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A b s t r a c t : We investigate the existence of a symplectic and, consequently, a Poisson
structure on the space of solutions of a first order field theory. We provide an
affirmative answer for theories where all constraints can be solved. The analysis
for gauge theories is postponed to a more extensive work.

R e s u m e n : Se investiga la existencia de una estructura simpléctica y, en consecuen-
cia, de Poisson en el espacio de soluciones de una teoría de campos de primer
orden. Se da una respuesta afirmativa para las teorías en las que se pueden resolver
todas las restricciones. El análisis para las teorías gauge se pospone a un trabajo
más extenso.
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Poisson brackets on the space of solutions of first order Hamiltonian field theories

I n t r o d u c t i o n

We aim to analyse geometrical structures needed to give a description of a classical field theory allowing
for a formulation of its quantum counterpart being compatible with special relativity. Now, we motivate
how, with this problem in mind, it could be of interest to search for a Poisson structure on the space of
solutions of the equations of the motion of the classical field theory.

Given a classical dynamical system, a formulation in terms of Poisson geometry is helpful to give a
description of its quantum counterpart, if existing. If a Poisson structure exists on the phase space1, say
ℳ, of the dynamical system, then a Poisson bracket on the space of smooth functions onℳ is defined.
Real valued smooth functions onℳ are usually interpreted as the observables of the theory. The so called
Dirac’s analogy principle states that in order for the predictions of the classical and the quantum theory
to coincide within the energy scale where they are experimentally indistinguishable, then the Poisson
structure on the space of classical observables must “come from” a Lie algebra structure on the space of
quantum observables, that are modelled as self-adjoint operators on a Hilbert space. This motivates the
search of a Poisson description of the classical theory.

However, the very concept of phase space is not compatible with special relativity. Indeed, often, the
phase space is the space of configurations and momenta of the dynamical system for a fixed value of
the time and the definition of a concept of time requires the introduction of a reference frame which
splits the relativistic space-time into space and time. But, after a particular reference frame is introduced,
the covariance of the dynamical system2 under the Lorentz group can not be manifest. Following an
idea of Souriau [7], the space of solutions of the equations of the motion seems to be more suitable for a
relativistic description. Indeed, the relativity group is a group whose action preserves the equations of the
motion and, consequently, maps solutions into solutions. Thus, differently from phase space, the space of
solutions is actually covariant with respect to the action of the relativity group. With all this in mind, in
order to give a description of the quantum counterpart of a classical field theory which is compatible with
special relativity, it is of interest to investigate whether and how a Poisson structure can be given on the
space of solutions of the classical theory.

This is what we do in this paper, giving an affirmative answer in the case of field theories where all the
constraints can be solved and postponing the analysis of gauge theories to a more extensive work.

1 . M u l t i s y m p l e c t i c f o r m u l a t i o n o f f i e l d t h e o r i e s

We refer to [5, 6] for basic notions, notations and conventions about differential geometry and jet bundles.
We adopt the so called multisymplectic formulation of field theories [4]. In this formulation the fields
of the theory are modelled as sections of a fibre bundle (𝐸,𝜋,ℳ) whose base spaceℳ is a space-time
with boundary 𝜕ℳ. A chart onℳ will be denoted by (𝑈ℳ,𝜓ℳ), 𝜓ℳ(𝑚) = (𝑥𝜇)𝜇=0,...,𝑑, with 𝑑 + 1 being
the dimension of the space-time and 𝑚 ∈ ℳ. An adapted fibered chart on 𝐸 will be denoted by (𝑈𝐸,𝜓𝐸),
𝜓𝐸(𝑒) = (𝑥𝜇, 𝑢𝑎)𝜇=0,...,𝑑;𝑎=1,...,𝑛, with 𝑛 being the dimension of the fibres of 𝐸 and 𝑒 ∈ 𝐸. Sections of 𝜋 are
the fields of the theory, and we denote them by 𝜙𝑎. The analogue of the phase space of mechanics is the
so called covariant phase space which is the affine dual of the first order jet bundle of 𝜋 [4]. It is again a
fibre bundle overℳ, denoted by (𝒫(𝐸), 𝜏1,ℳ), where an adapted fibered chart will be denoted by (𝑈𝒫,𝜓𝒫),
𝜓𝒫(𝑝) = (𝑥𝜇, 𝑢𝑎, 𝜌𝜇𝑎)𝜇=0,...,𝑑;𝑎=1,...,𝑛, with 𝑝 ∈ 𝒫(𝐸). Sections of 𝜏1 will be denoted by 𝜒 = (𝜙𝑎, 𝑃𝜇𝑎 ), where 𝑃

