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A b s t r a c t : Due to its simplicity and geometric structure, the vortex filament equa-
tion (VFE) secures a unique place in fluid literature. The equation is a model
for the dynamics of a vortex filament (e.g., smoke rings, tornadoes, etc.) in a
three-dimensional inviscid incompressible fluid. In this work, we describe recent
progress on its behaviour for the polygonal-shaped filaments curves. More pre-
cisely, we concentrate on the evolution of VFE for regular polygons as the initial
data. Besides problem formulation, addressing it using theoretical and numerical
techniques, we discuss the time evolution of a single point located on the curve
which, in turn, follows a multifractal trajectory. Simultaneously, we also consider
the corresponding problem in the hyperbolic 3-space.

R e s u m e n : Debido a su simplicidad y estructura geométrica, la vortex filament
equation (VFE) ocupa un lugar único en la literatura de fluidos. La ecuación mode-
la la dinámica de un filamento de vórtice (p. ej., anillos de humo, tornados, etc.) en
un fluido incompresible no viscoso tridimensional. En este trabajo, describimos los
avances recientes en su comportamiento para las curvas de filamentos de forma
poligonal. Más precisamente, nos concentramos en la evolución de la VFE para
polígonos regulares como datos iniciales. Además de la formulación del problema,
abordando el mismo mediante técnicas teóricas y numéricas, se comenta la evo-
lución temporal de un único punto ubicado en la curva que, a su vez, sigue una
trayectoria multifractal. Simultáneamente, también consideramos el problema
correspondiente en el 3-espacio hiperbólico.
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Recent progress on VFE for regular polygons

1 . I n t r o d u c t i o n

The vortex filament equation (VFE) is a simplified model that describes the dynamics of an ideal fluid
whose vorticity is concentrated on a curve called vortex filament, i.e., smoke rings, tornadoes, etc. Given
by Da Rios in his PhD thesis in 1906, for an arc-length parametrized curve X representing a vortex filament
in three-dimensions, the VFE is expressed as [8]

( 1 ) X𝑡 = X𝑠 ∧ X𝑠𝑠, 𝑠 ∈ ℝ, 𝑡 ∈ ℝ,

where ∧ is the usual cross-product, 𝑠 arc-length and 𝑡 time parameter, and subscripts denote the partial
derivatives. The tangent vector T = X𝑠 solves the so-called Schrödinger map equation onto the sphere

( 2 ) T𝑡 = T ∧ T𝑠𝑠.

Due to its geometrical structure and properties, in the simplest form, (2) allows T to take its value
on the Euclidean unit sphere �2 = {(𝑥1, 𝑥2, 𝑥3) ∶ 𝑥21 + 𝑥22 + 𝑥23 = 1}, or, a hyperbolic one, i.e., ℍ2 =
{(𝑥1, 𝑥2, 𝑥3) ∶ −𝑥21 + 𝑥22 + 𝑥23 = −1, 𝑥1 > 0}. Note that, when T ∈ ℍ2, X lies in the Minkowski 3-space
ℝ1,2 = {(𝑥1, 𝑥2, 𝑥3) ∶ d𝑠2 = − d𝑥21 + d𝑥22 + d𝑥3}, and the cross product in (1)–(2) is given by a ∧ b =
(−(𝑎2𝑏3 − 𝑎3𝑏2), 𝑎3𝑏1 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑎2𝑏1). Moreover, with the curvature 𝜅, torsion 𝜏, the tangent T, normal
n and binormal b vectors of X form an orthonormal system and solve the Frenet–Serret formulas

( 3 ) (
T
n
b
)

𝑠

= (
0 𝜅 0
∓𝜅 0 𝜏
0 −𝜏 0

) ⋅ (
T
n
b
) ,

where the minus sign refers to the Euclidean and the plus sign to the hyperbolic cases. With this, in
1972, Hasimoto developed a relationship between (1)–(2) and the cubic nonlinear Schrödinger (NLS)
equation where the unknown is the wave function 𝜓(𝑠, 𝑡) = 𝜅(𝑠, 𝑡)e∫

𝑠
0 𝜏(𝑠

′,𝑡) d𝑠′. Thanks to this connection,
any advancement in the direction of (1)–(2) is equivalent to that for the NLS equation as well.

