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A b s t r a c t : From a graph 𝐺 related graphs can be constructed, such as its line graph
𝐿(𝐺) and its edge-complement graph 𝐺. After showing how properties of 𝐺 imply
properties of 𝐿(𝐺), we ask how different the concepts of the line graph 𝐿(𝐺) and
that of the edge-complement graph 𝐺 are, by solving the equation 𝐿(𝐺) ≃ 𝐺. We
show that the equation has only two solutions. The proof uses an argument on
the degree of the vertices of a graph that allows to reduce the number of possible
solutions until they can be checked algorithmically. This gives an alternative proof
to the one by Aigner [1].

R e s u m e n : A partir de un grafo 𝐺 se pueden construir grafos relacionados, como
su grafo de líneas 𝐿(𝐺) y su grafo complemento de aristas 𝐺. Después de mostrar
cómo las propiedades de 𝐺 implican propiedades de 𝐿(𝐺), nos preguntamos cuán
diferentes son los conceptos del grafo lineal 𝐿(𝐺) y el del grafo complemento de
aristas 𝐺, resolviendo la ecuación 𝐿(𝐺) ≃ 𝐺. Demostramos que la ecuación tiene
solo dos soluciones. La prueba utiliza un argumento sobre el grado de los vértices
de un grafo que permite reducir el número de posibles soluciones hasta poder
comprobarlas algorítmicamente. Esto da una prueba alternativa a la de Aigner [1].
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A graph equation between the line graph and the edge-complement graph

1 . I n t r o d u c t i o n

Line graphs as well as edge-complement graphs allow to restate graph questions in sometimes easier
versions. In the following section, some relations between the properties of a graph and the respective
properties of its line graph are shown. The last section studies the graph equation 𝐿(𝐺) ≃ 𝐺 in order
to compare the line graph with the edge-complement graph. We find that there are exactly two graphs
whose line graphs and edge-complement graphs coincide. This result was first shown by Aigner [1], whose
argument uses the existence of a unique cycle in a possible solution. Here, we present an alternative proof
that is based on the degree of the vertices of a solution 𝐺. The possible degrees of vertices restrict the
number of vertices of a graph that is a solution to 𝐿(𝐺) ≃ 𝐺. The finite number of remaining cases are
checked in an algorithmic way, resulting in exactly two graphs whose line graphs and edge-complement
graphs are isomorphic.

2 . L i n e g r a p h : d e f i n i t i o n a n d p r o p e r t i e s

D e f i n i t i o n 1 . Let 𝐺 be a graph. The line graph 𝐿(𝐺) of 𝐺 is the graph with vertex set 𝑉(𝐿(𝐺)) = 𝐸(𝐺) and
two vertices 𝑢, 𝑣 ∈ 𝑉(𝐿(𝐺)) are connected by an edge in 𝐿(𝐺) if and only if their corresponding edges share
a common vertex in 𝐺. ◀

E x a m p l e 2 . A graph 𝐺 (left) and its line graph 𝐿(𝐺) (right) are shown in Figure 1. Edges of 𝐺 and their
corresponding vertices in 𝐿(𝐺) are shown in the same colour. ◀

F i g u r e 1 : A graph 𝐺 and its line graph 𝐿(𝐺).

The following proposition is an immediate consequence of Definition 1. It relates the number of edges
|𝐸(𝐿(𝐺))| and vertices |𝑉(𝐿(𝐺))| in 𝐿(𝐺) to the number of edges |𝐸(𝐺)| and vertices |𝑉(𝐺)| in 𝐺.

P r o p o s i t i o n 3 . Let 𝐺 be a graph. The degree of a vertex is the number of edges attached to that vertex. It
holds that |𝑉(𝐿(𝐺))| = |𝐸(𝐺)| and |𝐸(𝐿(𝐺))| = 1

2
∑𝑣∈𝑉(𝐺) deg 𝑣

2 − |𝐸(𝐺)|.

D e f i n i t i o n 4 . A property 𝒫 is preserved under the line graph operation if it follows from the graph 𝐺 having
property 𝒫 that its line graph 𝐿(𝐺) also has property 𝒫. ◀

The following proposition shows that several properties of graphs are preserved under the line graph
operation. We refer to the first chapter of the book [2] for the definitions.

