Distribution functions and probability measures on linearly ordered topological spaces

\square José F. Gálvez-Rodríguez
Universidad de Almería
jgr409@ual.es
Miguel A. Sánchez-Granero Universidad de Almería
misanche@ual.es

Abstract

In this work we describe a theory of a cumulative distribution function (in short, cdf) on a separable linearly ordered topological space (LOTS) from a probability measure defined in this space. This function can be extended to the Dedekind-MacNeille completion of the space where it does make sense to define the pseudo-inverse. Moreover, we study the properties of both functions (the cdf and the pseudo-inverse) and get results that are similar to those which are well-known in the classical case.

Resumen: En este trabajo describimos una teoría sobre la función de distribución acumulada en un espacio topológico linealmente ordenado separable a partir de una medida de probabilidad definida en este espacio. Esta función se puede extender a la completación Dedekind-MacNeille del espacio donde tiene sentido definir la pseudo-inversa. Además, estudiamos las propiedades de ambas funciones (la función de distribución y la pseudo-inversa) y obtenemos resultados similares a los conocidos en el caso clásico.

Keywords: probability, measure, Dedekind-MacNeille completion, cumulative distribution function, linearly ordered topological space.

MSC2O1O: 60E05, 60B05.
Reference: GÁLVEz-Rodríguez, José F., and SÁnchez-Granero, Miguel A. "Distribution functions and probability measures on linearly ordered topological spaces". In: TEMat monográficos, 2 (2021): Proceedings of the 3rd BYMAT Conference, pp. 203-206. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/view/ vol2-p203.
(c)(i) This work is distributed under a Creative Commons Attribution 4.0 International licence https://creativecommons.org/licenses/by/4.0/

1. Introduction

This work collects some results on a theory of a cumulative distribution function (cdf) on a separable linearly ordered topological space (LOTS).
In [2], we described a theory of a cumulative distribution function on a separable linearly ordered topological space. Moreover, we showed that this function plays a similar role to that played in the classical case and studied its pseudo-inverse, which allowed us to generate samples of the probability measure that we used to define the distribution function. In [3], we extended a cdf defined on a separable linearly ordered topological space, X, to its Dedekind-MacNeille completion, $D M(X)$. That completion is, indeed, a compactification. Moreover, we proved that each function satisfying the properties of a cdf on $D M(X)$ is the cdf of a probability measure defined on $D M(X)$. Indeed, if X is compact, a similar result can be obtained in this context. Finally, the compactification $D M(X)$ lets us generate samples of a distribution in X. By following this research line, the next step is exploring some conditions on X such that, given a function F with the properties of a cdf, we can ensure that there exists a unique probability measure on X such that its cdf is F. This is completely developed in [4].

For further reference about the classical measure theory see, for example, [5].

2. Preliminaries: linearly ordered topological spaces

First, we recall the definition of a linear order:
Definition 1. A partially ordered set (X, \leq) (that is, a set X with the binary relation \leq that is reflexive, antisymmetric and transitive) is totally ordered if every $x, y \in X$ are comparable, that is, $x \leq y$ or $y \leq x$. In this case, the order is said to be total or linear.

For further reference about partially ordered spaces see, for example, [1].
From the previous definition, we can talk about linearly ordered topological spaces:
Definition 2. A linearly ordered topological space (in short, LOTS) is a triple (X, τ, \leq) where (X, \leq) is a linearly ordered set and where τ is the topology of the order.

The topology of the order is defined as follows:
Definition 3. Let X be a set which is linearly ordered by $<$. We define the order topology τ on X by taking the sub-basis $\{\{x \in X: x<a\}: a \in X\} \cup\{\{x \in X: x>a\}: a \in X\}$.

In the rest of this work, we will assume that X is a separable LOTS, μ is a probability measure on the Borel σ-algebra of $X, \sigma(X)$, and τ is the order topology in X.

