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A b s t r a c t : The present work addresses the study and characterization of the inte-
grability of three famous nonlinear Schrödinger equations with derivative-type
nonlinearities in 1 + 1 dimensions. Lax pairs for these three equations are suc-
cessfully obtained by means of a Miura transformation and the singular manifold
method. After implementing the associated binary Darboux transformations, we
are able to construct rational soliton-like solutions for those systems.

R e s u m e n : El presente trabajo aborda el estudio y caracterización de la integra-
bilidad de tres célebres ecuaciones diferenciales tipo Schödinger no lineal con
nolinearidades que incluyen términos en derivadas. Mediante el método de la
variedad singular, junto con una trasformación de Miura, se obtienen las expre-
siones de los pares de Lax para dichas ecuaciones. A través del formalismo de las
trasformaciones binarias de Darboux, se consigue construir soluciones solitónicas
racionales para estos tres sistemas.
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Integrability and rational soliton solutions for gauge invariant derivative nonlinear Schrödinger equations

1 . I n t r o d u c t i o n

The nonlinear Schrödinger (NLS) equation is one of the most famous integrable equations in soliton theory
and mathematical physics. Among the several integrable generalizations of NLS, we are interested in the
study of modified NLS systems with derivative-type nonlinearities in 1 + 1 dimensions, which are known
as derivative nonlinear Schrödinger (DNLS) equations. There exist three celebrated equations of this kind,
i.e., the Kaup-Newell (KN) system [4],

( 1 ) i𝑚𝑡 −𝑚𝑥𝑥 − i (|𝑚|2𝑚)𝑥 = 0,

the Chen-Lee-Liu (CLL) equation [2],

( 2 ) i𝑚𝑡 −𝑚𝑥𝑥 − i|𝑚|2𝑚𝑥 = 0,

and the Gerdjikov-Ivanov (GI) equation [3]

( 3 ) i𝑚𝑡 −𝑚𝑥𝑥 + i𝑚2𝑚𝑥 −
1
2 |𝑚|

4𝑚 = 0,

where𝑚 is a complex valued function and 𝑚 denotes the complex conjugate of 𝑚.

It is already known that these three equations are equivalent via a 𝑈(1)-gauge transformation [5]. If𝑚(𝑥, 𝑡)
is a solution of the KN system (1), it is easy to find that the new field𝑀(𝑥, 𝑡)

( 4 ) 𝑀(𝑥, 𝑡) = 𝑚(𝑥, 𝑡)e
i𝛾
2
𝜃(𝑥,𝑡), with 𝜃𝑥 = |𝑚|2, 𝜃𝑡 = i(𝑚𝑚𝑥 −𝑚𝑚𝑥) +

3
2 |𝑚|

4,

satisfies the CLL equation for 𝛾 = 1, and the GI equation for 𝛾 = 2.

Gauge transformations constitute an useful tool to link integrable evolution equations in soliton theory,
since they provide Bäcklund transformations between those equations as well as the relation of their
associated linear problems [6]. In this contribution we exploit this gauge invariance property to construct
a Lax pair and rational soliton solutions for these three equations. For a detailed analysis and explicit
calculations, we refer the reader to [1].

2 . I n t e g r a b i l i t y a n d L a x p a i r

The Painlevé test [7] has been proved to be a powerful criterion for the identification of integrable partial
differential equations (PDEs). A PDE is said to posses the Painlevé property, frequently considered as a
proof of integrability, when its solutions are singled-valued about the movable singularity manifolds. This
requires the generalized Laurent expansion for the field 𝑚(𝑥, 𝑡) = ∑∞

𝑗=0 𝑎𝑗(𝑥, 𝑡)𝜙(𝑥, 𝑡)
𝑗−𝜇, where 𝜙(𝑥, 𝑡) is

an arbitrary function called the singular manifold and the index 𝜇 ∈ ℕ is an integer.

The Painlevé test is unable to check the integrability of any DNLS equation since the leading index is not
integer, 𝜇 = 1

2
. This fact allow us to introduce two new real fields 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡)

( 5 ) 𝑚(𝑥, 𝑡) = √2𝛼𝑥e
i
2
𝛽(𝑥,𝑡), with 𝛼𝑥 =

1
2 |𝑚|

2, 𝛽 = (2𝛾 − 3)𝛼 +∫
𝛼𝑡
𝛼𝑥

d𝑥,

with 𝛾 = 0 for the KN system, 𝛾 = 1 for the CLL equation and 𝛾 = 2 for the GI equation. This ansatz yields
an identical differential equation for 𝛼 in each case, expressed in the conservative form

( 6 ) [𝛼2𝑥 − 𝛼𝑡]𝑡 = [𝛼𝑥𝑥𝑥 + 𝛼3𝑥 −
𝛼2𝑡 + 𝛼2𝑥𝑥

𝛼𝑥
]
𝑥
.

