuous and given by

𝐾𝐻(𝑟, 𝑠) = ∫
∞

0
𝐻(𝑟, 𝑡)𝐻(𝑠, 𝑡) d𝑡, for 𝑟, 𝑠 > 0.

It follows that 𝐾𝐻 defines a Hardy kernel, satisfying 𝐾𝐻 = 𝐻 • 𝐻∗.

2 . 2 . H a r d y k e r n e l s a s r e p r o d u c i n g k e r n e l s o n ℂ+ × ℂ+

Nowwe focus on the Hardy spaces of the half plane𝐻𝑝
𝑎(ℂ+), which are formed by all holomorphic functions

𝐹 on ℂ+ such that ‖𝐹‖𝐻𝑝 ≔ sup𝑥>0 (∫
∞
−∞ |𝑓(𝑥 + i𝑦)|𝑝 d𝑦)1/𝑝 < ∞. It is well known that these spaces present

continuous point evaluations, so in particular 𝐻2
𝑎(ℂ+) is a RKHS whose reproducing kernel 𝒦 is given

by𝒦(𝑧,𝑤) = (𝑧 + 𝑤)−1 for all 𝑧,𝑤 ∈ ℂ+, see for example Proposition 1.8 in the notes [4]. Notice that, if
one restricts𝒦 to ℝ+ ×ℝ+, one obtains the Stieltjes kernel 𝒮, which is a Hardy kernel of index 2 given by
𝒮(𝑟, 𝑠) = (𝑟 + 𝑠)−1 for all 𝑟, 𝑠 > 0.

D e f i n i t i o n 7 . Let 𝐻 ∈ ℌ𝑝. Set 𝒟(𝐻) ≔ 𝐷𝐻(𝐻
𝑝
𝑎(ℂ+)) ⊂ 𝐻𝑝

𝑎(ℂ+) and endow 𝒟(𝐻) with the canonical
structure of a Banach space by𝒟(𝐻) ≅ 𝐻𝑝

𝑎(ℂ+)/ ker𝐷𝐻. ◀

It is readily seen that point evaluations are continuous functionals on𝒟(𝐻) for all 𝐻 ∈ ℌ𝑝. The following
theorem gives the reproducing kernel𝒦𝐻 of𝒟(𝐻), where 𝐻 ∈ ℌ2, and which is given by the holomorphic
extension of a Hardy kernel.
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T h e o r e m 8 . Let 𝐻 ∈ ℌ2. One has that 𝐻•𝒮•𝐻∗ ∈ ℌHol
2 , and that 𝒟(𝐻) is a RKHS continuously embedded

into 𝐻2
𝑎(ℂ+) whose reproducing kernel 𝒦𝐻 is given by

𝒦𝐻 = (𝐻 • 𝒮 • 𝐻∗)Hol.

2 . 3 . A P a l e y - W i e n e r r e s u l t

Next, we analyse the connection between the real and complex settings. First of all, recall that the classical
Paley-Wiener theorem states that the Laplace transform ℒ, given by (ℒ𝑓)(𝑧) ≔ ∫∞

0 e−𝑟𝑧𝑓(𝑟) for all 𝑧 ∈ ℂ+,
defines an isometric isomorphism from 𝐿2(ℝ+) onto 𝐻2

𝑎(ℂ+). The results below show how the Laplace
transform connects the range spaces presented in subsections above.

P r o p o s i t i o n 9 . Let 𝐻 ∈ ℌ2. It follows that ℒ𝐴𝐻 = 𝐷𝐻𝑡ℒ.

T h e o r e m 1 0 . Let 𝐻 ∈ ℌ2. The Laplace transform ℒ restricted to 𝒜(𝐻) is an isometric isomorphism onto
𝒟(𝐻𝑡), ℒ∶ 𝒜(𝐻) → 𝒟(𝐻𝑡).

C o r o l l a r y 1 1 . Let 𝐻 ∈ ℌ2. Either if 𝐻 is symmetric, that is, 𝐻 = 𝐻𝑡, or if 𝐻 is real-valued, one obtains that
𝒟(𝐻) = 𝒟(𝐻𝑡) as RKH spaces. Thus, the Laplace tranform ℒ restricts to an isometric isomorphism from
𝒜(𝐻) onto 𝒟(𝐻), ℒ∶ 𝒜(𝐻) → 𝒟(𝐻).

One may ask whether there exists an isometric isomorphism from 𝒜(𝐻) onto𝒟(𝐻) for a general 𝐻 ∈ ℌ2.
This question is answered in the forthcoming work [8], where two mappings 𝒫, 𝒮∶ 𝐿2(ℝ+) → 𝐻2

𝑎(ℂ+) are
given such that they define isometric isomorphisms from 𝒜(𝐻) onto𝒟(𝐻) for all 𝐻 ∈ ℌ2.

As a final note, we refer the reader again to the upcoming work [8], where the proofs of all the results
presented here, as well as a bunch of new results about this topic, are given in detail.
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