Efimov K-theory of diamonds

☐ Shanna Dobson
California State University, Los Angeles
Shanna.Dobson@calstatela.edu

Abstract: Motivated by Scholze and Fargues's geometrization of the Local Langlands Correspondence using perfectoid diamonds and Clausen and Scholze's work on the K-theory of adic spaces using condensed mathematics, we introduce the Efimov K-theory of diamonds. We propose a large stable $(\infty,1)$ -category of diamonds \mathcal{D}° , a diamond spectra and chromatic tower, and a localization sequence for diamond spectra. Commensurate with the localization sequence, we detail three potential applications of the Efimov K-theory of \mathcal{D}° : to quantum gravity and reconstructing the holographic principle using diamonds and Scholze's six operations in the étale cohomology of diamonds; to post-quantum diamond cryptography in the form of programming AI with Efimov K-theory of \mathcal{D}° ; and to nonlocality in perfectoid quantum physics.

Resumen: Motivados por la geometrización de Scholze y Fargues de la Correspondencia Local de Langlands usando diamantes perfectoides y el trabajo de Clausen y Scholze con la K-teoría de espacios ádicos usando matemáticas condensadas, nosotros introducimos la K-teoría de diamantes de Efimov. Proponemos una $(\infty,1)$ -categoría de diamantes \mathcal{D}° ; un espectro de diamantes y una torre cromática, y una secuencia de localización del espectro de un diamante. Acorde con esta secuencia de localización, detallamos tres potenciales aplicaciones de la K-teoría de \mathcal{D}° de Efimov: a gravedad cuántica y la reconstrucción del principio holográfico usando diamantes y las seis operaciones de Scholze en la cohomología étale de diamantes; a criptografía de diamante postcuántica, en forma de programación de IA con K-teoría de \mathcal{D}° de Efimov, y a no localidad en física perfectoide cuántica.

Keywords: perfectoid spaces, Efimov K-theory, diamonds, Fargues-Fontaine curve, geometric Langlands, $(\infty, 1)$ -topoi.

MSC2010: 11F77, 11S70, 19D06, 19E08, 19E20.

Acknowledgements: The author acknowledges Dr. Michel L. Lapidus and Dr. Michael Maroun for their many helpful conversations and inspiring support.

Reference: Dobson, Shanna. "Efimov K-theory of diamonds". In: *TEMat monográficos*, 2 (2021): *Proceedings of the 3rd BYMAT Conference*, pp. 55-58. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/view/vol2-p55.

1. Introduction

K-theory is defined on the category of small stable ∞ -categories which are idempotent, complete, and where morphisms are exact functors. A certain category of large compactly generated stable ∞ -categories is equivalent to this small category. In Efimov K-theory the idea is to weaken to 'dualizable' the condition of being compactly generated so that K-theory is still defined. A category $\mathcal C$ being dualizable implies that $\mathcal C$ fits into a localization sequence $\mathcal C \to \mathcal S \to \mathcal X$ with $\mathcal S$ and $\mathcal X$ compactly generated. The Efimov K-theory should be the fiber of the K-theory in the localization sequence. As Clausen and Scholze propose [6]:

Proposition 1. Let Nuc_R be a full subcategory of solid modules [1]. Nuc_R is a presentable stable ∞ -category closed under all colimits and tensor products. If R is a Huber ring, then Nuc_R is dualizable, making its K-theory well-defined. Nuc_R embeds into Mod_R . Let \mathcal{X} be a Noetherina formal scheme and X the torsion perfect complexes of modules over R. Then,

Theorem 2. $(R, R^+) \to Nuc_R$ satisfies descent over Spa(R) and so does its Efimov K-theory. There exists a localization sequence $K(X) \to K^{Efimov}(\mathcal{X}) \to K^{Efimov}(\mathcal{X}^{rig})$ [2].

We introduce the Efimov K-theory of diamonds.

