Higher derivations with Lie structure of associative rings

✓ Mehsin Jabel Atteya University of Leicester University of Al-Mustansiriyah mjaas2@leicester.ac.uk

Abstract: In this paper, we suppose R is a prime ring with the centre Z(R), $D = (d_i \neq 0)_{i \in \mathbb{N}}$ is a higher derivation of R and L is a Lie ideal of R, this gives under certain conditions R has a weak zero-divisor or a weakly semiprime ideal.

Resumen: En este artículo, suponemos que R es un anillo principal con centro Z(R), $D=(d_i\neq 0)_{i\in\mathbb{N}}$ es una derivación de R y L es un ideal de Lie de R. Bajo ciertas condiciones, resulta que R tiene un divisor de cero débil o un ideal semiprimo débil.

Keywords: weakly semiprime ideal, weak zero-divisor, Lie ideal, derivation, prime ring

MSC2010: 16W25, 47B47.

Acknowledgements: The author is grateful to Department of Mathematics, College of Education, Al-Mustansiriyah University, Republic of Iraq, and beholden to the 3rd BYMAT Conference.

Reference: Atteya, Mehsin Jabel. "Higher derivations with Lie structure of associative rings". In: *TEMat monográficos*, 2 (2021): *Proceedings of the 3rd BYMAT Conference*, pp. 51-53. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/view/vol2-p51.

1. Introduction

One of the earliest results on Lie derivations of associative rings is dur to Martindale [10], who proved that every Lie derivation on a primitive ring can be written as a sum of derivation and an additive mapping of ring to its center that maps commutators into zero, *i.e.*, Lie derivation has the standard form. In 1993, Brešar [5] gave a characterization of Lie derivations of prime rings. This result together with other results initiated the theory of functional identities on rings. Actually, study behaviour of a derivation on the whole ring with many of the results achieved by extending the other ones proven previously. For a full account on the theory of functional identities and zero Lie product we refer the reader to the paper of Brešar [6]. Lie derivations, as well as other Lie maps, have been active research subjects for a long time (see, e.g., [1], Benkovič [3] and Brešar [6]). Also, Cheung [8] gave a characterization of linear Lie derivations on triangular algebras. Qi and Hou [11] discussed additive ξ -Lie derivations on nest algebras. The most interesting result on additive Lie derivations of prime rings was obtained by Brešar [6].

Throughout the article, R will represent an a commutative ring with identity $1 \neq 0$. The center of R is denoted by Z(R). The symbols [x, y] stand for the commutator xy - yx, and $x \circ y$ stands for the anticommutator xy + yx, for any $x, y \in R$. A ring R is called a prime if xRy = 0 implies either x = 0 or y = 0. Suppose L is an additive subgroup of R, L is said to be a Lie ideal of R if for every $u \in L$, $r \in R$ then the commutator $[u, r] = ur - ru \in L$. Any ordinary, two-sided ideal of R is automatically a Lie ideal of R. Let R > 1 be an integer; then, a ring R is said to be R-torsion free, in case R implies that R is for any R is said to be R.

The idea of a weakly semiprime ideal is due to Badawi [2]. He introduced that the ideal L is a weakly semiprime ideal of R such that R is a commutative ring with identity $1 \neq 0$ and L is a proper ideal of R. If $a \in R$ and $0 \neq a^2 \in L$ then $a \in L$. While the concept of a weak zero-divisor of a ring R introduced by Burgess, Lashgari, and Mojiri [7], where the authors defined an element $a \in R$ is called a weak zero-divisor. If there is $r, s \in R$ with ras = 0 and $rs \neq 0$. A derivation d is an additive mapping $d: R \to R$ satisfies the Leibniz's formula d(xy) = d(x)y + xd(y) for all $x, y \in R$. Moreover, D is said to be a higher derivation of U into R if for every $n \in \mathbb{N}$, we conclude that $d_n(xy) = \sum_{i+j=n} d_i(x)d_j(y)$ for all $x, y \in L$ and $D = (d_i \neq 0)$ for all $i \in \mathbb{N}$ is the family of additive mappings of R such that $d_0 = id_R$ and R is set of a positive integers, where L is a Lie ideal of R.

By the above facts, it is fascinating to study weakly semiprime ideals and weak zero-divisors on a Lie ideal of a prime ring R via a higher derivation $D=(d_i\neq 0)_{i\in\mathbb{N}}$. This is our main motivation for this paper. The following lemmas are also going to be applied:

Lemma 1 (Bergen, Herstein, and Kerr [4], Lemma 4). Suppose R is a prime ring with characteristic not two and $a, b \in R$. If L is a non-central Lie ideal of R such that aUb = 0, then either a = 0 or b = 0.

Lemma 2 (Herstein [9], Lemma 1.8). Let R be a semiprime ring, and $a \in R$ be a centralizer of all commutators $[x, y], x, y \in R$. Then, $a \in Z(R)$.

