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A b s t r a c t : Over the last decades several regularization methods have been devel-
oped for sparse high-dimensional regression models. The influence of outliers
is particularly awkward in the high dimensional context and so certain robust
methods have been considered. Regularization methods simultaneously perform
the model selection and the estimation of regression coefficients, merging a loss
function based on the residuals and a penalty function inducing sparsity. Differ-
ent penalties have been proposed, such as LASSO or Adaptive LASSO, a variant
which improves the oracle model selection property, or non-concave penalties
such as SCAD or MCP, which demostrably overcome the bias problem of the LASSO.
We propose to examine robust losses with the various proposals for the penal-
ties, leading to the differents estimating methods, namely the minimun density
power divergence (DPD) and Rényi psedudodistance (RP) estimator penalized
with LASSO, adaptative LASSO and SCAD.We develop an estimating algorithm for
each method, focusing on their differences and similarities. Finally, we study the
performance of the methods throught a simulation study.

R e s u m e n : En las últimas décadas se han desarrollado variosmétodos de regulariza-
ción para el modelo lineal de regresión con datos de alta dimensión. La influencia
de los datos atípicos en la estimación es particularmente perjudicial en el contexto
de datos de alta dimensión, y por tanto se han considerado métodos robustos
de estimación. Los métodos de regularización llevan a cabo simultáneamente
la selección de variables y la estimación paramétrica mediante la combinación
de una función de pérdida, basada en los residuos del modelo, y una función de
penalización que induce la selección de variables. Han sido propuestas distintas
penalizaciones como las penalizaciones LASSO y LASSO Adaptativo, una variante
que mejora las propiedades oráculo del estimador, o penalizaciones no cóncavas
como SCAD o MCP, que resuelven el problema de sesgo que presenta la penaliza-
ción LASSO. Se propone examinar las pérdidas robustas con distintas funciones
de penalización, dando lugar a distintos estimadores, a saber, el estimador de
mínima potencia (DPD) y de mínima pseudodistancia de Rényi penalizado con
LASSO, LASSO adaptativo y SCAD . Se desarrolla un algoritmo de estimación para
cada método, señalando sus diferencias y similitudes. Por último, se estudia el
comportamiento de los métodos a través de un estudio de simulación.
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A comparative study of robust regularization methods based on minimum DPD and RP losses

1 . I n t r o d u c c i ó n

We consider the high-dimensional linear regression model (LRM) given by

( 1 ) 𝑌𝑖 = 𝑿𝑇
𝑖 𝜷 + 𝑈𝑖, 𝑖 = 1,… , 𝑛,

where 𝑿𝑖 = (𝑋𝑖1,… ,𝑋𝑖𝑝)𝑇 are the explanatory variables or covariates, 𝜷 = (𝛽1,… , 𝛽𝑝)𝑇 ∈ ℝ𝑝 is the vector of
unknown regression coefficients and the 𝑈𝑖s are random noise with 𝑼 = (𝑈1,… ,𝑈𝑛) ∈ ℝ𝑛 being normally
distributed with null mean vector and variance covariance matrix 𝜎2𝑰𝑛.
The term high-dimensional data is used when the number of explanatory variables, 𝑝, is greater than
the number of observations by nonpolynomial dimensionality. On the other hand, sparse models are
those whose number of true non-zero regression parameters is very low respect to the total number of
covariates. This situation is accurate to real-life problems in several areas, such as genetics and genomic,
bioinformatics, neuroimaging or chemometrics. Finally, it is known that contaminated data could worsen
the estimation of the regression parameters. To avoid this issue, we need to develop robust estimating
procedures. In this line, we are following the ideas by Castilla et al. (2020) [1] and Ghosh et al. (2020) [2].
The main awkward of the high dimensional regression models is the variable selection. As the number of
possible models grows exponentially, information criteria are not suitable to choose the best model. Hence,
regularization methods are clearly more convenient in these settings. Regularization methods introduce a
penalty term, which penalizes the absolute value of the regression coefficients, on the objective function
to achieve simultaneously model selection and parameter estimation. Regularization methods for sparse
high-dimensional data analysis are characterized by loss functions measuring data fits and penalty terms
constraining model parameters. In LRM, we estimate the parameter vector (𝜷,𝜎) ∈ ℝ𝑝+1 by minimizing
an objective function of the form

