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A b s t r a c t : Attached to any topological space𝑋we find its character variety. This is an
algebraic variety parametrizing isomorphism classes of representations 𝜋1(𝑋) → 𝐺
of the fundamental group of𝑋 into an algebraic reductive group𝐺. These spaces are
particularly useful in classical knot theory, since they provide very subtle invariants
of knot 𝐾 ⊂ ℝ3 by taking 𝑋 = ℝ3 − 𝐾. However, even in the simplest cases a full
understanding of these character varieties is an open problem. In this paper, we
compute the motif of the irreducible character variety of representations of the
fundamental group of the complement of an arbitrary torus knot into 𝐺 = SL4 (𝑘).
For that purpose, we introduce a stratification of the variety in terms of the type of
a canonical filtration attached to any representation. This allows us to reduce the
computation of the virtual class to a purely combinatorial problem.

R e s u m e n : Asociado a cada espacio topológico𝑋 tenemos su variedad de caracteres.
Esta es una variedad algebraica que parametriza las clases de isomorfismo de
representaciones 𝜋1(𝑋) → 𝐺 del grupo fundamental de 𝑋 en un grupo algebraico
reductivo𝐺. Estos espacios resultan especialmente útiles en teoría de nudos clasica,
pues proveen de invariates muy sutiles de nudos 𝐾 ⊂ ℝ3 al tomar 𝑋 = ℝ3 − 𝐾.
A pesar de esta importancia, incluso en los casos más simples el entendimiento
completo de estas variedades de caracteres es un problema abierto. En este artículo,
calculamos el motivo de la variedad de caracteres irreducible de representaciones
del grupo fundamental de un nudo toroidal arbitrario en 𝐺 = SL4 (𝑘). Para este
fin, introducimos una estratificación de la variedad en términos del tipo de una
filtración canónica asociada a cada representación. Esto permite reducir el cálculo
de la clase virtual a un problema puramente combinatorio.
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Character varieties of torus knots

1 . M o t i v i c t h e o r y o f c h a r a c t e r v a r i e t i e s

Let 𝛤 be a finitely generated group and let 𝐺 be a reductive linear algebraic group over an algebraically
closed field 𝑘. The space 𝑅(𝛤,𝐺) of representations 𝜌∶ 𝛤 → 𝐺 forms an algebraic variety known as
the 𝐺-representation variety. Additionally, consider the open subset 𝑅irr(𝛤,𝐺) ⊆ 𝑅(𝛤,𝐺) of irreducible
representations. By Schur’s lemma the adjoint action of 𝐺 by conjugation on 𝑅irr(𝛤,𝐺) is closed and its
stabilizer at any point is the center of 𝐺. Therefore, the orbit space

𝔐irr(𝛤,𝐺) = 𝑅irr(𝛤,𝐺)/𝐺

is an algebraic variety known as the irreducible 𝐺-character variety. These varieties play a prominent
role in the topology of 3-manifolds, starting with the foundational work of Culler and Shalen [1] on the
study of hyperbolic geometry via SL2 (ℂ)-character varieties. Due to its importance, the algebro-geometric
properties of character varieties have been widely studied, particularly regarding their motivic class.

D e f i n i t i o n 1 . The Grothendieck ring of algebraic varieties 𝐾𝒱𝑎𝑟𝑘 is the ring generated by isomorphism
classes of algebraic varieties [𝑋], called virtual classes or motives in this context, with the relations
[𝑋1 ⊔ 𝑋2] = [𝑋1] + [𝑋2] and [𝑋1 × 𝑋2] = [𝑋1] ⋅ [𝑋2] for any algebraic varieties 𝑋1 and 𝑋2. ◀

R e m a r k 2 . Great efforts have been made to compute the virtual classes [𝔐irr(𝛤,𝐺)] ∈ 𝐾𝒱𝑎𝑟𝑘. Three
approaches are proposed in the literature: the arithmetic viewpoint [4], the geometric perspective [6] and
through Topological Quantum Field Theories [3]. ◀

An useful tool for studying the geometry of the character variety is the so- called semi-simple filtration.
This is the analogue of the composition series or the Harder-Narasimhan filtration in the representation
theoretic framework. Working similarly to the Jordan-Hölder theorem, we get the following result.

