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A b s t r a c t : Model categories are a category theoretic tool defined by Daniel Quillen
with the aim of generalizing the homotopy theory built for topological spaces. The
main goal of this text is to give an introduction to them, following an article by
Dwyer and Spalinski. Just by its definition, it is almost inmediate that we can
generalize analogues of well-known notions such as cylinder spaces, path spaces
and homotopies. We use these tools to build a homotopy theory on a model
category. Moreover, we will give some examples of different model structures
over some categories, such as the expected category of topological spaces and the
category of chain complexes of modules over a ring. Concerning the second one,
we will also speak a little about spectral sequences and about the related model
structure for filtered chain complexes.

R e s u m e n : Las categorías de modelos son un concepto categórico teórico que fue
definido por Daniel Quillen con el objetivo de generalizar la teoría de homotopía
ya existente para espacios topológicos. Tan solo a partir de su definición, es casi
inmediato que podemos generalizar nociones bien conocidas como son los es-
pacios cilíndricos, los espacios de caminos y las homotopías. Utilizaremos estas
herramientas para construir una teoría de homotopía en una categoría de modelos.
Además, daremos algunos ejemplos de diferentes estructuras de modelos para
diversas categorías, como es la esperada categoría de espacios topológicos o como
la categoría de complejos de cadenas de módulos sobre un anillo. Con respecto
a éste último, también hablaremos un poco sobre sucesiones espectrales y, en
relación con ellas, sobre una estructura de modelos para complejos de cadenas
filtrados.
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Model categories and homotopy theories

1 . I n t r o d u c t i o n

Model categories were introduced by Daniel Quillen in [8], looking for a generalization of the classic
homotopic tools that we knew for topological spaces. As he explains there, he did that in sight of some
work by Dold and Kan where some sort of “homotopic methods” were used succesfully in the context of
derived categories.

To generalize it, he defined what he calledmodel categories. A model structure over a category is defined by
distinguishing some classes of maps and imposing some axioms over them. These axioms, which resemble
basic homotopy properties, turn out to be enough to define an equivalence relation for the maps of this
category. This relation is called homotopy relation, and it is what will give us the homotopy theory (also
called rational homotopy theory). From then on, several authors have proved different categories to fulfill
the axioms for some classes of maps, and also have found different structures for a particular category.

2 . T h e d e f i n i t i o n o f m o d e l c a t e g o r i e s

The first step to define a model structure over a category 𝒞 (following [2, Section 3]) is to distinguish three
classes of maps, all of them closed under composition:

• Weak equivalences, of which we may think of as weak homotopy equivalences (maps that induce
isomorphisms over all the homotopy groups).

• Fibrations, which can correspond to Serre fibrations and include covering maps.
• Cofibrations, which are dual to fibrations, and in the case of topological spaces can correspond to
retracts of maps that obtain a space from another one by attaching cells.

Also, we ask them to fulfill the following axioms:

M C 1 Finite limits and colimits exist in 𝒞.
M C 2 If 𝑓 and 𝑔 are maps in 𝒞 such that its composition 𝑔 ∘ 𝑓, and two out of the three of them are weak

equivalences, then so is the third one.
M C 3 If 𝑓 is a retract of 𝑔 and 𝑔 is a fibration, a cofibration or a weak equivalence, then so is 𝑓.
M C 4 Let us consider the commutative diagram on the

right. If 𝑖 is a cofibration and 𝑝 is a fibration and
a weak equivalence (called acyclic fibration), or if 𝑖
is an acyclic cofibration and 𝑝 a fibration, then there
exists a lift for the diagram (that is, a map 𝑙∶ 𝐵 → 𝑋
that commutes with the other arrows of the diagram).

𝐴 𝑋

𝐵 𝑌

𝑖

𝑓

𝑔

𝑝

M C 5 Any morphism 𝑓 can be factored (maybe with a functorial factorization) as 𝑓 = 𝑝𝑖, where 𝑖 is a
cofibration and 𝑝 is an acyclic fibration, or where 𝑖 is an acyclic cofibration and 𝑝 is a fibration.