3. Defining the cumulative distribution function

First we give the definition of the cumulative distribution function of a probability measure defined on X.
Definition 4. Given a probability measure μ on X, its cumulative distribution function (in short, cdf) is the function $F: X \rightarrow[0,1]$ defined by $F(x)=\mu(\{a \in X: a \leq x\})$, for each $x \in X$.

This function satisfies some properties that we collect next, and that are similar to those which are well-known in the classical theory of distribution functions:

Proposition 5. Let μ be a probability measure on X, and F its cdf. Then,
(i) F is monotonically non-decreasing.
(ii) F is right τ-continuous.
(iii) $\sup F(X)=1$.
(iv) If there does not exist $\min X$, then $\inf F(X)=0$.

Once we have defined a cdf and studied its properties, it does make sense to ask ourselves if, given a function, F, satisfying the properties collected above, there exists a probability measure μ on X such that its cdf, F_{μ}, is F. This is a question we will answer with the help of a structure we analyse in the next section. Indeed, if we work with F we can get the measure of each interval in X.

Proposition 6. If F is the cdf of a probability measure μ on X, then $\mu(\{x \in X: a<x \leq b\})=F(b)-F(a)$, for each $a, b \in X$ such that $a<b$.
The next result is about the continuity of a cdf:
Proposition 7. Let $x \in X, \mu$ be a probability measure on X and F its cdf. If $\mu(\{x\})=0$, then F is τ continuous at x.
However, the converse is not true. To show that, we include an example where the cdf of a probability measure on a space is a step cdf which is continuous with respect to τ.

Example 8. Let $X=[0,1] \cup[2,3]$ with the usual order. If μ is a probability measure defined on X by $\mu(\{2\})=1$, then its cdf is the function $F: X \rightarrow[0,1]$ defined by

$$
F(x)= \begin{cases}0 & \text { if } x \leq 1 \\ 1 & \text { if } x \geq 2\end{cases}
$$

Note that F is a step cdf and it is τ-continuous.

4. The extension of a cdf to the Dedekind-MacNeille completion

Definition 9. The Dedekind-MacNeille completion of a partially ordered set X is defined to be $D M(X)=$ $\left\{A \subseteq X: A=\left(A^{u}\right)^{l}\right\}$ ordered by inclusion $\left(A \leq B\right.$ if and only if $A \subseteq B$), where A^{u} (resp. A^{l}) is the set of upper (resp. lower) bounds of A.
We also define $\phi: X \rightarrow D M(X)$ as the embedding given by $\phi(x)=(\{a \in X: a \leq x\})$, for each $x \in X$. For further reference about cuts and the Dedekind-MacNeille completion see, respectively, [6] and [7].
The next result gives us that each cdf on a LOTS can be naturally extended to its Dedekind-MacNeille completion.

Proposition 10. $D M(X)$ is, indeed, a compactification of X and F can be extended to a cdf, \widetilde{F}, on $D M(X)$ by defining $\widetilde{F}: D M(X) \rightarrow[0,1]$ by $\widetilde{F}(A)=\inf F\left(A^{u}\right)$, for each $A \in D M(X)$.

5. The pseudo-inverse of a cdf

Definition 11. Let F be a cdf. We define the pseudo-inverse of F by $G:[0,1] \rightarrow D M(X)$ given by $G(r)=$ $\{x \in X: F(x) \geq r\}^{l}$, for each $r \in[0,1]$.
This function satisfies some properties which are similar to those which are well-known in the classical case for the pseudo-inverse of a cdf, as we can see next:

Proposition 12. The following hold:
(i) G is monotonically non-decreasing.
(ii) G is left τ-continuous.
(iii) $G(r) \leq \phi(x)$ if and only if $r \leq F(x)$, for each $x \in X$ and each $r \in[0,1]$.