P r o p o s i t i o n 3 . Let 𝜌∶ 𝛤 → GL(𝑉) be a representation. There exists an unique filtration of 𝛤-modules

0 = 𝑉0 ⊂ 𝑉1 ⊂ … ⊂ 𝑉𝑖 ⊂ … ⊂ 𝑉𝑠 = 𝑉,

such that Gr𝑖 (𝑉•) = 𝑉𝑖/𝑉𝑖−1 is a maximally semi-simple subrepresentation of 𝑉/𝑉𝑖−1.

By restriction, the semi-simple filtration also exists for representations onto any linear group 𝐺. Thanks
to this filtration, we can decompose the graded pieces of a representation into its isotypic components
Gr𝑖 (𝑉•) ≅ ⨁𝑠𝑖

𝑗=1𝑊
𝑚𝑖,𝑗
𝑖,𝑗 , with 𝑊𝑖,1,… ,𝑊𝑖,𝑠𝑖 non-isomorphic representations. From this information, we

define the shape of the representation as the tuple collecting of dimensions and multiplicities of this
decomposition 𝜉 = ({(dim𝑊𝑖,𝑗,𝑚𝑖,𝑗)}𝑗)𝑖.
Moreover, we can add spectral information to the shape. For each 𝛾 ∈ 𝛤, denote by 𝜎𝑖,𝑗(𝛾) the collection
of eigenvalues of 𝜌(𝛾) ∈ End(𝑊𝑖,𝑗) and set 𝜎 = (𝜎𝑖,𝑗(𝛾)). The pair 𝜏 = (𝜉,𝜎) is called the type of the
representation and it is invariant under the adjoint action. Writing 𝒯(𝛤,𝐺) for the space of possible types
arising in representations 𝛤 → 𝐺, we get a natural map

𝛷∶ 𝑅(𝛤,𝐺) → 𝒯(𝛤,𝐺)

assigning each representation to its underlying type. Also set 𝒯 irr(𝛤,𝐺) for the types of irreducible rep-
resentations, all of which have the same shape. The map 𝛷 restricts to 𝛷∶ 𝑅irr(𝛤,𝐺) → 𝒯 irr(𝛤,𝐺). Notice
that if 𝒯 irr(𝛤,𝐺) is finite, the morphism 𝛷 induces a stratification of 𝑅irr(𝛤,𝐺).

2 . C h a r a c t e r v a r i e t i e s o f t o r u s k n o t s

Given a knot 𝐾 ⊂ ℝ3, it natural to study the fundamental group of its complement 𝜋1(ℝ3 − 𝐾). An
important case arises when 𝐾 = 𝐾𝑛,𝑚 is the (𝑛,𝑚)-torus knot (gcd(𝑛,𝑚) = 1) whose fundamental group
of the complement is 𝛤𝑛,𝑚 = 𝜋1(ℝ3 − 𝐾𝑛,𝑚) = ⟨𝑥, 𝑦 ∣ 𝑥𝑛 = 𝑦𝑚⟩. Using the image of the generators 𝑥, 𝑦 to
identify a representation, we get that the representation variety is

𝑅(𝛤𝑛,𝑚,𝐺) = {(𝐴,𝐵) ∈ 𝐺 ∣ 𝐴𝑛 = 𝐵𝑚} .

The 𝐺-character varieties of torus knots have been studied for 𝐺 = SL2 (ℂ) [5, 8], 𝐺 = SL3 (ℂ) [9] and
𝐺 = SU(2) [7], among others. However, very little is known in the higher rank case 𝐺 = SL𝑟 (𝑘) for 𝑟 ≥ 4. A
key observation towards this aim is the following.
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P r o p o s i t i o n 4 . Any irreducible representation 𝜌∶ 𝛤𝑛,𝑚 → 𝐺 lifts, up to rescalling, to a representation
̃𝜌 ∶ ℤ𝑛 ⋆ ℤ𝑚 → 𝐺.

