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A b s t r a c t : We present an efficient algorithm to compute rotation intervals of circle
maps of degree one. It is based on the computation of the rotation number of a
monotone circle map of degree one with a constant section. The main strength of
this algorithm is that it computes exactly the rotation interval of a natural subclass
of the continuous non-invertible degree one circle maps.

We also compare our algorithm with other existing ones by plotting the Devil’s
Staircase of a one-parameter non-differentiable family of maps, which is out of
reach for the existing algorithms that are centred around differentiable maps.

R e s u m e n : Presentamos un algoritmo eficiente para calcular el intervalo de rotación
para aplicaciones en el círculo de grado 1. Está basado en el cálculo del número
de rotación de aplicaciones en el círculo de grado 1 monótonas que tengan una
sección constante. El punto fuerte de este algoritmo es que calcula el intervalo
de rotacion de formula exacta para una subclasse natural de aplicaciones en el
círculo continuas y no invertibles.

También compararemos nuestro algoritmo con otros existentes para dibujar la De-
vil’s Staircase de una familia dependiente de un parametro no-diferenciable, fuera
del alcance de los algoritmos existentes, centrados en funciones diferenciables.
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Algorithm for rotation numbers

1 . S t a t e m e n t o f t h e p r o b l e m

This extended abstract basically summarizes the results in [1]. Most of the preliminary results can be found
in [2].

Wewant to efficiently compute rotation intervals for degree one circlemaps, the reason being the theoretical
importance it plays on combinatorial dynamics. Many results, ranging from the exact set of periods of
the maps to their entropy, use the rotation interval strongly. Now we will introduce the notion of rotation
number and interval, and give some important properties relating degree one circle maps and their rotation
numbers or intervals. First, let us introduce the notion of degree one map.

D e f i n i t i o n 1 (degree one maps). Let 𝑓∶ �1 → �1 be a continuous map and let 𝐹∶ ℝ → ℝ be such that
exp(2π𝑥)∘𝑓 = 𝐹∘ exp(2π𝑥). Wewill say that𝐹 is a lifing of 𝑓. We say that𝑓 is of degree 1 if𝐹(1)−𝐹(0) = 1. ◀

Note that there may be many liftings, but if 𝐹 and 𝐹′ are liftings of 𝑓, then 𝐹 = 𝐹′ + 𝑘, with 𝑘 ∈ ℤ, hence
the property 𝐹(1) − 𝐹(0) is independent of the choice of lifting. Now let us introduce the stars of the show,
the rotation number and rotation interval.

D e f i n i t i o n 2 (rotation number and rotation interval). Let 𝑓 be a map of degree 1 and let 𝐹 be a lifting. We
will define the rotation number of 𝐹 on 𝑥 ∈ ℝ as

𝜌𝐹(𝑥) = lim sup
𝑛→∞

𝐹𝑛(𝑥) − 𝑥
𝑛 .

Note that this number is dependent on 𝑥. Moreover we will define the rotation set of 𝐹 as

Rot(𝐹) = {𝜌𝐹(𝑥) ∣ 𝑥 ∈ ℝ} = {𝜌𝐹(𝑥) ∣ 𝑥 ∈ [0, 1]},

which is an interval [3]. ◀

Now, let us study some some ways to infer the rotation number from the properties of 𝐹.

L e m m a 3 . Let 𝐹 ∈ ℒ1. Then, 𝑥 is an 𝑛-periodic (mod 1) point of 𝐹 if and only if there exists 𝑘 ∈ ℤ such
that 𝐹𝑛(𝑥) = 𝑥 + 𝑘 but 𝐹𝑗(𝑥) − 𝑥 ∉ ℤ for 𝑗 = 1, 2,… , 𝑛 − 1. In this case,

𝜌𝐹(𝑥) = lim
𝑚→∞

𝐹𝑚(𝑥) − 𝑥
𝑚 = 𝑘

𝑛.

P r o p o s i t i o n 4 . Let 𝐹 ∈ ℒ1 be non-decreasing. Then, for every 𝑥 ∈ ℝ the limit

lim
𝑛→∞

𝐹𝑛(𝑥) − 𝑥
𝑛 ,

exists and is independent of 𝑥. In this case we denote the rotation number of the map by 𝜌𝐹.

Using this proposition we will compute the rotation interval by just computing the rotation number of two
non decreasing maps. However, first we need to introduce these special maps.

D e f i n i t i o n 5 . We set

𝐹𝑙(𝑥) = inf{𝐹(𝑦) ∶ 𝑦 ≥ 𝑥},
𝐹 (𝑥) = sup{𝐹(𝑦) ∶ 𝑦 ≤ 𝑥},

where 𝑢 stands for upper and 𝑙 for lower. ◀

In Figure 1a we show an example of the upper and lower maps. Finally we can show a result relating the
rotation interval with the well defined rotation number of two maps.

T h e o r e m 6 . Let 𝐹 be of degree 1. Then,

Rot(𝐹) = [𝜌𝐹𝑙 , 𝜌𝐹𝑢].
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2 . M a i n r e s u l t a n d n e w a l g o r i t h m

For a real number 𝑥, we will denote the floor of 𝑥 as ⌊𝑥⌋ and the decimal part function as {𝑥}.

A constant section of a lifting 𝐹 of a circle map is a closed non-degenerate subinterval 𝐾 of ℝ such that 𝐹|𝐾
is constant. In the special case when 𝐹 ∈ ℒ1, we have that 𝐹(𝑥 + 1) = 𝐹(𝑥) + 1 ≠ 𝐹(𝑥) for every 𝑥 ∈ ℝ.
Hence, the length of 𝐾 is less than 1.