Apart from the explicit solutions of VFE, i.e., circle, straight line and helix, another important class is the
one-parameter family of the self-similar solutions which are characterized by a parameter 𝑐0 > 0. In
both Euclidean and hyperbolic cases, for a given time 𝑡 > 0, the curve X has a curvature 𝑐0/√𝑡 and a
torsion 𝑠/2𝑡 and it has been shown that, as the time 𝑡 tends to zero, it develops a corner and turns into two
non-parallel straight lines meeting at 𝑠 = 0. This implies that, at 𝑡 = 0, the corresponding tangent vector is
a Heaviside-type function and the initial solution of the NLS equation is a Dirac delta located at 𝑠 = 0. The
so-called one-corner problem has been well studied by Gutierrez et. al. and Banica et. al. theoretically, and
by Buttke and de la Hoz numerically in their PhD theses.

2 . S o m e p o l y g o n a l s o l u t i o n s o f ( 1 ) – ( 2 )

Motivating from curves with one corner otherwise smooth, it is natural to address the evolution of (1)–(2)
for curves with several corners. In this direction, we consider the simplest case of regular planar polygons
in both Euclidean and hyperbolic spaces followed by their extension to respective non-planar ones.

2 . 1 . R e g u l a r p l a n a r p o l y g o n s

The evolution of (1)–(2) forX(𝑠, 0) as a regular planar polygon is equivalent to that of the NLS equation with
initial datum 𝜓(𝑠, 0) = 𝑐0∑𝑘∈ℤ 𝛿(𝑠 − 𝑘𝛥𝑠), where 𝛥𝑠 is the side-length of the initial polygonal curve which
is equal to 2π/𝑀 for an𝑀-sided polygon in the Euclidean space and 𝑙 > 0 for a hyperbolic polygon and 𝑐0
depends on the initial configuration of the curve [3, 5]. By assuming uniqueness and using the Galilean
invariance of the NLS equation, followed by algebraic calculations, the time evolution of X and T can be
described up to a rigid movement for the rational multiples of the time-period. The numerical experiments
confirm that depending on the (denominator of) rationals, the polygonal curve develops more number of
sides, a behaviour reminiscent of the Talbot effect in optics. For the numerical computations, due to the
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2π spatial periodicity of T, a pseudo-spectral discretization is used in the Euclidean case; however, for
the hyperbolic case, a finite difference scheme with Dirichlet boundary conditions on T is employed; a
fourth-order Runge–Kutta method is used for the time evolution in both cases.

Furthermore, the time evolution of a single point, i.e., X(0, 𝑡) lies in a plane. This is displayed in Figure 1, for
an equilateral triangle which also shows that with a vertical translation at half time-period 𝑡 = π/𝑀2, the
triangle appears upside down and reappears at the end of the time-period 𝑡 = 2π/𝑀2. The latter is recorded
as the axis-switching phenomenon in fluid literature, for example, non-circular jets (for a qualitative
comparison see evolutions of an equilateral triangle, and a vortex filament). The right-hand side
of each subfigure in Figure 1 shows the projection of X(0, 𝑡) onto ℂ and the same after removing the
vertical height, denoted by 𝑧𝑀(𝑡) (or, 𝑧𝑙(𝑡) in the hyperbolic case). Nonetheless, as𝑀 becomes larger (or 𝑙
smaller), 𝑧𝑀(𝑡) (or 𝑧𝑙(𝑡)), converges to the so-called Riemann’s non-differentiable, given by the real part of

𝜙(𝑡) = ∑∞
𝑘=1

eiπ𝑘2𝑡

iπ𝑘2
, 𝑡 ∈ [0, 2], see Figure 2. Due to its multifractal character, the function 𝜙 is an important

object whose properties were studied by Jaffard in [6], and recently by Eceizabarrena in [2].
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F i g u r e 1 : For𝑀 = 3, X(𝑠, 0) (red), X(𝑠, 𝑡) (green), X(0, 𝑡0), 𝑡0 ∈ [0, 𝑡] (blue) at 𝑡 = π
𝑀2

(left), 2π
𝑀2

(right).
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F i g u r e 2 : 𝑧𝑙(𝑡), 𝑧𝑀(𝑡), for𝑀 = 3 (see [3, 5] for their precise definition), and 𝜙(𝑡).

2 . 2 . R e g u l a r p o l y g o n s w i t h a n o n z e r o t o r s i o n

For the arc-length parameterized X, the nonzero torsion can be introduced with the parameter 𝑏. In
the Euclidean case, 𝑏 ∈ [−1, 1] corresponds to the third component of the tangent vector, whereas
𝑏 ∈ (−∞,−1]∪ [1,∞) as the first component of T ∈ ℍ2, and 𝑏 ∈ (−∞,∞) as the third component result in
the circular helix and hyperbolic helix, respectively [4, 7]. Note that 𝑏 = 0 reduces back to the planar case
discussed above. In both settings, together with the parameters𝑀 or 𝑙 (giving side-length), 𝑏 determines
the curvature angle 𝜌0 and torsion angle 𝜃0. Moreover, by denoting 𝜓 as 𝜓𝜃 when 𝜃0 > 0, we have

