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A b s t r a c t : In this paper, we suppose 𝑅 is a prime ring with the centre 𝑍(𝑅), 𝐷 =
(𝑑𝑖 ≠ 0)𝑖∈ℕ is a higher derivation of 𝑅 and 𝐿 is a Lie ideal of 𝑅, this gives under
certain conditions 𝑅 has a weak zero-divisor or a weakly semiprime ideal.

R e s u m e n : En este artículo, suponemos que 𝑅 es un anillo principal con centro
𝑍(𝑅),𝐷 = (𝑑𝑖 ≠ 0)𝑖∈ℕ es una derivación de 𝑅 y 𝐿 es un ideal de Lie de 𝑅. Bajo ciertas
condiciones, resulta que 𝑅 tiene un divisor de cero débil o un ideal semiprimo
débil.
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Higher derivations with Lie structure of associative rings

1 . I n t r o d u c t i o n

One of the earliest results on Lie derivations of associative rings is dur to Martindale [10], who proved that
every Lie derivation on a primitive ring can be written as a sum of derivation and an additive mapping
of ring to its center that maps commutators into zero, i.e., Lie derivation has the standard form. In 1993,
Brešar [5] gave a characterization of Lie derivations of prime rings. This result together with other results
initiated the theory of functional identities on rings. Actually, study behaviour of a derivation on the whole
ring with many of the results achieved by extending the other ones proven previously. For a full account
on the theory of functional identities and zero Lie product we refer the reader to the paper of Brešar [6].
Lie derivations, as well as other Lie maps, have been active research subjects for a long time (see, e.g., [1],
Benkovič [3] and Brešar [6]). Also, Cheung [8] gave a characterization of linear Lie derivations on triangular
algebras. Qi and Hou [11] discussed additive 𝜉-Lie derivations on nest algebras. The most interesting result
on additive Lie derivations of prime rings was obtained by Brešar [6].

Throughout the article, 𝑅will represent an a commutative ringwith identity 1 ≠ 0. The center of𝑅 is denoted
by 𝑍(𝑅). The symbols [𝑥, 𝑦] stand for the commutator 𝑥𝑦 − 𝑦𝑥, and 𝑥 ∘ 𝑦 stands for the anticommutator
𝑥𝑦 + 𝑦𝑥, for any 𝑥, 𝑦 ∈ 𝑅. A ring 𝑅 is called a prime if 𝑥𝑅𝑦 = 0 implies either 𝑥 = 0 or 𝑦 = 0. Suppose 𝐿 is
an additive subgroup of 𝑅, 𝐿 is said to be a Lie ideal of 𝑅 if for every 𝑢 ∈ 𝐿, 𝑟 ∈ 𝑅 then the commutator
[𝑢, 𝑟] = 𝑢𝑟 − 𝑟𝑢 ∈ 𝐿. Any ordinary, two-sided ideal of 𝑅 is automatically a Lie ideal of 𝑅. Let 𝑛 > 1 be an
integer; then, a ring 𝑅 is said to be 𝑛-torsion free, in case 𝑛𝑥 = 0 implies that 𝑥 = 0 for any 𝑥 ∈ 𝑅.

The idea of a weakly semiprime ideal is due to Badawi [2]. He introduced that the ideal 𝐿 is a weakly
semiprime ideal of 𝑅 such that 𝑅 is a commutative ring with identity 1 ≠ 0 and 𝐿 is a proper ideal of 𝑅.
If 𝑎 ∈ 𝑅 and 0 ≠ 𝑎2 ∈ 𝐿 then 𝑎 ∈ 𝐿. While the concept of a weak zero-divisor of a ring 𝑅 introduced by
Burgess, Lashgari, and Mojiri [7], where the authors defined an element 𝑎 ∈ 𝑅 is called a weak zero-divisor.
If there is 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑎𝑠 = 0 and 𝑟𝑠 ≠ 0. A derivation 𝑑 is an additive mapping 𝑑∶ 𝑅 → 𝑅 satisfies the
Leibniz’s formula 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑅. Moreover, 𝐷 is said to be a higher derivation of
𝑈 into 𝑅 if for every 𝑛 ∈ ℕ, we conclude that 𝑑𝑛(𝑥𝑦) = ∑𝑖+𝑗=𝑛 𝑑𝑖(𝑥)𝑑𝑗(𝑦) for all 𝑥, 𝑦 ∈ 𝐿 and 𝐷 = (𝑑𝑖 ≠ 0)
for all 𝑖 ∈ ℕ is the family of additive mappings of 𝑅 such that 𝑑0 = 𝑖𝑑𝑅 andℕ is set of a positive integers,
where 𝐿 is a Lie ideal of 𝑅.

