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A b s t r a c t : Complex analysis and minimal surfaces are strongly connected via the
Weierstrass representation formula. This fact has been exploited recently to con-
struct lots of examples of such surfaces with different properties. We would present
the first results dealing with interpolation in the setting of minimal surfaces. These
results are inspired by classicalWeierstrass Interpolation theorem for holomorphic
functions and are proved using techniques coming from complex analysis.

More concretely, given an open Riemann surface𝑀, we would construct conformal
minimal immersions 𝑀 → ℝ𝑛, 𝑛 ≥ 3, such that the values of the immersion at
some points of𝑀 are prescribed.

R e s u m e n : El análisis complejo y las superficies mínimas están fuertemente re-
lacionados a través de la fórmula conocida como representación deWeierstrass.
Esta relación ha permitido recientemente construir muchos ejemplos de tales
superficies con diferentes propiedades. A continuación presentamos los primeros
resultados sobre interpolación en el ambiente de superficies mínimas. Estos resul-
tados están inspirados en el teorema clásico de interpolación deWeierstrass para
funciones holomorfas y se prueban utilizando técnicas provenientes del análisis
complejo.

Concretamente, dada una superficie de Riemann abierta 𝑀, construiremos in-
mersiones mínimas conformes𝑀 → ℝ𝑛, 𝑛 ≥ 3, de manera que los valores de la
inmersión en algunos puntos de𝑀 estén prescritos.
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Recent results on interpolation by minimal surfaces

1 . I n t r o d u c t i o n

An immersed surface in the Euclidean space of dimension 𝑛 ≥ 3 is called aminimal surface if it is locally
area-minimizing, that is, small pieces of it are the ones with least area among all the surfaces with the
same boundary. Minimal surfaces are usually defined as those surfaces with vanishing mean curvature
vector field; which is equivalent to the previous definition. In the classical theory of minimal surfaces in
ℝ𝑛, we may point out the so-called Enneper-Weierstrass representation formula. This formula provides any
minimal surface in ℝ𝑛 in terms of holomorphic data defined on an open Riemann surface.

Let 𝑀 be an open Riemann surface and 𝑋 = (𝑋1,… ,𝑋𝑛)∶ 𝑀 → ℝ𝑛 a conformal minimal immersion,
denoting by 𝜕 the complex linear part of the exterior differential 𝑑 = 𝜕 + 𝜕 on 𝑀 (here 𝜕 denotes the
antilinear part), we have that the 1-form 𝜕𝑋 = (𝜕𝑋1,… , 𝜕𝑋𝑛), assuming values in ℂ𝑛, is holomorphic, has
no zeros, and satisfies∑𝑛

𝑗=1 (𝜕𝑋𝑗)
2 = 0. Furthermore, its real part ℜ(𝜕𝑋) is an exact 1-form on𝑀.

Conversely, every holomorphic 1-form 𝛷 = (𝜙1,… ,𝜙𝑛) with values in ℂ𝑛, vanishing nowhere on 𝑀,
satisfying the nullity condition∑𝑛

𝑗=1 (𝜙𝑗)
2 = 0 everywhere on𝑀, and whose real part ℜ(𝛷) is exact on𝑀,

determines a conformal minimal immersion 𝑋∶ 𝑀 → ℝ𝑛 by the classical Enneper-Weierstrass (or simply
Weierstrass) representation formula:

𝑋(𝑝) = 𝑥0 +∫
𝑝

𝑝0
ℜ(𝛷), 𝑝 ∈ 𝑀,

for any fixed base point 𝑝0 ∈ 𝑀 and initial condition 𝑋(𝑝0) = 𝑥0 ∈ ℝ𝑛. This formula yields minimal
surfaces in ℝ𝑛 from holomorphic 1-forms assuming values in the complex subvariety of ℂ𝑛 determined by
𝔄∗ ≔ {(𝑧1,… , 𝑧𝑛) ∈ ℂ𝑛 ∶ 𝑧21 +⋯+ 𝑧2𝑛 = 0} ⧵ {0}.

Weierstrass representation formula has provided powerful tools coming from complex analysis in one
and several variables to the study of minimal surfaces in ℝ𝑛. In particular, Runge-Mergelyan theorem
for open Riemann surfaces (see [9, 11]) has resulted very useful in the study of minimal surfaces in the
Euclidean space. For instance, the pioneer works of Jorge and Xavier [8] or Nadirashvili [10] combined the
classical Runge approximation theorem with theWeierstrass formula to refute the belief that hyperbolic
Riemann surfaces play a marginal role in the global theory of minimal surfaces. An open Riemann surface
is hyperbolic, by definition, if it carries nonconstant negative subharmonic functions.

