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Abstract: This contribution studies the existence of positive subharmonics of
arbitrary order in the planar periodic Volterra predator-prey model. When the
model is non-degenerate, in the sense that the birth rate of the prey intersects the
support of the death rate of the predator, as in [8], then the existence of positive
subharmonics can be derived from the Poincaré-Birkhoff theorem version [3].
Nevertheless, in the degenerate case when these supports do not intersect, then,
the Poincaré-Birkhoff theorem fails in general. Still in these degenerate situations,
the techniques of [7] provide us with the existence of positive subharmonics of
arbitrary order.

This is based on a joint work with Julidn Lépez-Gémez (UCM) and Fabio Zanolin
(UNIUD).

Resumen: Este trabajo analiza la existencia de subarmonicos positivos de orden
arbitrario en el modelo plano periédico de presa y depredador de Volterra. Cuando
el modelo es no degenerado, en el sentido de que la tasa de natalidad de la presa
interseca el soporte de la tasa de mortalidad del depredador, como en [8], entonces
la existencia de subarmonicos positivos puede ser derivada mediante un la versién
del teorema de Poincaré-Birkhoff que se establece en [3]. Sin embargo, en el caso
degenerado cuando los soportes no intersecan, el teorema de Poincaré-Birkhoff no
puede aplicarse directamente. En estos casos, las técnicas de [7] nos proporcionan
la existencia de subarménicos positivos de orden arbitrario.

Esta colaboracion estd basada en un trabajo conjunto con Julidn Lépez-Gémez
(UCM) y Fabio Zanolin (UNIUD).
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Subharmonics in a class of planar periodic predator-prey models

1. Introduction

In this contribution, we analyze the existence of positive subharmonics of arbitrary order (nT-periodic
coexistence states) of the periodic Volterra predator-prey model

0 u' = da(Hu(l — v),
v = AB(Hv(~1 + u),

where 1 > 0 is a real parameter, and, for some T > 0, a(t) and 8(¢) are T-periodic real continuous functions.
We set

T T
A= f a(s)ds and B:= f B(s)ds.
0 0
They can arise two different cases according to whether, or not, the following condition holds

(2) supp a nsupp 8 # @.

In this non-degenerate situation the existence of subharmonics of arbitrary order can be obtained through
an updated version of the celebrated Poincaré-Birkhoff twist theorem for sufficiently large 4. Nevertheless,
in the degenerate case when the next condition holds

(3) supp ansupp f =@

the Poincaré-Birkhoff theorem is unable to provide, in general, with subharmonics of arbitrary order,
unless a(t) and B(t) have some special nodal structure.

2. The non-degenerate case

The non-degenerate case when (2) is satisfied has been studied in [8] by adapting some original ideas
in [3] (later revised and applied in [2]), where a Poincaré-Birkhoff version for Hamiltonian systems was
presented. Through the change of variables

x = logu, y = logv,
(1) is transformed into the planar Hamiltonian system

x' = =da(t)(e¥ — 1),

(4) ,
Yy =) (e* = 1).

The [3] version of the Poincaré-Birkhoff twist theorem that we will use reads as follows:

Theorem 1 (Poincaré-Birkhoff). Assume that there exist 0 < ¢, < ¢, and a positive integer w such that
rote [(xg, %0); [0,nT]] > w and rot, [(xo, yo); [0, nT]] < @,

where 6(nT) — 6(0)

n —
1oty [, 30); [0, nT]] = S =2
with ||(xq, yo)|| = p, 6(t) being the angular polar coordinate of the solution starting at (x,, y,), (x(t), y(t)).
Then, (4) admits, at least, two nT-periodic solutions lying in different periodicity classes with rotation
number w.

As a consequence of Theorem 1, we get the next result:

Theorem 2. Assume (2). Then, for every positive integers w and n, there exists 1% > 0 such that (4)
possesses, at least, two nT-periodic solutions with rotation number w for every 1 > 5.
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Proof. First, we focus attention into the small solutions of (4). There exists € > 0 such that

2
(5) (€5 —1)¢ > > if €] <e.