P r o p o s i t i o n 5 . Let 𝐺 be a graph. The following implications are true:

( i ) If 𝐺 is connected, then 𝐿(𝐺) is connected.
( i i ) If 𝐺 is a 𝑘-regular graph, then 𝐿(𝐺) is a 2(𝑘 − 1)-regular graph.
( i i i ) Assume that 𝐺 and 𝐻 are two simple graphs. If 𝐻 is a graph quotient of 𝐺 via the action of a group

𝒜, then 𝐿(𝐻) is a graph quotient of 𝐿(𝐺) via the action of the same group 𝒜.

P r o o f . The proofs of the first two statements are direct consequences of Definition 1. For the third
statement, note that, by Definition 1, the vertices of 𝐿(𝐺) are the edges of 𝐺. From this and the assumption
that the graph𝐺 is simple, it follows that the group𝒜 acts freely on 𝐿(𝐺). On the other hand, the assumption
that 𝐻 is a simple graph implies that the action of 𝒜 on 𝐺 and on 𝐿(𝐺) is essentially the same. Therefore, a
graph morphism is defined between 𝐿(𝐻) and 𝐿(𝐺)/𝒜. It is straightforward to prove that the morphism is
indeed a graph isomorphism. ▪
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3 . T h e g r a p h e q u a t i o n 𝐿(𝐺) ≃ 𝐺
In this section we compare the line graph with the edge-complement of a graph. We find that, except for
two graphs, the line graph is different from the edge-complement.

D e f i n i t i o n 6 . Let 𝐺 be a simple graph. The edge-complement graph 𝐺 of 𝐺 is the graph that has the same
vertex set as 𝐺 and two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) are connected by an edge in 𝐺 if and only if they are not
connected by an edge in 𝐺. ◀

E x a m p l e 7 . Figure 2 shows an example of a graph 𝐺 (left) and its edge-complement 𝐺 (right). ◀

F i g u r e 2 : A graph 𝐺 and its edge-complement 𝐺.

A result similar to Proposition 3 is the following, whose proof follows directly from Definition 6.

P r o p o s i t i o n 8 . Let 𝐺 be a simple graph such that |𝑉(𝐺)| = 𝑛. If 𝐺 is not connected, then 𝐺 is connected.
Moreover, |𝐸(𝐺)| = (𝑛2) − |𝐸(𝐺)|.

In order to study the relations that exist between the line graph and the edge-complement operations, we
focus our attention on the following question: do there exist graphs 𝐺 with non-empty vertex set which
satisfy the equation

( 1 ) 𝐿(𝐺) ≃ 𝐺 ?

The set of solutions for (1) is not empty, since it is easily found that 𝐺 = 𝐶5, which is the cycle with 5
vertices, is isomorphic to both its line graph and its edge-complement (see Figure 3). In fact, 𝐺 = 𝐶5 is the
only regular graph that is a solution to (1).

F i g u r e 3 : The graph 𝐶5 fulfills 𝐿(𝐶5) ≃ 𝐶5 ≃ 𝐶5.

T h e o r e m 9 . The only solutions to the graph equation 𝐿(𝐺) ≃ 𝐺 are 𝐺 = 𝐶5 and the graph with six vertices
that is drawn left in Figure 4.

P r o o f . It follows from the properties of propositions 3, 5 and 8 that a candidate 𝐺 for a solution to (1) must
be connected and must have as many vertices as edges, say |𝑉(𝐺)| = |𝐸(𝐺)| = 𝑛. That is, if the number
of vertices of 𝐺 grows, the edge-complement graph 𝐺 will have a high number of edges, while the line
graph 𝐿(𝐺) will not. Thus, focusing on the degrees of vertices of 𝐺 allows to limit the maximum number of
vertices and edges that a 𝐺 that satisfies (1) is allowed to have.