The algorithm we propose is based on Lemma 8 but, especially, on the following simple proposition which
allows us to compute exactly the rotation number of a non-decreasing lifting from ℒ1 that has a constant
section, provided that 𝐹𝑛(𝐾) ∩ (𝐾 + ℤ) ≠ ∅.

P r o p o s i t i o n 7 . Let 𝐹 ∈ ℒ1 be non-decreasing and have a constant section 𝐾. Assume that there exists
𝑛 ∈ ℕ such that 𝐹𝑛(𝐾) ∩ (𝐾 + ℤ) ≠ ∅, and that 𝑛 is minimal with this property. Then, there exists 𝜉 ∈ ℝ

such that 𝐹𝑛(𝐾) = {𝜉} ⊂ 𝐾 + 𝑚 with 𝑚 = ⌊𝜉 −min𝐾⌋ ∈ ℤ, 𝜉 is an 𝑛-periodic (mod 1) point of 𝐹, and
𝜌𝐹 =

𝑚
𝑛
.

P r o o f . Since 𝐾 is a constant section of 𝐹, 𝐹(𝐾) contains a unique point, and hence there exists 𝜉 ∈ ℝ such
that 𝐹𝑛(𝐾) = {𝜉}. Then, the fact that 𝐹𝑛(𝐾)∩ (𝐾 +ℤ) ≠ ∅ implies that 𝜉 ∈ 𝐾 +𝑚 with𝑚 = ⌊𝜉−min𝐾⌋ ∈ ℤ.

Set ̃𝜉 ≔ 𝜉 − 𝑚 ∈ 𝐾. Then, {𝐹𝑛( ̃𝜉)} = 𝐹𝑛(𝐾) = { ̃𝜉 + 𝑚}. Moreover, the minimality of 𝑛 implies that
𝐹𝑗( ̃𝜉) − ̃𝜉 ∉ ℤ for 𝑗 = 1, 2,… , 𝑛 − 1. So, Lemma 3 tells us that ̃𝜉 (and hence 𝜉) is an 𝑛-periodic (mod 1)
point of 𝐹. Thus, 𝜌𝐹 =

𝑚
𝑛
by Proposition 4. ▪

Notice that this proposition gives us the backbone for an algorithm to compute rotation numbers for
non-decreasing maps with a constant section. What remains to be checked is what happens if the iteration
of the constant part 𝐾 never falls again inside 𝐾 +ℤ, or the number of iterates that are required is too large
to make it computationally practical. For this, we may use the following lemma.

L e m m a 8 . For every non-decreasing lifting 𝐹 ∈ ℒ1 and 𝑛 ∈ ℕ we have

|
|𝜌𝐹 −

𝐹𝑛(𝑥)−𝑥
𝑛

|
| <

1
𝑛 ,

for every 𝑥 ∈ ℝ.

2 . 1 . A l g o r i t h m

From Proposition 7 and Lemma 8 we can obtain the following algorithm:

( i ) Decide the maximum number of iterates N = ceil( 1

error
) to perform in the worst case (i.e., when

Proposition 7 does not work).
( i i ) Re-parametrize the lifting 𝐹 so that it has a maximal constant section of the form [0, 𝛽].
( i i i ) Initialize 𝑥 = 0 and𝑚 = 0.
( i v ) Compute iteratively 𝑥 = {𝐹𝑛(0)} and𝑚 = ⌊𝐹𝑛(0)⌋ (so that 𝐹𝑛(0) = 𝑥 + 𝑚) for 𝑛 ≤ N.
( v ) Check whether 𝑥 ≤ 𝛽. On the affirmative we apply the previous proposition, and thus, 𝜌𝐹 =

𝑚
𝑛
;⇒

“exact” rotation number.
( v i ) If we reach N iterates with 𝑥 > 𝛽 for every 𝑛 then, by the Lemma 8

|
|𝜌𝐹 −

𝑚 + 𝑥
N

|
| =

|||𝜌𝐹 −
𝐹𝑛(0)
N

||| <
1
N
,

and the algorithm returns 𝑚+𝑥
N

as an estimate of 𝜌𝐹 with
1

N
as the estimated error bound.

In [1], one can find a slightly more nuanced presentation of the algorithm, taking into account machine
and rounding errors, but in spirit they are the same.
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( a ) An example of a map 𝐹 ∈
ℒ1 with its lower map 𝐹𝑙 in red
and its upper map 𝐹𝑢 in blue.
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( b ) Plot of 𝐹𝜇 for a general 𝜇
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( c ) Devil’s Staircase plotted us-
ing the proposed algorithm

F i g u r e 1 : All the figures of the paper.

T a b l e 1 : Time taken by both the algorithms studied

Method Time (s)
Classic 132.418015

Proposed Algorithm 0.003307

3 . T e s t i n g o f t h e a l g o r i t h m

To test the algorithm we have plotted the Devil’s Staircase for the one-parametric family of maps

𝐹𝜇(𝑥) = 𝐹𝜇|[0,1]({𝑥}) + ⌊𝑥⌋.

See Figure 1b for a schematic plot. The so-called Devil’s staircase is the result of plotting the rotation
number as a function of the parameter 𝜇. It can be proven that this plot will have constant sections for
any rational rotation number, hence the “Staircase” in the name.

To conduct the test, we have plotted the Devil’s Staircase for 𝐹𝜇 using the proposed algorithm and the
algorithm stemming from Lemmas 4 and 8, which tells us that in the non decreasing case we can get the
rotation number just by iterating and allow us to control the error. In Figure 1c one can find the plot of the
Devil’s Staircase plotted with our algorithm and in Table 1 the times each algorithm required to plot such
figures. Moreover, the Arnol’d Tongues and the Rotation Intervals have also been computed in [1].
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