𝜇
𝑎

are the momenta fields conjugate with the fields 𝜙𝑎. We take actually a subset of suitably regular section
admitting a Banach manifold structure, we refer to them as dynamical fields of the theory and we denote
them asℱ𝒫. The particular field theory under investigation is specified by selecting anHamiltonian function,
namely, a real valued function on 𝒫(𝐸), say 𝐻(𝑥, 𝑢, 𝜌). As it is explained in [4], when an Hamiltonian is
fixed, the covariant phase space has a canonical (𝑑 + 1)-form denoted by

𝛩𝐻 = 𝜌𝜇𝑎 d𝑢𝑎 ∧ 𝑖𝜇𝑣𝑜𝑙ℳ − 𝐻𝜈ℳ,

1It is a space where each possible configuration of the dynamical system is represented by a point.
2We mean the invariance of the equations of the motion as well as the invariance of physical meaningful quantities.
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where 𝑖𝜇 denotes the contraction with the vector field
𝜕

𝜕𝑥𝜇
and 𝜈ℳ is the volume form onℳ.

The dynamical content of the theory is encoded in the Schwinger-Weiss variational principle. Trajectories
are defined to be the critical points of the following action functional

𝒮[𝜒] = ∫
ℳ
𝜒⋆𝛩𝐻.

The critical points of 𝒮 are those dynamical fields for which the variation of the action along any direction
only depends on boundary terms. Let us clarify what we mean for “variation”, “direction” and “boundary
term”. The space ℱ𝒫 is a space of sections. A tangent vector at some “point” 𝜒 is defined [4] as a map
𝑚 ↦ 𝑋(𝜒) ∈ V𝜒(𝑚)𝒫(𝐸) for all 𝑚 ∈ ℳ, namely, as a section of the pull-back bundle of V𝒫(𝐸) via 𝜒.
Intuitively it is a collection of 𝜏1-vertical3 tangent vectors at 𝒫(𝐸) along the map 𝜒. Let us denote as 𝑋
an extension of 𝑋(𝜒) to a (𝜏1-vertical) vector field on 𝒫(𝐸) defined on a neighborhood of the image of
𝜒. Denote by 𝐹𝑋𝑠 the local flow of 𝑋. Then, 𝜒𝑠 ≔ 𝐹𝑋𝑠 ∘ 𝜒 is a one-parameter family of sections of 𝜏1. The
variation of 𝒮 along the direction 𝑋(𝜒) is defined to be

( 1 ) 𝛿𝑋(𝜒)𝒮[𝜒] =
d
d𝑠
|||
𝑠=0

∫
ℳ
𝜒⋆𝑠 𝛩𝐻 = ∫

ℳ
𝜒⋆ (𝑖𝑋 d𝛩𝐻) +∫

𝜕ℳ
𝜒⋆𝜕ℳ (𝑖𝑋𝛩𝐻) ,

where 𝜒𝜕ℳ = 𝜒||𝜕ℳ is the dynamical field 𝜒 restricted to 𝜕ℳ4. The first term on the right hand side (r.h.s.)
of (1) can be interpreted as the contraction of a differential one-form over ℱ𝒫, that we denote by �� and
call Euler-Lagrange form, with the tangent vector 𝑋(𝜒). The second term in (1) is a boundary term in the
sense that it only depends on the restriction of the dynamical fields to the boundary. We are going to
denote the space of restrictions of dynamical fields to the boundary by ℱ𝜕ℳ

𝒫 . Therefore, the second term
on the r.h.s. can be interpreted as the pull-back of a differential form on ℱ𝜕ℳ

𝒫 via the restriction map
𝛱𝜕ℳ∶ ℱ𝒫 → ℱ𝜕ℳ

𝒫 . We denote such a differential form by 𝛱⋆
𝜕ℳ𝛼𝜕ℳ, where 𝛼𝜕ℳ is a differential one-form

on ℱ𝜕ℳ
𝒫 . Thus, following the Schwinger-Weiss principle, trajectories are those 𝜒 for which the first term on

the r.h.s. of (1) vanishes for any direction 𝑋(𝜒). Then, the fundamental lemma of the calculus of variations
implies that 𝜒 satisfies the following equations of the motion

��𝜒(𝑋(𝜒)) = 0 ∀𝑋(𝜒) ∈ T𝜒ℱ𝒫 ⟹ 𝜒⋆ (𝑖𝑋 d𝛩𝐻) = 0 ∀𝑋 ∈ 𝔛𝑣 (𝑈(𝜒)
𝒫 ) ⟹ {

𝜕𝜙𝑎

𝜕𝑥𝜇
= 𝜕𝐻

𝜕𝜌𝜇𝑎
(𝜒),

𝜕𝑃𝜇𝑎
𝜕𝑥𝜇

= − 𝜕𝐻
𝜕ᵆ𝑎

(𝜒),

𝑈(𝜒)
𝒫 being an open neighborhood of the image of 𝜒. The space of solutions of the equations of the motion

will be denoted by ℰℒℳ.