6. Relationship between a probability measure and its cdf

Once we have defined and studied the main properties of a cdf and its pseudo-inverse, we answer the question made in Section 3 about the univocal relationship between a probability measure and its cdf in the context of separable LOTS. For that purpose, the main result is the next one:

Theorem 13. Let X be a separable LOTS such that $D M(X) \backslash \phi(X)$ is countable and $F: X \rightarrow[0,1]$ be a monotonically non-decreasing and right τ-continuous function satisfying $\sup F(X)=1$ and $\sup F(A)=$ $\inf F\left(A^{u}\right)$, for each $A \in D M(X)$. Moreover, $\inf F(X)=0$ if there does not exist the minimum of X. Then, there exists a unique probability measure on X, μ, such that $F=F_{\mu}$.
What is more, the pseudo-inverse of a cdf is also univocally determined by its probability measure:
Theorem 14. Let X be a separable LOTS such that $D M(X) \backslash \phi(X)$ is countable and let $G:[0,1] \rightarrow D M(X)$ be a monotonically non-decreasing and left τ-continuous function such that $\sup G^{-1}(<A)=\inf G^{-1}(>A)$, for each $A \in D M(X) \backslash \phi(X), G(0)=\min D M(X), G^{-1}(\max D M(X)) \subseteq\{1\}$ if there does not exist the maximum of X and $G^{-1}(\min D M(X))=\{0\}$ if there does not exist the minimum of X. Then, there exists a unique probability measure on X, μ, such that G is the pseudo-inverse of F_{μ}.

7. Applications

7.1. Generating samples

First, we can get the measure of each subset in the Borel σ-algebra of X from the pseudo-inverse of a cdf.
Proposition 15. Let μ be a probability measure. Then, $\mu(A)=l\left(G^{-1}(A)\right)$ for each $A \in \sigma(X)$, where l is the Lebesgue measure.
That procedure lets us generate samples of a distribution, similarly to the classical procedure for distribution functions in the real line.

Remark 16. We can also calculate integrals with respect to μ, so, for $g: X \rightarrow \mathbb{R}$, it holds that

$$
\int g(x) \mathrm{d} \mu(x)=\int g(G(t)) \mathrm{d} t
$$

7.2. A goodness-of-fit test

In this subsection, we give a goodness-of-fit test whose idea is similar to the one followed by the KolmogorovSmirnov test, but in a more general context. Suppose that we are given a random sample on a separable LOTS according to a certain cumulative distribution function. Our purpose is testing if that distribution comes from a certain cdf F. Let us denote by F_{n} the empirical cumulative distribution function of the sample and define the statistic $D_{n}=\sup _{x \in X}\left|F_{n}(x)-F(x)\right|$, then the next statement holds.
Theorem 17. Given a separable LOTS, X, and $n \in \mathbb{N}$, the distribution of D_{n} is the same for each cdf, F_{μ}, satisfying that $\mu(\{x\})=0$, for each $x \in X$.

References

[1] Dushnik, D. and Miller, E. W. "Partially ordered sets". In: American Journal of Mathematics 63 (1941), pp. 600-610.
[2] Gálvez-Rodríguez, J. F. and Sánchez-Granero, M. A. "The distribution function of a probability measure on a linearly ordered topological space". In: Mathematics 7.9 (2019), p. 864.
[3] Gálvez-Rodríguez, J. F. and Sánchez-Granero, M. A. "The distribution function of a probability measure on the Dedekind-MacNeille completion". In: Topology and its Applications 275 (2020), No. 107010.
[4] Gálvez-Rodríguez, J. F. and Sánchez-Granero, M. A. "Equivalence between distribution functions and probability measures on a LOTS". Preprint.
[5] Halmos, P. R. Measure Theory. New York: Springer-Verlag, 1974.
[6] MacNeille, H. M. "Partially ordered sets". In: Transactions of the American Mathematical Society 42.3 (1937), pp. 416-460.
[7] Roman, S. Lattices and ordered sets. New York: Springer-Verlag, 2008.