( 2 ) 𝑄𝑛,𝜆 (𝜷,𝜎) = 𝐿𝑛 (𝜷, 𝜎) +∑𝑝
𝑗=1𝑝𝜆𝑛 (|𝛽𝑗|) ,

which consists of a data fit functional 𝐿𝑛 (𝜷,𝜎), called loss function, and a penalty function∑
𝑝
𝑗=1𝑝𝜆𝑛 (||𝛽𝑗||),

assessing the physical plausibility of 𝜷 and controlling the complexity of the fitted model in order to avoid
overfitting. A regularization parameter 𝜆𝑛 (𝜆𝑛 ≥ 0) regulates the penalty. From a practical point of view,
the regularization parameter is chosen using some information criterion or by cross-validation.
The most common penalties are 𝑝𝜆𝑛(𝑠) = 𝑠2 for Ridge estimator and 𝑝𝜆𝑛(𝑠) = |𝑠| for the LASSO estimator.
The first one does not achieve model selection as it is unable to detect the null regression coefficients, but
is more convenient when there is multicolinearity. Further, there have been several generalizations of the
LASSO penalty yielding consistent estimator of the active set under much weaker conditions. In this vein,
we also consider the Adaptative-LASSO and the SCAD (smoothly clipped absolute deviation) penalties.
Respect to the loss function, the most common is the least squares function obtained by the maximum
likelihood criterion. The lack of robustness of this quadratic function is known, so it must be replaced by a
robust loss so as to limit the impact of contamination in the data.

2 . R o b u s t l o s s e s

Let us consider the linear regression model (1) on which we assume that 𝑌|𝑿 = 𝒙 follows a normal
𝒩(𝒙𝑇𝜷,𝜎2) depending on the regression parameter, and let us consider a random sample (𝑌𝑖,𝑿𝑖)1,…,𝑛 from
the model whose empirical distribution is 𝐺𝑛.
Theminimumdistance approach aims tominimize “some kind ofmeasure of the distance or the divergence”
between the proposed distribution of 𝑌|𝑿 = 𝒙 and its empirical version. We use two of these measures
of proximity between two distributions, namely the density power divergence (DPD) and the Rényi’s
pseudodistance (RP). These two measures take the following form for the linear regression model:

𝐿DPD𝑛,𝛼 (𝜷, 𝜎) =
1

(2𝜋)𝛼/2 𝜎𝛼
(
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where 𝑓𝒙𝑇𝜷,𝜍2 denotes the normal density with mean 𝒙𝑇𝜷 and variance 𝜎2. Note that both depend on a
tunning parameter 𝛼 > 0 which controls the trade-off between efficiency and robustness. The minimun
DPD estimator (MDPDE) ( ̂𝜷DPD𝛼 , 𝜎̂DPD𝛼 ) and the minimun RP estimator (MRPE) ( ̂𝜷RP𝛼 , 𝜎̂RP𝛼 ) are defined as the
values (𝜷,𝜎)minimizing (3) and (4), respectively. Even more, both measures can be defined at 𝛼 = 0 as
the log-likelihood function taking continuous limit in 𝛼. Hence, both approaches include the maximum
likelihood estimator (MLE) for the value 𝛼 = 0. From a practical point of view, the main difference between
these measures lies in the estimation of 𝜎2.

3 . P e n a l i z e d M D P D E a n d M R P E .

The regularization methods based on DPD and RP losses are constructed by including a penalty term to the
objective function so as to achieve simultaneously model selection and parameter estimation. Therefore,
our objective function is 𝑄𝑛,𝛼,𝜆(𝜷) = 𝐿̃𝑛,𝛼,𝜆(𝜷) + ∑𝑝

𝑗=1 𝑝𝜆(|𝛽𝑗|) for a robust loss 𝐿̃𝑛,𝛼,𝜆(𝜷) (DPD or RP loss)
and a penalty function 𝑝𝜆(⋅). We are considering three different penalties to compare their performance,
namely LASSO, Adaptive LASSO and a non-concave penalty SCAD.