( 4 ) 𝜓𝜃(𝑠, 0) = 𝑐𝜃,0ei𝛾𝑠 ∑
𝑘∈ℤ

𝛿(𝑠 − 𝑘𝛥𝑠) =
𝑐𝜃,0
𝑐0
ei𝛾𝑠𝜓(𝑠, 0),

with 𝛾 = 𝜃0/𝛥𝑠, and 𝑐𝜃,0 > 0, 𝛥𝑠, suitably chosen as mentioned above. Besides the algebraic solution,
with the numerical simulations, we detect the aperiodic movement of a corner initially at 𝑠 = 0 (e.g., see
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the link) and categorize it as Galilean shift and phase shift which also implies that X(0, 𝑡) is non-planar.
With a Fourier analysis of X(0, 𝑡) at a numerical level, different variants of 𝜙(𝑡) have been found whose
structure, in turn, depends on the initial torsion. More precisely, for 𝜃0 = π𝑐/𝑑, 𝑐, 𝑑 ∈ ℕ, gcd(𝑐, 𝑑) = 1, the
vertical movement of X(0, 𝑡) can be compared with the imaginary part of 𝜙𝑐,𝑑(𝑡) = ∑𝑘∈𝐴𝑐,𝑑

e2πi𝑘𝑡

𝑘
, to which

it converges as𝑀 tends to infinity or 𝑙 to zero (i.e., X(𝑠, 0) to a smooth helix), with

( 5 ) 𝑡 ∈ {
[0, 1/2] if 𝑐 ⋅ 𝑑 odd,
[0, 1] if 𝑐 ⋅ 𝑑 even,

𝐴𝑐,𝑑 = {
{𝑛(𝑛𝑑 + 𝑐)/2 ∣ 𝑛 ∈ ℤ} ∩ℕ if 𝑐 ⋅ 𝑑 odd,
{𝑛(𝑛𝑑 + 𝑐) ∣ 𝑛 ∈ ℤ} ∩ℕ if 𝑐 ⋅ 𝑑 even.

Similarly, strong numerical evidence is given that, for a given 𝑀 and as 𝑏 approaches 1 (i.e., X(𝑠, 0) to

a straight line), the stereographic projection of X(0, 𝑡) onto ℂ tends to 𝜙𝑀(𝑡) = ∑𝑘∈𝐴𝑀

e2πi𝑘2𝑡

𝑘2
, 𝑡 ∈ [0, 1],

where 𝐴𝑀 = {1} ∪ {𝑛𝑀 ± 1 ∣ 𝑛 ∈ ℕ}. Remark that, for 𝜃0 ≠ 0, 𝜓𝜃(𝑠, 0) is quasi-periodic and becomes
2π-periodic when 𝑏 → 1. Thus, through a very formal computation if, instead of the NLS equation, one
solves the initial value problem for the free Schrödinger equation 𝜓𝑡 = i𝜓𝑠𝑠, for (4) with 𝑏 ≈ 1, then

̂𝜓𝜃(𝑘, 𝑡) = e−i𝑘2𝑡 ̂𝜓𝜃(𝑘, 0), with ̂𝜓𝜃(𝑘, 0) = {
𝑀
2π

if 𝑘 ± 1 = 𝑛𝑀, 𝑛 ∈ ℕ,
0 else.

Then, bearing in mind the Hasimoto transformation and (1)–(3), X(0, 𝑡) can be related to ∫𝑡
0 𝜓𝜃(𝑠, ̃𝑡) d ̃𝑡, with

𝑠 = 0, which computed using ̂𝜓𝜃(𝑘, 𝑡) is 𝜙𝑀 up to a scaling factor. Nonetheless, the existence of 𝜙 and its
variants in the evolution of X(0, 𝑡) has been proved rigorously by Banica and Vega recently in [1].

3 . C o n c l u s i o n

Thus, the appearance of Riemann’s function (and its variants) in the evolution of polygonal curves indicates
that the evolution of (1)–(2) for smooth curves is not stable. That is, as the number of sides𝑀 tends to
infinity (or 𝑙 to zero), the polygonal curve approaches a smooth curve; however, when measured in the
right topology, the trajectory of a single particle located on it converges to a multifractal, unlike that of a
smooth curve (to compare, see the link). Recall that Riemann’s function satisfies the multifractal formalism
proposed by Frisch and Parisi [6]. Therefore, these latest results also contribute to the debate, which is
already more than a one-hundred-year-old, on the validity of the vortex filament equation as a simplified
model for understanding fundamental but complex natural phenomena such as turbulence.
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