It can be chosen an initial data (x(0), y(0)) = (x,, ¥,) sufficiently close to (0, 0), say |(xy, Yo)| < ¢, SO that
the solution of (4), (x(¢), y(t)), satisfy |(x(t), y(¢))| < ¢ for all t € [0, nT]. This is possible by continuous
dependence on the initial conditions. According to (2), there are 7 € (0, T) and § > 0 such that a(¢)3(t) > 0
foreveryt € [t — 6,7+ 6] ¢ [0, T]. Thus,

© ¢i= min (), 0} > 0.

Consequently, due to (4), (5) and (6), we obtain that, for every ¢t € [0, nT],

@) o'(1) = Y Ox() = X'(Oy(r) _ BBV = Dx(1) + Aa()(e”™® = Dy(1) Y
X +yA) x2(8) + y2(t) -2
Hence, owing to (7),
_ _emm-60) 1 (" R ni¢2s
roto, [(xg, %0); [0, nT]] = o = E/(; 6'(s)ds > - » 0'(s)ds > o= > w

ifA> = = 2%,
n¢é

On the other hand, solutions with sufficiently large initial data do not rotate (see, for further details,
Theorem 2.2 of [8]). Hence, the hypothesis of Theorem 1 holds for every 1 > A%, which ends the proof. =

3. The degenerate case
To analyze the problem (1) under the condition (3), we suppose that
(8) supp a C [0, g] and suppf C [g, T].
In case (8), introduced in [5], we have that, for every ¢t € [0, T],
u(t) = upe0 =P €8s y(p) =y eMT-DAS A()ds,

Hence, the T-time Poincaré map is

(1, vy) = R(ug, V) = (W(T), v(T)) = (upe! =04, yyeta=DB),
Consequently, iterating n times this map, it becomes apparent that

(Up, V) = R (ug, vy) = R"(Uy, vy) = (U(nT), v(nT)) = (un—le(l_vn_l)m’ Un—le(un_l)}LB)

— (uoe(n—uo—vl—m—vn_l)AA, er(u1+u2+- . -+un—n)/13)‘

9)

By the uniqueness for the underlying Cauchy problem, the nT-periodic coexistence states of (1) are given
by the positive fixed points of #,. Thus, by (9), we are driven to solve the system

n o =uy+u + -+ U,
(10) 0 1 n—1
n =U0+U1+"‘+Un_1.

The next result proves the existence and multiplicity of nT-periodic coexistence states of (1) when n > 2 in
case (8). To get it, we impose the following condition:

(1) A=B and u;=1y,=x.
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Theorem 3. Assume (8) and (11). Then, for every A > %, (1) admits, at least, n coexistence states with
period nT if n is even, and n — 1 coexistence states with period nT if n is odd.

Proof. By (11), it turns out that, given ¢;(x) = x — 1,

Pn(X) = @p_1(x) = 1 + E,_;(x),

is the map whose zeros provide us with the nT-periodic coexistence states of (1), where E,(x) is a sequence
of exponential functions. In order to obtain some information concerning the nT-periodic coexistence
states of (1), we analyze the variational equations of these maps at the trivial curve (4, 1),

99y,
o (1),

pn(A) =

It is easy to prove that p, (1) is a sequence of polynomials in the indeterminate A that satisfy the recursive
formula
Pr(A) = [2 = (=1)"A4]py_1 (D) — Pp—(2),

where p,(4) = 1 and p,(1) = 2 — AA. From this recursive formula, it can be shown that any root of p,, is
real and algebraically simple. Thanks to these facts, for any given r € p;;'(0), the transversality condition
of Crandall-Rabinowitz [1] holds. Thus, for any given r € p,;1(0), the algebraic multiplicity of Esquinas and
Lopez-Gémez [4] equals one at every point (7, 1). So, according to Crandall and Rabinowitz [1, Th. 1.7],
a local bifurcation occurs at every point (r, 1). Moreover, by the unilateral theorem of Lépez-Gémez |6,
Th. 6.4.3], the underlying subcomponents of nT-periodic coexistence states are unbounded in A. As the
number of positive roots of p,(1) equals g if n is even and nT_l if n is odd, the result holds. This ends the
proof. L]
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