2. The main results

Theorem 3. Let R be a prime ring with the centre Z(R) and L be a Lie ideal of R. Suppose that $D = (d_i \neq 0)_{i \in \mathbb{N}}$ is a higher derivation of U into R. If d satisfy one of the following relations

- (i) $[a, d_i(u)] \in Z(R)$ for all $u \in L$, $a \in R$, then L is a weakly semiprime ideal.
- (ii) $[d_i(L), d_i(L)] \subseteq Z(R)$, then either L is a weakly semiprime ideal of R or $d_n(L)$ is a weak zero-divisor of R.
- (iii) $[a, d_i(u)] \in Z(R)$ and $d_i(Z(R)) \neq 0$ for all $u \in L$, $a \in R$, then $[a, [L, R]] \subseteq Z(R)$.

Based on Theorem 3, we can easily prove the following theorem.

Theorem 4. Let R be a prime ring with the centre Z(R) and L be a Lie ideal of R. Suppose that $D = (d_i \neq 0)_{i \in \mathbb{N}}$ is a higher derivation of U into R. If d satisfy one of the following relations

- (i) $[d_i(L), d_i(L)] \subseteq Z(R)$ and $d_i(Z(R)) \neq 0$, then R has a weakly semiprime ideal.
- (ii) $d_i^2(L) \subseteq Z(R)$, $d_i(Z(R)) \neq 0$ and $d_id_j(L) \subseteq Z(R)$, $i, j \in \mathbb{N}$, then either $d_n(L)$ is a weak zero-divisor of R or R has a weakly semiprime ideal, where R is 2-torsion free.
- (iii) $ad_i(L) \subseteq Z(R)$ and $d_i(Z(R)) \neq 0$, then either a is a weak zero-divisor of R or R has a weakly semiprime ideal, where $a \in R$.

In the following theorem, R not to be a commutative ring with identity $1 \neq 0$.

Theorem 5. For any fixed integers n, q > 1, let R be prime ring with the centre Z(R) and D be a derivation on R. If D satisfy one of the following relations

- (i) $D^n(xoy) \mp [x, y] \in Z(R)$;
- (ii) $D^n(x \circ y) \pm D^q(x \circ y) \mp [x, y] \in Z(R)$ and R is 2-torsion free;
- (iii) $D^n([x, y]) \pm D^q([x, y]) \mp (x \circ y) \in Z(R)$ and R is 2-torsion free

for all $x, y \in R$, then R has a weak zero-divisors.

References

- [1] Atteya, M. J. "Notes on the higher derivations of prime rings". In: *Boletim da Sociedade Paranaense de Matemática. Terceira Série* 37.4 (2019), pp. 61–68. https://doi.org/10.5269/bspm.v37i4.32357.
- [2] BADAWI, A. "On weakly semiprime ideals of commutative rings". In: *Beitr. Algebra Geom.* 57.3 (2016), pp. 589–597. https://doi.org/10.1007/s13366-016-0283-9.
- [3] Benkovič, D. "Lie triple derivations of unital algebras with idempotents". In: *Linear and Multilinear Algebra* 63.1 (2015), pp. 141–165. https://doi.org/10.1080/03081087.2013.851200.
- [4] Bergen, J.; Herstein, I. N., and Kerr, J. W. "Lie ideals and derivations of prime rings". In: *J. Algebra* 71 (1981), pp. 259–267. https://doi.org/10.1016/0021-8693(81)90120-4.
- [5] Brešar, M. "Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings". In: *Trans. Am. Math. Soc.* 335.2 (1993), pp. 525–546. https://doi.org/10.2307/2154392.
- [6] Brešar, M. "Functional identities and zero Lie product determined Banach algebras". In: *Q. J. Math.* 71.2 (2020), pp. 649–665. https://doi.org/10.1093/qmathj/haz060.
- [7] Burgess, W. D.; Lashgari, A., and Mojiri, A. "Elements of minimal prime ideals in general rings". In: *Advances in ring theory. Papers of the conference on algebra and applications, Athens, OH, USA, June 18–21, 2008.* 2010, pp. 69–81. ISBN: 978-3-0346-0285-3.
- [8] Cheung, W. S. "Lie derivations of triangular algebras". In: *Linear and Multilinear Algebra* 51.3 (2003), pp. 299–310. https://doi.org/10.1080/0308108031000096993.
- [9] Herstein, I. N. *Rings with involution*. Chicago Lectures in Mathematics. Chicago London: The University of Chicago Press. X, 247 p. 1976.
- [10] Martindale, W. S. III. "Lie derivations of primitive rings". In: Mich. Math. J. 11 (1964), pp. 183–187.
- [11] QI, X. and Hou, J. "Additive Lie (ξ -Lie) derivations and generalized Lie (ξ -Lie) derivations on nest algebras". In: *Linear Algebra Appl.* 431.5-7 (2009), pp. 843–854. https://doi.org/10.1016/j.laa. 2009.03.037.

e-issn: 2660-6003