2. Main conjectures

Conjecture 3. There exists a large, stable, presentable $(\infty, 1)$ -category of diamonds \mathcal{D}^{\diamond} with spatial descent datum. \mathcal{D}^{\diamond} is dualizable. Therefore, the Efimov K-theory is well defined.

Conjecture 4. Let S be a perfectoid space, \mathcal{D}^{\diamond} a stable dualizable presentable category, and R a sheaf of E_1 -ring spectra on S. Let \mathcal{T} be a stable compactly generated $(\infty, 1)$ -category and $F: \operatorname{Cat}_{St}^{idem} \to \mathcal{T}$ a localizing invariant that preserves filtered colimits. Then, $F_{cont}(Shv(\mathbb{S}^n, \mathcal{D}^{\diamond})) \simeq \Omega^n F_{cont}(\mathcal{D}^{\diamond})$.

Conjecture 5. Let \mathcal{D}_{\diamond} be the complex of v-stacks of locally spatial diamonds. Let $\mathcal{Y}_{(R,R^+),E} = Spa(R,R^+)$ $x_{SpaF_q}SpaF_q[[t]]$ be the relative Fargues-Fontaine curve. Let $(\mathcal{Y}_{S,E}^{\diamond})$ be the diamond relative Fargues-Fontaine curve. There exists a localization sequence $K(\mathcal{D}_{\diamond}) \to K^{Efimov}(\mathcal{Y}_{S,E}^{\diamond}) \to K^{Efimov}(\mathcal{Y}_{(R,R^+),E}^{\diamond})$.

Conjecture 6. \mathcal{D}^{\diamond} admits a topological localization, in the sense of Grothendieck-Rezk-Lurie $(\infty, 1)$ -topoi.

Conjecture 7. There exists a diamond chromatic tower $\mathcal{D}^{\diamond} \to ... \to L_n \mathcal{D}^{\diamond} \to L_{n-1} \mathcal{D}^{\diamond} \to ... \to L_0 \mathcal{D}^{\diamond}$ for L_n a topological localization for $K\mathcal{D}^{\diamond}$ the K-theory spectrum that represents the étale cohomology of diamonds.

Conjecture 8. The $(\infty, 1)$ -category of perfectoid diamonds is an $(\infty, 1)$ -topos.

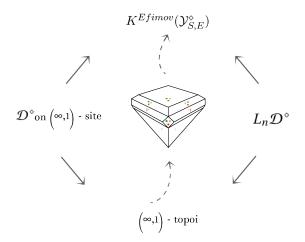


Figure 1: Efimov K-theory and Diamond Chromatic Tower.

3. Efimov K-theory of diamonds

Our terminology and exposition of Efimov K-theory follows Hoyois [4]

 ∞ -categories are called categories. Let $\mathcal{P}r$ denote the category of presentable categories and colimit-preserving functors. Let $\mathcal{P}r^{dual} \subset \mathcal{P}r$ denote the subcategory of dualizable objects and right-adjointable morphisms (with respect to the symmetric monoidal and 2-categorical structures of $\mathcal{P}r$). Let $\mathcal{P}r^{cg} \subset \mathcal{P}r$ be the subcategory of compactly generated categories and compact functors. Compact functors are functors whose right adjoints preserve filtered colimits. Let $\mathcal{P}r^{\star}_{St}$ denote the corresponding full subcategories consisting of stable categories.

Definition 9. A functor $F: \mathcal{P}r_{St}^{dual} \to \mathcal{T}$ is called a localizing invariant if it preserves final objects and sends localization sequences to fiber sequences.

Definition 10. Let $C \in \mathcal{P}r$ be stable and dualizable. The continuous K-theory of \mathcal{C} is the space $K_{cont}(\mathcal{C}) = \Omega$ $K(Calk(C)^{\omega})$.

Lemma 11. If \mathcal{C} is compactly generated, then $K_{cont}(\mathcal{C}) = K(\mathcal{C}^w)$. Proof. The localization sequence is Ind of the sequence $\mathcal{C}^w \hookrightarrow \mathcal{C} \to Calk(\mathcal{C})^w$. Since $K(\mathcal{C}) = 0$, the result follows from the localization theorem.