Indeed, it follows from Definition 6 that 𝐺 cannot have vertices of degree 𝑛 − 1. If we assume 𝐺 to be
𝑘-regular, from propositions 3 and 8 we obtain that 𝑘2𝑛 = 𝑛(𝑛 − 1) and 𝑛𝑘 = 2𝑛. These two equations are
satisfied only if 𝑘 = 2 and 𝑛 = 5. Therefore, the only regular graph which is solution to (1) is 𝐶5.

Thus, we can assume that 𝐺 is not regular. This assumption implies that 𝐺must contain at least one vertex
of degree 1. Indeed, if it was not the case, then 𝐺 would have all vertices of degree at least 2 and at least
one vertex of degree at least 3 (because 𝐺 cannot be regular). This is a contradiction to the handshake
lemma (see [2, Theorem 1.1.1]).
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The existence of at least one vertex of degree 1 in 𝐺 implies that 𝐿(𝐺) must have at least one vertex of
degree 𝑛 − 2. For 𝐿(𝐺) to contain a vertex of degree 𝑛 − 2, there must exist an edge in 𝐺 with endpoints 𝑢
and 𝑤 such that deg 𝑢 + deg𝑤 = 𝑛. However, 𝐺 has only 𝑛 edges and vertices, and each vertex is at least of
degree 1 since 𝐺 is connected. Therefore, we are left with two cases: either 𝐺 has 𝑛 − 3 vertices of degree 1
and one vertex of degree 3 in addition to the vertices 𝑢 and 𝑤, or 𝐺 has 𝑛 − 4 vertices of degree 1 and two
vertices of degree 2 in addition to 𝑢 and 𝑤. In both cases, since 𝐺 cannot have vertices of degree 𝑛 − 1, it
is impossible for 𝐺 to have more than 7 vertices. This leaves us with a finite number of graphs that are
potential solutions and they can be checked individually as shown in the next section for graphs with
6 vertices. It is found that the graph that is drawn left in Figure 4 is the only non-regular solution to
equation (1). ▪

3 . 1 . A n a l g o r i t h m f o r t h e r e m a i n i n g c a s e s

Graphs with 𝑛 vertices that are solutions to equation (1) can be found algorithmically as outlined below.

For 𝐿(𝐺) ≃ 𝐺 to hold, the number of edges of the graphs must be equal. Propositions 3 and 8 obtain
|𝐸(𝐿(𝐺))| and |𝐸(𝐺)| from |𝐸(𝐺)|. Equating these two expressions, one obtains that 𝐺 must satisfy the
following equation:

( 2 ) ∑
𝑣∈𝑉(𝐺)

(
deg 𝑣
2

) =
𝑛2 − 3𝑛

2 .

From Definition 1, it follows that a vertex of degree 𝑑 in 𝐺 corresponds to (𝑑2) edges in the line graph
𝐿(𝐺). This observation together with formula (2) allows to list all combinations of degrees of vertices that
respect (2) for a fixed 𝑛. It is then easy to check whether the resulting graphs are solutions to equation (1).

E x a m p l e 1 0 . This example shows how the algorithm works for 𝑛 = 6. This case will give the only other
solution besides 𝐺 = 𝐶5 to the graph equation (1). First, we determine combinatorially the fourteen degree
combinations of 6 vertices that satisfy (2), i.e.,∑6

𝑖=1
(deg𝑣𝑖)2−deg𝑣𝑖

2
= 9. Among these, it is possible to remove

immediately all combinations which contain a zero, as 𝐺 must be a connected graph (as argued in the
proof of Theorem 9). Hence, only four possible combinations of degrees are left:

(1)∶ {4, 3, 1, 1, 1, 1} (2)∶ {4, 2, 2, 2, 1, 1} (3)∶ {3, 3, 3, 1, 1, 1} (4)∶ {3, 3, 2, 2, 2, 1}.

There is no graph with vertices of the degrees of (1) or (4), because these would require an odd number of
vertices of odd degree. From the remaining two cases, only the graph with degrees of (3) is a solution to
equation (1). The graph is shown in Figure 4. ◀

F i g u r e 4 : The graph 𝐺 on the left, its edge-complement 𝐺 in the middle, its line graph 𝐿(𝐺) on the right.
This is the only graph on six vertices with 𝐿(𝐺) ≃ 𝐺.
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