By the above facts, it is fascinating to study weakly semiprime ideals and weak zero-divisors on a Lie ideal
of a prime ring 𝑅 via a higher derivation 𝐷 = (𝑑𝑖 ≠ 0)𝑖∈ℕ. This is our main motivation for this paper. The
following lemmas are also going to be applied:

L e m m a 1 (Bergen, Herstein, and Kerr [4], Lemma 4). Suppose 𝑅 is a prime ring with characteristic not
two and 𝑎, 𝑏 ∈ 𝑅. If 𝐿 is a non-central Lie ideal of 𝑅 such that 𝑎𝑈𝑏 = 0, then either 𝑎 = 0 or 𝑏 = 0.

L e m m a 2 (Herstein [9], Lemma 1.8). Let 𝑅 be a semiprime ring, and 𝑎 ∈ 𝑅 be a centralizer of all
commutators [𝑥, 𝑦], 𝑥, 𝑦 ∈ 𝑅. Then, 𝑎 ∈ 𝑍(𝑅).

2 . T h e m a i n r e s u l t s

T h e o r e m 3 . Let 𝑅 be a prime ring with the centre 𝑍(𝑅) and 𝐿 be a Lie ideal of 𝑅. Suppose that 𝐷 = (𝑑𝑖 ≠
0)𝑖∈ℕ is a higher derivation of 𝑈 into 𝑅. If 𝑑 satisfy one of the following relations

( i ) [𝑎, 𝑑𝑖(𝑢)] ∈ 𝑍(𝑅) for all 𝑢 ∈ 𝐿, 𝑎 ∈ 𝑅, then 𝐿 is a weakly semiprime ideal.
( i i ) [𝑑𝑖(𝐿), 𝑑𝑖(𝐿)] ⊆ 𝑍(𝑅), then either 𝐿 is a weakly semiprime ideal of 𝑅 or 𝑑𝑛(𝐿) is a weak zero-divisor

of 𝑅.
( i i i ) [𝑎, 𝑑𝑖(𝑢)] ∈ 𝑍(𝑅) and 𝑑𝑖(𝑍(𝑅)) ≠ 0 for all 𝑢 ∈ 𝐿, 𝑎 ∈ 𝑅, then [𝑎, [𝐿,𝑅]] ⊆ 𝑍(𝑅).

Based on Theorem 3, we can easily prove the following theorem.

52 https://temat.es/monograficos

https://temat.es/monograficos


Atteya

T h e o r e m 4 . Let 𝑅 be a prime ring with the centre 𝑍(𝑅) and 𝐿 be a Lie ideal of 𝑅. Suppose that 𝐷 = (𝑑𝑖 ≠
0)𝑖∈ℕ is a higher derivation of 𝑈 into 𝑅. If 𝑑 satisfy one of the following relations

( i ) [𝑑𝑖(𝐿), 𝑑𝑖(𝐿)] ⊆ 𝑍(𝑅) and 𝑑𝑖(𝑍(𝑅)) ≠ 0, then 𝑅 has a weakly semiprime ideal.
( i i ) 𝑑2𝑖 (𝐿) ⊆ 𝑍(𝑅), 𝑑𝑖(𝑍(𝑅)) ≠ 0 and 𝑑𝑖𝑑𝑗(𝐿) ⊆ 𝑍(𝑅), 𝑖, 𝑗 ∈ ℕ, then either 𝑑𝑛(𝐿) is a weak zero-divisor of

𝑅 or 𝑅 has a weakly semiprime ideal, where 𝑅 is 2-torsion free.
( i i i ) 𝑎𝑑𝑖(𝐿) ⊆ 𝑍(𝑅) and 𝑑𝑖(𝑍(𝑅)) ≠ 0, then either 𝑎 is a weak zero-divisor of 𝑅 or 𝑅 has a weakly semiprime

ideal, where 𝑎 ∈ 𝑅.

In the following theorem, 𝑅 not to be a commutative ring with identity 1 ≠ 0.

T h e o r e m 5 . For any fixed integers 𝑛, 𝑞 > 1, let 𝑅 be prime ring with the centre 𝑍(𝑅) and 𝐷 be a derivation
on 𝑅. If 𝐷 satisfy one of the following relations

( i ) 𝐷𝑛(𝑥𝑜𝑦) ∓ [𝑥, 𝑦] ∈ 𝑍(𝑅);
( i i ) 𝐷𝑛(𝑥 ∘ 𝑦) ± 𝐷𝑞(𝑥 ∘ 𝑦) ∓ [𝑥, 𝑦] ∈ 𝑍(𝑅) and 𝑅 is 2-torsion free;
( i i i ) 𝐷𝑛([𝑥, 𝑦]) ± 𝐷𝑞([𝑥, 𝑦]) ∓ (𝑥 ∘ 𝑦) ∈ 𝑍(𝑅) and 𝑅 is 2-torsion free

for all 𝑥, 𝑦 ∈ 𝑅, then 𝑅 has a weak zero-divisors.
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