Now, we focus on the role of the differential form 𝛱⋆
𝜕ℳ𝛼𝜕ℳ within the construction of the Poisson bracket

on ℰℒℳ. First, its differential gives the following two-form on ℱ𝒫 being, again, the pull-back of a two-form
on ℱ𝜕ℳ

𝒫

d𝛱⋆
𝜕ℳ𝛼𝜕ℳ(𝑋(𝜒),𝑌 (𝜒)) ≕ 𝛱⋆

𝜕ℳ𝛺𝜕ℳ(𝑋(𝜒),𝑌 (𝜒)) = ∫
𝜕ℳ

𝜒⋆𝜕ℳ (𝑖𝑋𝑖𝑌 d𝛩𝐻) .

It can be proved that [1, 2]

P r o p o s i t i o n 1 . ℰℒℳ is an isotropic manifold for 𝛱⋆
𝜕ℳ𝛺𝜕ℳ.

On the other hand, if we consider a blockℳ12 inℳwhose boundary ismade by two hypersurfaces𝛴1 and𝛴2
with opposite orientations, then 𝛱⋆

𝜕ℳ𝛺𝜕ℳ = 𝛱⋆
𝛴1𝛺

𝛴1 −𝛱⋆
𝛴2𝛺

𝛴2, where 𝛱⋆
𝛴𝛺𝛴 = ∫𝛴 𝜒

⋆
𝛴 (𝑖𝑋𝑖𝑌 d𝛩𝐻), 𝜒𝛴 being

the restriction to𝛴 of a dynamical field. Then, because of proposition 1, we have𝛱⋆
𝛴1𝛺

𝛴1||ℰℒℳ
= 𝛱⋆

𝛴2𝛺
𝛴2||ℰℒℳ

.
The same argument for any couple of hypersurfaces inℳ gives that the differential two-form 𝛱⋆

𝛴𝛺𝛴 on
the space of restrictions of dynamical fields to a hypersurface 𝛴 does not depend on the particular 𝛴 if it is
evaluated on solutions of the equations of the motion. We are going to denote the equivalence class of all
these equivalent 𝛱⋆

𝛴𝛺𝛴 on ℰℒℳ, as 𝛱⋆𝛺.

3They must be vertical in order to ensure their flow to lie in the space of sections.
4It is actually a section of the pull-back bundle of 𝜏1 via 𝔦𝜕ℳ, 𝔦𝜕ℳ being the canonical immersion of 𝜕ℳ intoℳ.
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2 . C o n s t r u c t i o n o f t h e b r a c k e t

The crucial point to obtain a Poisson bracket on ℰℒℳ is that 𝛱⋆𝛺 is a symplectic structure for theories
where all constraints can be solved5.

P r o p o s i t i o n 2 . 𝛱⋆𝛺 is a symplectic structure if all constraints can be solved.

P r o o f s k e t c h . Since 𝛱⋆𝛺 does not depend on 𝛴, one can consider as 𝛴 a hypersurface of Cauchy data for
the equations on the motion. If all constraints can be solved, an existence and uniqueness theorem for
the equations of the motion holds and, thus, the space of Cauchy data is diffeomorphic with the space of
solutions, the diffeomorphism denoted by 𝛷ℰℒℳ. The structure 𝛱⋆𝛺 restricted to the space of Cauchy data
of the equations of the motion is 𝛷⋆

ℰℒℳ
𝛱⋆
𝛴𝛺𝛴. Via a direct computation it is easy to prove that 𝛷⋆

ℰℒℳ
𝛱⋆
𝛴𝛺𝛴

is symplectic. Therefore, the structure 𝛱⋆𝛺 on the space of solutions is the pull-back via a diffeomorphism
of a symplectic structure, thus, it is symplectic. ▪

With the symplectic structure 𝛱⋆𝛺 in hand, a Poisson bracket on ℰℒℳ can be defined in the usual way as

{𝐹,𝐺} = 𝛱⋆𝛺(𝑋𝐹,𝑋𝐺) = 𝔏𝑋𝐹𝐺,

𝐹 and 𝐺 being functions on ℰℒℳ and 𝑋𝐹 being the Hamiltonian vector field associated with 𝐹 w.r.t. 𝛱⋆𝛺,
i.e., the one satisfying 𝑖𝑋𝐹𝛱

⋆𝛺 = d𝐹.

We conclude by mentioning that an easier way to compute the Hamiltonian vector field , and, thus, the
bracket, exists6. Indeed, the functional 𝐹 can be restricted to the space of Cauchy data to 𝑓 = 𝛷⋆

ℰℒℳ
𝐹.

To 𝑓 a Hamiltonian vector field, say 𝑋𝑓, can be associated via the symplectic structure 𝛷⋆
ℰℒℳ

𝛱⋆𝛺, and
this is much easier from the computational point of view. Then, it can be proved that the Hamiltonian
vector field associated with the original functional 𝐹 with respect to the structure 𝛱⋆𝛺 can be recovered
by solving the linearization of the equations of the motion with 𝑋𝑓 as Cauchy datum.
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