P r o o f . Set 𝑃 = 𝐴𝑛 = 𝐵𝑚. Trivially 𝑃𝐴 = 𝐴𝑃 and 𝑃𝐵 = 𝐵𝑃, so 𝑃−1𝜌𝑃 = 𝜌. Thus, 𝑃 is a 𝛤-equivariant
automorphism of 𝜌 which, by Schur’s lemma, implies that 𝑃 = 𝜛Id for some𝜛 ∈ 𝑘∗. ▪

C o r o l l a r y 5 . 𝒯 irr(𝛤𝑛,𝑚, SL𝑟 (𝑘)) is finite.

P r o o f . In this case the scalling factor 𝜛 ∈ 𝑘∗ of Proposition 4 must satisfy 𝜛𝑟 = 1, so there are only
finitely many posibilities. Thus, it is enough to show that 𝒯 irr(ℤ𝑛 ⋆ ℤ𝑚, SL𝑟 (𝑘)) is finite. If (𝐴,𝐵) ∈
𝑅irr(ℤ𝑛 ⋆ ℤ𝑚, SL𝑟 (𝑘)), then 𝐴 ∈ 𝑅(ℤ𝑛, SL𝑟 (𝑘)) and 𝐵 ∈ 𝑅(ℤ𝑚, SL𝑟 (𝑘)) so they are diagonalizable in so far
as representations of finite abelian groups. Moreover, 𝐴𝑛 = 𝐵𝑚 = Id so the eigenvalues of 𝐴 and 𝐵must be
roots of unit. These are finitely many for fixed 𝑛,𝑚, implying that 𝒯 irr(ℤ𝑛 ⋆ ℤ𝑚, SL𝑟 (𝑘)) is finite. ▪

From now on, we focus on 𝐺 = SL𝑟 (𝑘), 𝑟 ≥ 1, as target group so we will omit it from the notation. Fixed a
spectrum 𝜅 = (𝜎𝐴,𝜎𝐵) for the matrices of a representation (𝐴,𝐵) ∈ 𝑅(𝛤𝑛,𝑚), let us denote by 𝒯𝜅 the set of
types 𝜏 = (𝜉,𝜎) ∈ 𝒯(𝛤𝑛,𝑚)whose spectral data 𝜎 are drawn from 𝜅. Set𝒯 irr

𝜅 = 𝒯𝜅∩𝒯 irr(𝛤𝑛,𝑚),𝒯red
𝜅 = 𝒯𝜅−𝒯 irr

𝜅 ,
𝑅𝜅(ℤ𝑛 ⋆ ℤ𝑚) = 𝛷−1(𝒯𝜅) and 𝑅irr𝜅 (ℤ𝑛 ⋆ ℤ𝑚) = 𝛷−1(𝒯 irr

𝜅 ). Then, we have that

( 1 ) 𝑅irr(𝛤𝑛,𝑚) ≅ ⨆
𝜅
𝑅irr𝜅 (ℤ𝑛 ⋆ ℤ𝑚) = ⨆

𝜅
(𝑅𝜅(ℤ𝑛 ⋆ ℤ𝑚) − ⨆

𝜏∈𝒯red
𝜅

𝑋(𝜏)),

where 𝑋(𝜏) = 𝛷−1(𝜏) is the set of (reducible) representations of type 𝜏. The virtual class [𝑅𝜅(ℤ𝑛 ⋆ ℤ𝑚)] ∈
𝐾𝒱𝑎𝑟𝑘 can be easily computed as the product of the adjoint orbits of two diagonal matrices. Hence,
Equation (1) shows that, to compute the virtual class of 𝑅irr(𝛤𝑛,𝑚), it is enough to compute the virtual
classes of 𝑋(𝜏) for all 𝜅 and 𝜏 ∈ 𝒯red

𝜅 . This amounts to a combinatorial problem and the knowledge of
[𝑅irr(𝛤𝑛,𝑚, SL𝑠 (𝑘))] for 𝑠 < 𝑟, so the computation can be performed recursively. For further details, check
[2, Section 3].