MC1 is purely technical, and is related to the existence of initial and terminal objects. MC2 tells us about
the good behaviour of weak equivalences with respect to compositions. MC3 and MC4 ask our classes to
behave well with respect to retracts (of maps), extensions and liftings. We notice that those two and MC2
resemble topological spaces, homotopy liftings and composition of weak homotopy equivalences.

To understand MC5, we have to introduce the so called cofibrant and fibrant objects. These are objects for
which, respectively, the map from the initial object is a cofibration and the map to the terminal object is a
fibration. In the case of topological spaces, all objects can be fibrants, whereas the cofibrant objects can
be the retracts of cell-complexes. Using now MC5, and given an object 𝑋, we can factor those maps as

∅ 𝑋 ∅ 𝐹 𝑋

𝑋 ∗ 𝑋 𝐶 ∗

𝑖 ∼

𝑝 ∼
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Miguel

In other words, MC5means that we can find some sort of 𝐶𝑊-approximation for any object in our category.
These kinds of objects are important because they behave very well with respect to the homotopy relations.

Next, we define a cylinder object on a model category 𝒞 to be an
object 𝑋 ∧ 𝐼 that factors the map id𝑋+id𝑋∶ 𝑋∐𝑋 → 𝑋 in such a
way that the map 𝑋 ∧ 𝐼 → 𝑋 is a weak equivalence. Looking at the
diagram on the right, we can see that this definition tries to capture
the topological idea of cylinder, with inclusion of both bases into a
topological cartesian product 𝑋 × [0, 1] together with the projection
onto 𝑋. However, it throws away all the geometric or topological
information, and keeps only the maps.

Now, if we take two maps, 𝑓, 𝑔∶ 𝑋 → 𝑌, and a cylinder object for 𝑋,
𝑋 ∧ 𝐼, then we define a left homotopy between 𝑓 and 𝑔 via 𝑋 ∧ 𝐼 to
be a map 𝐻∶ 𝑋 ∧ 𝐼 → 𝑌 that extends the sum 𝑓 + 𝑔∶ 𝑋∐𝑋 → 𝑌. In
that case, we say that 𝑓 and 𝑔 are homotopic, and we call this relation
“left homotopy relation”. This obviously reminds of the usual notion
of homotopy, as illustrated by the diagram below.

We can also define dual notions of cylinders and left homo-
topies, which are called path spaces and right homotopies. The
key point here is that not only fibrant and cofibrant objects give
us the desired lifting properties for homotopies, but also make
left and right homotopy relations equivalent.

Using MC5 as we did before, we take those 𝐶𝑊-approximations
and define with them a unique homotopy relation. Therefore,
the homotopy category Ho(𝒞) of a model category 𝒞 is the cate-
gory with the same objects of 𝒞 and withmorphisms the equiva-
lence classes ofmaps, between the fibrant and cofibrant replace-
ments, by the homotopy relation previously defined. Specifi-

cally, this means that we can work there “up to homotopy”, and that we have a functor 𝛾∶ 𝒞 → Ho(𝒞) that
inverts all the maps that we distinguished as weak equivalences.

3 . E x a m p l e s

As we mentioned previously, one can easily find different examples of homotopy theories over different
categories. We will comment the ones that are mentioned in [2] and that we studied in [6].

As we have been mentioning previously, topological spaces admit a model structure taking the class of
weak equivalences to be weak homotopy equivalences, the class of fibrations to be Serre fibrations and the
class of cofibrations to be the retracts of maps that attach cells on a given space.

However, this is not the only way to do this. If we look at the class of weak equivalences, we could ask
ourselves if it is possible to build a model structure where the weak equivalences are the homotopy
equivalences. Strom, in [9], answered this question by building such a model structure, taking Hurewicz
fibrations and closed Hurewicz cofibrations. The difference between these structures lies in the fact that
there are maps that are weak homotopy equivalences but not homotopy equivalences (see for example [6,
Section 3.1]). However, they are the same for CW-complexes, asWhitehead’s Theorem states.