From expression (4), it can be easily seen that the probability density 𝜃𝑥 = |𝑚|2 = |𝑀|2 is invariant under a
𝑈(1)-gauge transformation, indeed it constitutes the first conservation law for these systems. Due to this
symmetry, it is straightforward to see that once we obtain a soliton solution for a particular DNLS equation,
it is immediate to derive soliton solutions for any DNLS equation linked by a 𝑈(1)-gauge transformation.
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Since 𝛼𝑥 =
𝜃𝑥
2
, we may conclude that equation (6) is the representative equation for the probability density

of any DNLS equation. Equation (6) passes the Painlevé test, but it possesses two branches of expansion.
The best method to overcome this inconvenience requires the splitting of the field 𝛼 as

( 7 ) 𝛼 = i(𝑢 − 𝑢), 𝛼2𝑥 − 𝛼𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥𝑥.

The combination of equations in (7) yields two Miura transformations for {𝑢, 𝑢} and the condition

( 8 ) 𝑢𝑥𝑥 =
1
2 (𝛼

2
𝑥 − 𝛼𝑡 − i𝛼𝑥𝑥) , 𝑢𝑥𝑥 =

1
2 (𝛼

2
𝑥 − 𝛼𝑡 + i𝛼𝑥𝑥) , i𝑢𝑡 + 𝑢𝑥𝑥 − i𝑢𝑡 + 𝑢𝑥𝑥 + (𝑢𝑥 − 𝑢𝑥)2 = 0,

which finally lead to the same nonlocal Boussinesq equation for both 𝑢(𝑥, 𝑡) and 𝑢(𝑥, 𝑡), of the form

( 9 ) [𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 + 2𝑢2𝑥𝑥 −
𝑢2𝑥𝑡 + 𝑢2𝑥𝑥𝑥

𝑢𝑥𝑥
]
𝑥
= 0.

Equation (9) has the Painlevé property with an unique branch of expansion. Hence, this equation is
conjectured integrable and it is possible to derive an equivalent linear spectral problem associated to the
nonlinear equation (9). This aim may be achieved by means of the singular manifold method (SMM).
The SMM [7] focuses on solutions which emerge from the truncated Painlevé series, as auto-Bäcklund
transformations of the form 𝑢[1] = 𝑢[0] + log(𝜙). Thus, the singular manifold 𝜙 is no longer an arbitrary
function, since it satisfies the singular manifold equations. The associated linear problem arises from the
linearization of these equations, and it can be demonstrated that the Lax pair for 𝑢 reads [1]

( 1 0 )

𝜓𝑥𝑥 = (
𝑢[0]𝑥𝑥𝑥 − i𝑢[0]𝑥𝑡

2𝑢[0]𝑥𝑥
− i𝜆) 𝜓𝑥 − 𝑢[0]𝑥𝑥𝜓, 𝜓𝑡 = i𝜓𝑥𝑥 − 2𝜆𝜓𝑥 + i (2𝑢[0]𝑥𝑥 + 𝜆2) 𝜓,

𝜒𝑥𝑥 = (
𝑢[0]𝑥𝑥𝑥 + i𝑢[0]𝑥𝑡

2𝑢[0]𝑥𝑥
+ i𝜆) 𝜒𝑥 − 𝑢[0]𝑥𝑥𝜒, 𝜒𝑡 = −i𝜒𝑥𝑥 − 2𝜆𝜒𝑥 − i (2𝑢[0]𝑥𝑥 + 𝜆2) 𝜒,

where {𝜒,𝜓} are two complex conjugated eigenfunctions satisfying 𝜓𝑥𝜒𝑥
𝜓𝜒

+ 𝑢[0]𝑥𝑥 = 0 and 𝜆 is the spectral
parameter. From (10), we may compute the Lax pair for the DNLS equations, obtaining

( 1 1 )

𝜒𝑥𝑥 = [i𝜆 − i(𝛾 − 2)
2

||𝑚[0]||
2
+ 𝑚[0]