2 . 1 . C o u n t i n g c o m p o n e n t s

Consider partitions 𝜋 = {1𝑒1, 2𝑒2,… , 𝑟𝑒𝑟} and 𝜋′ = {1𝑒′1, 2𝑒′2,… , 𝑟𝑒′𝑟} of 𝑟 with 𝑟 = ∑𝑖 𝑖𝑒𝑖 = ∑𝑖 𝑖𝑒
′
𝑖. Denote by

𝑀𝜋,𝜋′
𝑛,𝑚,𝑟 the collection of (unordered) spectra 𝜅 = (𝜎𝐴,𝜎𝐵) where 𝜎𝐴 (resp. 𝜎𝐵) has 𝑒𝑖 (resp. 𝑒′𝑖) collections of 𝑖

equal eigenvalues for 𝑖 = 1,… , 𝑟. Notice that, for any 𝜅, 𝜅′ ∈ 𝑀𝜋,𝜋′
𝑛,𝑚,𝑟 we have that [𝛷−1(𝒯red

𝜅 )] = [𝛷−1(𝒯red
𝜅′ )].

Hence, we can collect the summands in (1) that contribute equaly to get

( 2 ) [𝑅irr(𝛤𝑛,𝑚)] = ∑
𝜋,𝜋′

|𝑀𝜋,𝜋′
𝑛,𝑚,𝑟|( [𝑅𝜅(𝜋,𝜋′)(ℤ𝑛 ⋆ ℤ𝑚)] − ∑

𝜏∈𝒯red
𝜅(𝜋,𝜋′)

[𝑋(𝜏)] ).

Here, we have fixed an element 𝜅(𝜋,𝜋′) ∈ 𝑀𝜋,𝜋′
𝑛,𝑚,𝑟 for every permutations 𝜋,𝜋′. The first step towards the

calculation of all the terms involved this sum is provided in the following result.

T h e o r e m 6 ([2, Section 6 and Theorem 6.8]). If gcd(𝑛, 𝑟) = gcd(𝑚, 𝑟) = 1 or 𝑟 ≤ 4, then we have

|𝑀𝜋,𝜋′
𝑛,𝑚,𝑟| =

𝑟
𝑛𝑚 ( 𝑛

𝑒1, 𝑒2,… , 𝑒𝑟
) ( 𝑚
𝑒′1, 𝑒′2,… , 𝑒′𝑟

) =
𝑟
𝑛𝑚

𝑛!
𝑒1!⋯𝑒𝑟!(𝑛 − 𝑒1 −… − 𝑒𝑟)!

𝑚!
𝑒′1!⋯𝑒′𝑟!(𝑛 − 𝑒′1 −… − 𝑒′𝑟)!

.

R e m a r k 7 . It is an open problem whether this formula also holds true for 𝑟 ≥ 5 without the awkward
hypothesis gcd(𝑛, 𝑟) = gcd(𝑚, 𝑟) = 1. ◀

2 . 2 . C o u n t i n g r e p r e s e n t a t i o n s o f f i x e d t y p e

Fix a type 𝜏, let 𝑚𝑖,𝑗 be the multiplicity of the isotypic piece 𝑊𝑖,𝑗 of the semi-simple filtration and set
𝜅𝑖,𝑗 = (𝜎𝑖,𝑗(𝑥),𝜎𝑖,𝑗(𝑦)) for the corresponding eigenvalues of these pieces. Then we consider

ℐ(𝜏) =
𝑠
∏
𝑖=1

𝑠𝑖
∏
𝑗=1

Sym𝑚𝑖,𝑗 (𝑅irr𝜅𝑖,𝑗(ℤ𝑛 ⋆ ℤ𝑚)) , ̂ℐ(𝜏) =
𝑠
∏
𝑖=1

𝑠𝑖
∏
𝑗=1

(𝑅irr𝜅𝑖,𝑗(ℤ𝑛 ⋆ ℤ𝑚))
𝑚𝑖,𝑗 .