• LASSO panalty: 𝑝𝜆(𝛽𝑗) = 𝜆∑𝑝
𝑗=1 |𝛽𝑗|.

• Adaptive LASSO penalty: 𝑝𝜆(𝛽𝑗) = 𝜆∑𝑝
𝑗=1

1

| ̃𝛽𝑗|
⋅ |𝛽𝑗|, where ̃𝜷 is a robust estimate of 𝜷.

• Non-concave penalty SCAD: 𝑝𝜆(|𝛽𝑗|) =
⎧⎪
⎨⎪
⎩

𝜆|𝛽𝑗| if |𝛽𝑗| ≤ 𝜆,
2𝑎𝜆|𝛽𝑗|−|𝛽𝑗|2−𝜆2

2(𝑎−1)
if 𝜆 < |𝛽𝑗| ≤ 𝑎𝜆,

(𝑎+1)𝜆2

2
if 𝑎𝜆 < |𝛽𝑗|,

where 𝑎 = 3.7.

3 . 1 . R o b u s t n e s s o f t h e p r o p o s e d e s t i m a t o r s

Local robustness of an estimator can be studied through its influence function (IF). The IF measures the
possible asymptotic bias in the estimation due to an infinitesimal contamination, and an estimator is
said robust if its IF is bounded. We can verify that the IF of the proposed estimators is bounded for 𝛼 > 0
and non-bounded for 𝛼 = 0 corresponding to the MLE. Figure 1 shows the IF of the MDPDEs and MRPEs
for univariate linear regression with 𝜎0 = 1, 𝑥𝑡 = 1 and �[𝑥2] = 1. The abscissa axis corresponds to the
perturbation 𝑢 = 𝑦 − 𝑥𝛽 and the ordinate axis corresponds to the IF value.

4 . E s t i m a t i n g a l g o r i t h m

The basic idea of our proposed algorithm is to iteratively minimize the objective 𝑄𝑛(𝜷, 𝜎) in two steps: we
first update the current solution of the regression parameter 𝜷 and then we minimize the error deviance 𝜎.
For the first step, we combine MM-algorithm and coordinate descent algorithm, adapted to each situation,
so as to update 𝜷. As mentioned before, this update is similar for both proposed losses, DPD and RP. For
the second step, we approximate a solution of the estimating equations of 𝜎, obtained by equating the first
derivative of the objective function to zero.

5 . S i m u l a t i o n S t u d y

We finally carry out a simulation study so as to evaluate the robustness and efficiency of the proposal
penalized MDPDE MNPRPE under the LRM.We also estimate the regression parameters (𝜷,𝜎) using other
existing robust and non-robust methods of high-dimensional LRM to compare their performances with
our proposed method. For each one of the estimators, we calculate the mean square error (MSE) for
the true non-zero and zero coefficients separately, Absolute Prediction Bias using an unused test sample
generated in the same way as train data, True Positive proportion, True Negative proportion and Model
Size of the estimated regression coefficient ̂𝜷, and Estimation Error of the estimate 𝜎̂.
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F i g u r e 1 : IF of the MDPDE for beta (upper left) and sigma (upper right), and IF of the MRPE for beta (bottom
left) and sigma (bottom right).

Further, in order to examine the efficiency loss against non-robust methods in absence of any contami-
nation, as well as compare the performance in the presence of contamination in the data, we consider
different scenarios for data contamination, besides the pure data setting, including contaminating data in
the responde variable 𝑌 and the explanatory variables 𝑿.

The simulation results show the gain in robustness when the parameter 𝛼 increases, as well as the improve-
ment that the Adaptative LASSO and SCAD penalty entail for the variable selection. We conclude that the
proposed estimators are very competitive to the classical MLE, and moreover, they perform better with
contaminated data.
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