Definition 12. A functor $F: \mathcal{P}r_{St}^{dual} \to \mathcal{F}$ is called a localizing invariant if it preserves final objects and sends localization sequences to fiber sequences.

Theorem 13 (Efimov). Let \mathcal{T} be a category. The functor $Fun(\mathcal{P}r_{St}^{dual},\mathcal{T}) \longrightarrow Fun(Cat_{St}^{idem},\mathcal{T})$, $F \mapsto F \circ Ind$, restricts to an isomorphism between the full subcategories of localizing invariants, with inverse $F \mapsto F_{cont}$. In particular, if $\mathcal{C} \in \mathcal{P}r_{St}^{cg}$, then $F_{cont}(\mathcal{C}) = F(\mathcal{C}^{\omega})$. Proof. See [4, Theorem 10].

Theorem 14 (Efimov*). Let X be a locally compact Hausdorff topological space, \mathcal{C} a stable dualizable presentable category, and R a sheaf of E_1 -ring spectra on X. Suppose that Shv(X) is hypercomplete (i.e., X is a topological manifold). Let \mathcal{T} be a stable compactly generated category and $F: Cat_{St}^{idem} \to \mathcal{T}$ a localizing invariant that preserves filtered colimits. Then, $F_{cont}(Mod_R(Shv(X,\mathcal{C}) \simeq \Gamma_c(X,F_{cont}(Mod_R(\mathcal{C}))))$. Specifically, $F_{cont}(Shv(\mathbb{R}^n,\mathcal{C})) \simeq \Omega^n F_{cont}(\mathcal{C})$. Proof. See [4, Theorem 15].

Remark 15. The main goal is to develop a Waldhausen S-construction to obtain the K-theory spectrum $K\mathcal{D}^{\circ}$ on the $(\infty,1)$ -category of diamonds \mathcal{D}° . In parallel, to construct a topology on the $(\infty,1)$ -category of diamonds, we must first construct the $(\infty,1)$ -site on the $(\infty,1)$ -category of diamonds. Recall, the definition of an $(\infty,1)$ -site.

Definition 16. The $(\infty, 1)$ -site on an $(\infty, 1)$ -category \mathcal{C} is the data encoding an $(\infty, 1)$ -category of $(\infty, 1)$ -sheaves $Sh(\mathcal{C}) \hookrightarrow PSh(\mathcal{C})$ inside the $(\infty, 1)$ -category of $(\infty, 1)$ -presheaves on \mathcal{C} [5].

Remark 17. \mathcal{D}° admits a topological localization. Recall equivalence classes of topological localizations are in bijection with Grothendieck topologies on $(\infty, 1)$ -categories C. Topological localizations are appropos because in passing to the full reflective sub- $(\infty, 1)$ -category, objects and morphisms have reflections in the category, just as geometric points have reflections in the profinitely many copies of $Spa(\mathcal{C})$.

Remark 18. Recall, the category of sheaves on a (small) site is a Grothendieck topos. Lurie discusses the structure needed for our construction. Recall the following [5].

Definition 19. An $(\infty, 1)$ -category of $(\infty, 1)$ -sheaves is a reflective sub- $(\infty, 1)$ -category $Sh(C) \hookrightarrow PSh(C)$ of an $(\infty, 1)$ -category of $(\infty, 1)$ -presheaves such that the following equivalent conditions hold:

- (i) L is a topological localization.
- (ii) There is the structure of an $(\infty, 1)$ -site on C such that the objects of Sh(C) are precisely those $(\infty, 1)$ -presheaves A that are local objects with respect to the covering monomorphisms $p: U \to j(c)$ in PSh(C) in that $A(c) \simeq PSh(j(c), A) \xrightarrow{PSh(p, A)} PSh(U, A)$ is an $(\infty, 1)$ -equivalence in ∞ Grpd.
- (iii) The $(\infty, 1)$ -equivalence is the descent condition and the presheaves satisfying it are the $(\infty, 1)$ -sheaves.

e-ISSN: 2660-6003

4. Diamonds

The construction of diamonds imitates that of algebraic spaces in taking the quotient of a scheme by an étale equivalence relation. Our terminology and exposition follows [6].