𝑥

𝑚[0]
]𝜒𝑥 +

1
2 [i𝑚

[0]𝑚[0]
𝑥 −

𝛾 − 1
2

||𝑚[0]||
4
] 𝜒,

𝜒𝑡 = i𝜒𝑥𝑥 − [(𝛾 − 2) ||𝑚[0]||
2
+ 2i𝑚[0]

𝑥

𝑚[0]
]𝜒𝑥 − i𝜆2𝜒,

and its complex conjugate, for the corresponding value of 𝛾. It is worthwhile to remark that the condition
𝜓𝑥𝜒𝑥
𝜓𝜒

− i

2
𝑚[0]𝑚[0]

𝑥 + 𝛾−1
4
||𝑚[0]||

4
= 0 allows us to determine an equivalent Lax pair for those systems.

3 . R a t i o n a l s o l i t o n s o l u t i o n s

Once the Lax pair have been obtained for a given PDE by means of the SMM, binary Darboux transforma-
tions can be constructed in order to obtain iterated solutions for that PDE.We implement the Darboux
transformation formalism over the spectral problem (10) so as to provide a general iterative procedure
to compute up to the 𝑛th iteration for 𝑢. By virtue of expressions (4), (5) and (7), solutions for the DNLS
equations can be forthrightly established. Thus, soliton solutions for DNLS equations may be derived by
considering a suitable choice for the seed solution and the eigenfunctions in the Lax pair.

In the following lines we summarize the main results regarding this procedure, oriented to the obtention
of rational soliton solutions. Further details and a general rigorous analysis may be found in [1].

We start from a polynomial seed solution 𝑢[0] for (9) and binary exponential eigenfunctions for (10),

( 1 2 ) 𝑢[0] = −
𝑗20
4 [𝑗20𝑧20𝑥 (

𝑥
2 + 𝑗20(𝑧20 + 1)𝑡) i (𝑥 + 𝑗20 (𝑧20 +

1
2) 𝑡)] , 𝜒𝜍 = e

i
2
𝑗20𝑧0𝜍[𝑥+𝑗20(−

𝜍
2𝑧0

(𝑧40+7𝑧20+1)+3(𝑧20+1))𝑡],
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where 𝜓𝜍 = 𝜒𝜍, 𝑗0 and 𝑧0 are arbitrary parameters, 𝜎 = ±1 and 𝜆𝜍 = 𝑗20
2
(2𝜎𝑧0 − (𝑧20 + 1)). The first and

second iterations 𝑢[𝑗], 𝑗 = 1, 2 can be performed and the soliton solution profile may be computed as
||𝑚[𝑗]||

2
= 2i(𝑢[𝑗]𝑥 − 𝑢[𝑗]𝑥 ). The results are displayed in Figure 1.

• The first iteration (𝑗 = 1) provides a rational soliton-like travelling wave along the
𝑥 − 𝑗20 (𝜎𝑧0 − (𝑧20 + 1)) 𝑡 direction and constant amplitude, of expression

( 1 3 )
||𝑚

[1]
𝜍 ||

2
= 𝑗20 −

4

𝑗20𝑧0(𝜎 − 𝑧0) [(𝑥 − 𝑗20 (𝜎𝑧0 − (𝑧20 + 1)) 𝑡)2 + 1

𝑗40𝑧20(𝜍−𝑧0)2
]
, 𝜎 = ±1.

• For the second iteration (𝑗 = 2), we get the two-soliton solution

( 1 4 ) ||𝑚[2]||
2
= 𝑗20 +

8 [(𝑥 + 𝑗20(𝑧20 + 2) 𝑡)2 + 𝑗40(𝑧20 − 1) 𝑡2 + 1

𝑗40(𝑧20−1)
]

𝑗20(𝑧20 − 1) [((𝑥 + 𝑗20(𝑧20 + 1) 𝑡)2 − 𝑗40𝑧20𝑡2 −
1

𝑗40(𝑧20−1)
)
2
+ 4(𝑥+𝑗20(𝑧20+2) 𝑡)

2

𝑗40(𝑧20−1)2
]
.

leading to a two asymptotically travelling rational solitons of the form (13) (for 𝜎 = 1 and 𝜎 = −1,
respectively) interacting at the origin.

F i g u r e 1 : Spatio-temporal plot of ||𝑚[1]||
2
and ||𝑚[2]||

2
for parameters 𝜎 = −1, 𝑗0 = 1, 𝑧0 =

1

6
.
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