There are several categories of chain complexes that admit a model structure, and several ways to define
one over each of them ([3, Chapter 2]). In particular, we have the so-called projective model structure,
which is built by taking as weak equivalences the maps that induce isomorphisms between the homology
groups, as cofibrations the monomorphisms with projective kernel and as fibrations the epimorphisms.
Also, it is worth mentioning that there are model structures that take as weak equivalences the usual chain
homotopy equivalences (called Hurewicz model structure).
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Model categories and homotopy theories

F i l t e r e d c h a i n c o m p l e x e s . S p e c t r a l s e q u e n c e s

Spectral sequences are families (𝐸𝑟, 𝑑𝑟)𝑟≥1 of bigraded modules 𝐸𝑟 = {𝐸𝑟𝑝,𝑞}𝑝,𝑞∈ℤ for each 𝑟 (the number 𝑟 is
called page). The 𝑑𝑟𝑝,𝑞 are maps of bidegree (−𝑟, 𝑟 − 1) that are called differentials (see [5] for more about
them). We can obtain each page computing the homology of the previous one.

• • • • •
• • • • •
• • • • •
• • • • •

𝑝

𝑞 r=1

//

OO

𝑑14,1
oo

𝑑13,1
oo

𝑑12,1
oo

𝑑11,1
oo

𝑑14,2
oo

𝑑13,2
oo

𝑑12,2
oo

𝑑11,2
oo

• • • • •
• • • • •
• • • • •
• • • • •

𝑝

𝑞 r=2

//

OO

𝑑23,2
gg

𝑑24,1
gg

𝑑22,2
gg

𝑑23,1
gg

• • • • •
• • • • •
• • • • •
• • • • •

𝑝

𝑞 r=3

//

OO

𝑑33,0

dd
𝑑34,1

dd

𝑑33,1

dd

Given a filtered chain complex (𝐹𝑘𝐶∗, 𝑑)𝑝∈ℤ, one defines its associated spectral sequence (which is a
progressive approximation of homology groups by pages) by taking the quotient of the so called almost-
cycles (𝑍𝑟𝑝,𝑞) and almost-boundaries (𝐵𝑟𝑝,𝑞) as follows:

𝑍𝑟𝑝,𝑞 =
𝐴𝑟𝑝,𝑞 + 𝐹𝑝−1𝐶𝑛

𝐹𝑝−1𝐶𝑛
, 𝐵𝑟𝑝,𝑞 =

d(𝐴𝑟−1𝑝+𝑟−1,𝑞−𝑟+2) + 𝐹𝑝−1𝐶𝑛
𝐹𝑝−1𝐶𝑛

and 𝐸𝑟𝑝,𝑞 ≔
𝑍𝑟𝑝,𝑞
𝐵𝑟𝑝,𝑞

,

where 𝑛 = 𝑝 + 𝑞, 𝐴𝑟𝑝,𝑞 = {𝑐 ∈ 𝐹𝑝𝐶𝑛 ∣ d(𝑐) ∈ 𝐹𝑝−𝑟𝐶𝑛−1}, and the differentials are induced by the ones of
the complex. Noticing that a map of filtered chain complexes induces a map of spectral sequences, and
looking at the previous example of model structure, one could ask if we can take as weak equivalences the
maps that induce a spectral sequences isomorphism from a certain page. The answer is positive, and it
is given by Joana Cirici [1]. Moreover, there exists a generalization of spectral sequences for generalized
filtered chain complexes, called spectral systems, and introduced in [4]. An open problem is to define a
model structure for generalized filtered chain complexes by taking the class of weak equivalences to be the
maps that induce isomorphisms between certain terms of the associated spectral system.

4 . C o n c l u s i o n

There are more examples that we could mention, such as the classic Kan complexes and the category of
simplicial sets. However, there exist more “unexpected” examples, such as [7], concernig schemes. One
can apply this in many different areas, and work with generalized homotopy notions that can be thought
intuitively but that have also proved themselves useful. Consequently, its study is really encouraging.
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