Definition 20. Let *Perfd* be the category of perfectoid spaces and *Perf* be the subcategory of perfectoid spaces of characteristic p. A *diamond* is a pro-étale sheaf \mathcal{D} on *Perf* which can be written as the quotient X/R of a perfectoid space X by a pro-'etale equivalence relation $R \subset X \times X$.

The diamond quotient lives in a category of sheaves on the site of perfectoid spaces with pro-étale covers. Examples of diamonds are the following:

 $SpdQ_p = Spa(Q_p^{cycl})/Z_p^{\times}$. $SpdQ_p$ is the coequalizer of $Z_p^{\times} \times Spa(Q_p^{cycl})^{\flat} \Rightarrow Spa(Q_p^{cycl})^{\flat}$. $SpdQ_p$ attaches to any perfectoid space S of characteristic p the set of all untilts S# over Q_p . The moduli space of shtukas for $(\mathcal{G}, b, \{\mu_1, ..., \mu_m)\}$ fibered over $SpaQ_p \times SpaQ_p ... \times_m SpaQ_p$; the diamond relative Fargues-Fontaine Curve: $\mathcal{Y}_{S.E}^{\diamond} = S \times (Spa\mathcal{O}_E)^{\diamond}$; any \diamond product: $SpdQ_p \times_{\diamond} SpdQ_p$.

Definition 21. Let C be an algebraically closed affinoid field and \mathcal{D} a diamond. A *geometric point* $Spa(C) \to \mathcal{D}$ is "visible" by pulling it back through a quasi-pro-étale cover $X \to \mathcal{D}$, resulting in profinitely many copies of Spa(C). The geometric point $Spa(C) \to \mathcal{D}$ is a mathematical minerological impurity.

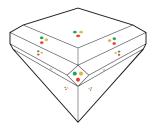


Figure 2: Diamond $SpdQ_p = Spd(Q_p^{cycl})/\underline{Z_p^x}$ with geometric point $Spa(C) \to \mathcal{D}$.

Remark 22. For a detailed discussion of the author's applications of the six operations and diamonds to quantum gravity, post-quantum diamond cryptography, and nonlocality of perfectoid quantum physics, see [3]. Recall, a perfectoid space is an adic space covered by affinoid adic spaces of the form $Spa(R, R^+)$ where R is a perfectoid ring. Any completion of an arithmetically profinite extension is perfectoid. A nice source of APF extensions is p-divisible formal group laws [6].

References

- [1] CLAUSEN, Dustin and Scholze, Peter. *Lectures on Condensed Mathematics*. URL: https://www.math.uni-bonn.de/people/scholze/Condensed.pdf.
- [2] CLAUSEN, Dustin. and Scholze, Peter. *K-theory of Adic Spaces*. URL: https://www.youtube.com/watch?v=e_0PTVzViRQ.
- [3] DOBSON, Shanna. Efimov K-theory of Diamonds. URL: https://philarchive.org/archive/DOBEKO.
- [4] Hoyois, Marc. K-theory of Dualizable Categories (After Efimov). URL: http://www.mathematik.ur.de/hoyois/papers/efimov.pdf.
- [5] LURIE, Jacob. *Higher topos theory*. English. Vol. 170. Princeton, NJ: Princeton University Press, 2009. ISBN: 978-0-691-14049-0.
- [6] Scholze, Peter and Weinstein, Jared. *Berkeley lectures on p-adic geometry*. English. Vol. 207. Princeton, NJ: Princeton University Press, 2020. ISBN: 978-0-691-20209-9.