However, the most recent results that combine complex analysis andWeierstrass representation formula
in this setting use methods coming from modern Oka theory. Roughly speaking, Oka manifolds are natural
target for holomorphic functions; the key is that the punctured null quadric 𝔄∗ is an Oka manifold and
hence Oka theory applies. A detailed explanation may be seen at the survey [3].

2 . I n t e r p o l a t i o n r e s u l t s f o r c o n f o r m a l m i n i m a l i m m e r s i o n s

General existence results for minimal surfaces in ℝ𝑛 have been proved using Oka theory. Further, one
may add very interesting global properties to the solutions. In the following sections, we are going to
show some of these results concerning interpolation. In particular we show in §2.1 those of interpolation
for conformal minimal immersions in ℝ𝑛, 𝑛 ≥ 3. Next, we state in §2.2 the corresponding analogues
for minimal surfaces of finite total curvature in ℝ3. Finally, we show some applications in §2.3 to the
construction of examples.

2 . 1 . R e s u l t s f o r c o n f o r m a l m i n i m a l i m m e r s i o n s i n a n y d i m e n s i o n 𝑛 ≥ 3

Approximation by holomorphic functions began with the classical Runge Theorem. It gives a topological
characterization of those subsets of ℂ for which any holomorphic function on them may be uniformly
approximated by entire functions. Interpolation by holomorphic functions is another main research topic
in Complex Analysis. It began with the classical Weierstrass Interpolation Theorem that ensures that one
may prescribe the values of an entire function on a discrete subset of ℂ. Both results have been generalized
to the framework of maps from Stein manifolds into Oka manifolds, and in particular for functions from
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open Riemann surfaces. Recall that any open Riemann surface is a Stein manifolds and that the null
quadric is an Oka manifold.
Focusing on minimal surfaces, Alarcón, Forstnerič, and López have developed an uniform approximation
theory for conformal minimal immersions in ℝ𝑛, 𝑛 ≥ 3 and more general families of holomorphic
immersions in ℂ𝑛; see [4, 5]. Concerning interpolation for conformal minimal immersion the author in
collaboration with Alarcón proved the following analogue to theWeierstrass interpolation theorem for
conformal minimal immersions in ℝ𝑛. This result is proved in [1].

T h e o r e m 1 . (Weierstrass InterpolationTheorem for conformal minimal surfaces). Let𝛬 be a closed discrete
subset of an open Riemann surface, 𝑀, and let 𝑛 ≥ 3 be an integer. Every map 𝛬 → ℝ𝑛 extends to a
conformal minimal immersion𝑀 → ℝ𝑛.

The assumptions on 𝛬 in Theorem 1 are necessary since 𝛬 has no accumulation point by the Identity
Principle for harmonic maps. We obtain in that paper a much more general result which ensures not only
interpolation but also jet-interpolation of given finite order, uniform approximation on Runge compact
subsets, control on the flux, and global properties such as completeness and, under natural assumptions,
properness and injectivity; see [1, Theorem 1.2] for the detailed statement and the necessary definitions.
In addition, an analogue for directed holomorphic curves in ℂ𝑛 is proved, see [1, Theorem 1.3].

2 . 2 . C o n f o r m a l m i n i m a l i m m e r s i o n s o f f i n i t e t o t a l c u r v a t u r e i n d i m e n s i o n 𝑛 = 3

One of the main topic of research in the global theory of minimal surfaces in ℝ3 are complete minimal
surfaces with finite total curvature. We recall that a conformal minimal immersion 𝑋∶ 𝑀 → ℝ3 has finite
total curvature if

𝑇𝐶(𝑋) ≔ ∫
𝑀
𝐾 d𝑠2 = −∫

𝑀
|𝐾| d𝑠2 > −∞,

here d𝑠2 is the area element of the surface and𝐾 denotes theGauss curvature of (𝑀, d𝑠2). These surfaces have
the simplest topological, conformal, and asymptotic geometry. They are intimately related to meromorphic
functions and 1-forms on compact Riemann surfaces. Indeed, given an open Riemann surface 𝑀 and
a complete conformal minimal immersion 𝑋∶ 𝑀 → ℝ3 with finite total curvature, there are a compact
Riemann surface 𝛴 and a finite subset ∅ ≠ 𝐸 ⊂ 𝛴 such that𝑀 is biholomorphic to 𝛴 ⧵ 𝐸.
The author in collaboration with Alarcón and López proved the following interpolation result for complete
minimal surfaces in ℝ3 with finite total curvature. It is proved in [2].