TEMat monogr., 2 (2021) e-ISSN: 2660-6003 41



Character varieties of torus knots

There is a map Gr•∶ 𝑋(𝜏) → 𝐼(𝜏) that assigns any representation to its graded complex (its “semi-
simplification”). Pulling-back Gr• through the quotient map ̂ℐ(𝜏) → ℐ(𝜏), we obtain a morphism
̂Gr•∶ 𝑋(𝜏) ×ℐ(𝜏) ̂ℐ(𝜏) → ̂ℐ(𝜏). It is a Zariski locally trivial fibration whose fiber 𝐹𝜚 at 𝜚 ∈ ̂ℐ(𝜏) is the set of

ways we can complete the block- diagonal semi-simple representation induced by 𝜚 with off-diagonal
elements.

These calculations of the virtual classes of the fibers 𝐹𝜚 can be carried out using Schubert calculus (see [2,
Sections 4 and 5], where the calculations for rank 𝑟 ≤ 4 are performed). Moreover, if for every𝑚𝑖,𝑗 > 1 we
have that dim𝑊𝑖,𝑗 = 1 (i.e. if all the repeated irreducible representations are 1-dimensional) then we have
that ̂ℐ(𝜏) = ℐ(𝜏) so [𝑋(𝜏)] = [𝐹𝜚][ℐ(𝜏)]. These conditions hold for 𝑟 ≤ 4 [2, Corollary 4.7 and Proposition
8.1]. Thus performing these calculations for all the possible combinations of permutations and types, we
can compute the virtual class of 𝑅irr(𝛤𝑛,𝑚, SL𝑟 (𝑘)) by means of (2) for 𝑟 ≤ 4.

In the case 𝑟 = 4, there are 10 posible partitions such that 𝒯 irr
𝜅(𝜋,𝜋′) ≠ ∅ and more than 350 types must be

analyzed for these partitions. Carrying out the calculations with a symbolic algebra system, we finally
obtain the following result (see [2, Section 8] for further details).

T h e o r e m 8 . The virtual class of the irreducible SL4 (𝑘)-character variety of the (𝑛,𝑚)-torus knot is

[𝔐irr(𝛤, SL4 (𝑘)]=
4

𝑛𝑚
(𝑛4)(

𝑚
4 )(𝑞

9 + 6𝑞8 + 20𝑞7 + 17𝑞6 − 98𝑞5 − 26𝑞4 + 38𝑞3 + 126𝑞2 − 144)

+ 4

𝑛𝑚
( 𝑛2,1)(

𝑚
2,1)(𝑞

5 + 2𝑞4 − 10𝑞3 + 7𝑞2 + 11𝑞 − 17) + 4

𝑛𝑚
((𝑛4)(

𝑚
2 ) + (𝑛2)(

𝑚
4 ))(𝑞

5 + 4𝑞4 − 11𝑞3 + 𝑞2 + 18𝑞 − 18)

+ 4

𝑛𝑚
((𝑛4)(

𝑚
1,1) + ( 𝑛1,1)(

𝑚
4 ))(𝑞

3 − 4𝑞2 + 6𝑞 − 4) + 4

𝑛𝑚
(( 𝑛2,1)(

𝑚
2 ) + (𝑛2)(

𝑚
2,1))(𝑞

3 − 3𝑞2 + 5𝑞 − 4)

+ 4

𝑛𝑚
((𝑛4)(

𝑚
2,1) + ( 𝑛2,1)(

𝑚
4 ))(𝑞

7 + 5𝑞6 + 7𝑞5 − 34𝑞4 + 34𝑞2 + 18𝑞 − 48),

where 𝑞 = [�1
𝑘] ∈ 𝐾𝒱𝑎𝑟𝑘 is the virtual class of the affine line.
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