T h e o r e m 2 . (Weierstrass Interpolation Theorem for conformal minimal immersions with finite total
curvature). Let 𝛴 be a compact Riemann surface with empty boundary and let 𝐸 ≠ ∅ and 𝛬 be disjoint
finite sets in 𝛴. Every map 𝛬 → ℝ3 extends to a complete conformal minimal immersion 𝛴 ⧵ 𝐸 → ℝ3 with
finite total curvature.

We shall obtain a more general result providing also uniform approximation, jet-interpolation of given
finite order, and control on the flux, see [2, Theorem 3.1] for details and definitions.

2 . 3 . A p p l i c a t i o n s a n d o t h e r r e s u l t s

Finally, we finish with some applications to the construction of examples. As we said before, an uniform
approximation theory on compact subset have been developed for conformal minimal immersions,
analogous to the one of holomorphic functions ([4, 5]). Continuing a natural sequence of approximation
results, one may ask whether Carleman approximation theorem holds for minimal surfaces. Carleman
theorem for holomorphic functions asserts that one may approximate any continuous function ℝ→ ℂ by
entire functions better than any given positive function. Next result is an analogue for conformal minimal
immersions and it is proved in [7].

T h e o r e m 3 (Carleman Theorem for conformal minimal immersions). Let𝑀 be an open Riemann surface
and let 𝑅 ⊂ 𝑀 be a proper embedded curve. Let 𝑓∶ 𝑅 → ℝ𝑛, 𝑛 ≥ 3, and 𝜖∶ 𝑀 → ℝ+ be continuous maps.
There exists a complete conformal minimal immersion 𝑋∶ 𝑀 → ℝ𝑛 such that ‖𝑋(𝑝)−𝑓(𝑝)‖ < 𝜖(𝑝), 𝑝 ∈ 𝑀.
Furthermore, if 𝑛 ≥ 5, then 𝑋may be chosen to be injective.

TEMat monogr., 2 (2021) e-ISSN: 2660-6003 25



Recent results on interpolation by minimal surfaces

Similarly to the previous results, in collaboration with Chenoweth we proved an analogue to holomorphic
directed immersions which is stated in [7, Theorem 1.2]. Furthermore, the solutions may be chosen to be
complete and proper under natural assumptions, see [7, Theorems 1.3 and 1.4].

On the other hand, the next interpolation result ensures that one may construct minimal surfaces with all
coordinates prescribed but two. The theorem is proved in [6].

T h e o r e m 4 . Let𝑀 be an open Riemann surface and 𝑛 ≥ 3 be an integer. Let 𝛬 ⊂ 𝑀 be a closed discrete
subset and let ℎ∶ 𝑀 → ℝ𝑛−2 be a nonconstant harmonic map. For any map 𝐹∶ 𝛬 → ℝ2, there is a
complete conformal minimal immersion 𝑋 = (𝑋1,𝑋2,… ,𝑋𝑛)∶ 𝑀 → ℝ𝑛 such that (𝑋1,𝑋2)|𝛬 = 𝐹 and
(𝑋3,… ,𝑋𝑛) = ℎ.

As a consequence of the previous result, it is shown on [6] that we may interpolate by minimal surfaces
in ℝ𝑛, 𝑛 ≥ 3, whose generalized Gauss map 𝐺𝑋 is nondegenerate and fails to intersect 𝑛 hyperplanes in
general position. In dimension 𝑛 = 3, we have the following.

C o r o l l a r y 5 . Let𝑀 be an open Riemann surface and 𝛬 ⊂ 𝑀 be a closed discrete subset. Any map 𝛬 → ℝ3

extends to a complete nonflat conformal minimal immersion 𝑋∶ 𝑀 → ℝ3 whose Gauss map 𝑀 → �2

omits two (antipodal) values of the sphere �2.

For the general statement of the previous result and the necessary definitions, see [6, Theorem 1.1].
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