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A b s t r a c t : A path 𝑐 is said to be a solution of Hamilton’s least action principle if
it is a critical point of the action functional. Here, the action is the integral of a
Lagrangian function 𝐿 along 𝑐. This principle describes many physical theories,
and has applications in other fields (optimal control, Riemannian geometry). Its
solutions have a nice geometric characterization: they are integral curves of a
Hamiltonian vector field on a symplectic manifold.

We introduce a generalization of this principle: the so-called Herglotz’s principle.
Here the Lagrangian not only depends on the positions and velocities, but also
on the action itself. Hence, the action is no longer the integral of the Lagrangian,
but it is the solution of a non-autonomous ODE. Herglotz’s principle allows us
to model new problems, such as some dissipative systems in mechanics (where
energy is lost), thermodynamics, and some modified optimal control systems.
This principle is also related to Hamiltonian systems, but switching symplectic
by contact geometry. We will compare both principles, their applicability and the
geometric properties of their solutions.

R e s u m e n : Un camino 𝑐 es una solución del principio de mínima acción de Ha-
milton si es un punto crítico del funcional de acción. En este caso, la acción es
la integral de una función lagrangiana 𝐿 a lo largo de 𝑐. Este principio describe
numerosas teorías físicas y tiene aplicaciones en otros campos (control óptimo,
geometría riemmaniana). Sus soluciones tienen una interesante caracterización
geométrica: son las curvas integrales de un campo Hamiltoniano en una variedad
simpléctica.

Proponemos una generalización the este principio: el principio de Herglotz. Ahora,
el lagrangiano depende de la propia acción, además de las posiciones y velocida-
des. Aquí, la acción ya no es la intregral del lagrangiano, sino la solución a una
EDO no autónoma. El principio de Herglotz nos permite modelizar nuevos proble-
mas, como algunos sistemas disipativos en mecánica (con pérdidas de energía),
termodinámica y algunos problemas de contol óptimo. Este principio también
está relacionado con los sistemas Hamiltonianos, pero cambiando la geometría
simpléctica por geometría de contacto. Compararemos ambos principios, sus
aplicaciones y las propiedades geométricas de sus soluciones.

K e y w o r d s : variational principles, Herglotz principle, contact Hamiltonian
systems, Lagrangian mechanics.
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Principles of least action in geometric mechanics

1 . P r i n c i p l e s o f l e a s t a c t i o n

In the 17th century, Fermat formulated the laws of geometric optics in the following way: “light travels
between two given points along the path of shortest time”. This is known as the principle of least time
or Fermat’s principle. Knowing the velocity of light at every point of space, one can use this principle to
compute the trajectories of the light rays, obtaining the laws of refraction and reflection.

Many principles such as this one were introduced in mechanics, by Maupertuis, Euler, Lagrange and
Hamilton. Although they have different physical interpretation, all these principles (including Fermat’s) fit
on the same mathematical framework. Given a Lagrangian function 𝐿∶ 𝑇𝑄 ×ℝ→ ℝ1, let 𝛺 be the space2

of curves 𝑐∶ [0,𝑇] → 𝑄 with fixed endpoints (say, 𝑐(0) = 𝑞0, 𝑐(𝑇) = 𝑞1). We define the action 𝒜∶ 𝛺 → ℝ

of any curve 𝑐 as

𝒜(𝑐) = ∫
𝑡1

𝑡0
𝐿(𝑐(𝑡), ̇𝑐(𝑡)) d𝑡.

The principle of least action states that a path 𝑐 will be followed by the system if and only if 𝑐 is a critical
point of 𝒜 among all paths in 𝛺. The solutions of this principle are precisely the paths that satisfy the
Euler-Lagrange equations:

d
d𝑡 (

𝜕𝐿
𝜕 ̇𝑞𝑖

(𝑐(𝑡), ̇𝑐(𝑡))) −
𝜕𝐿
𝜕𝑞𝑖

(𝑐(𝑡), ̇𝑐(𝑡)) = 0.

Picking as a Lagrangian the inverse of the velocity of light in the media, we retrieve Fermat’s principle. If
we instead pick as the Lagrangian the kinetic minus the potential energy, 𝐿 = 𝑇 − 𝑉, we obtain Hamilton’s
principle for conservative mechanical systems (where energy remains constant), whose solutions satisfy
Newton’s Second Law3.

1 . 1 . W h y v a r i a t i o n a l p r i n c i p l e s ?

There are many mathematical and physical4 reasons to study variational principles. In physics, it has been
found that the least action principle (sometimes with extensions) can model a wide range of phenomena,
including field theory and general relativity. Furthermore, developments on this principle lead to quantum
field theory (through Feynman path integral). Outside of physics, least action principles appear in control
theory (optimal control problems) and characterize geodesics in Riemannian and Finsler geometry. If
we are working with a second order ODE that is the Euler-Lagrange equation of some Lagrangian also
provides access to useful mathematical tools.

• The problem is framed in “generalized coordinates”, i.e., the Euler-Lagrange equation is the same
on every coordinate system5. This does not hold with Newton’s equation, where new terms appear
when we work in non-cartesian coordinates or in non-inertial frames.

• Presence of symplectic geometry [1, 3]. A (regular) Lagrangian provides a symplectic form 𝜔𝐿 =
d𝑞𝑖 ∧ d(𝜕𝐿/𝜕 ̇𝑞𝑖) which is preserved by the evolution of the system. Knowledge on the topology and
geometry of symplectic manifolds provides a better understanding on the dynamics of the system.

• It allows to prove Noether theorems relating symmetries and conserved quantities.
• It can be used to construct variational integrators [12], that preserve the geometry of the system and

have better long term behavior than methods for more general ODEs, such as Runge-Kutta.

1Here, 𝑇𝑄 is the tangent bundle of the configuration manifold 𝑇𝑄, i.e., the space of positions and velocities, with coordinates
(𝑞𝑖, ̇𝑞𝑖).

2This space is an infine-dimensional manifold locally modeled on a space of functions [0, 1] → ℝ𝑛. We recommend the interested
reader [1] and the references therein.

3In cartesian coordinates 𝑥𝑖, if 𝐿 = 1
2
𝑚∑𝑖 (𝑥̇

𝑖)
2
−𝑉(𝑞𝑖), then the equation of motion is𝑚𝑥̈𝑖 = − 𝜕𝑉

𝜕𝑥𝑖
= 𝐹𝑖, where 𝐹𝑖 is the force.

4Some natural philosophers, such as Maupertuis, were interested in these principles on metaphysical grounds, since they express
that nature “acts by the simplest means”[13]. These arguments would now probably be considered unscientific.

5Now, within the framework of geometric mechanics, modern differential geometric language is used and the dynamics can be
described without the use of coordinates.
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2 . H e r g l o t ’ s v a r i a t i o n a l p r i n c i p l e

There are, however, many interesting systems that cannot be modeled with Hamilton’s principle. For
example, all mechanical systems that do not preserve the energy, such as the damped harmonic oscillator:

( 1 ) ̈𝑞2 + 𝑞 = −𝛾 ̇𝑞.

A simple extension is to allow that the Lagrangian depends explicitly on time, however this is not enough
on many situations. In 1930, Herglotz [11] proposed a more general formulation, the so-called Herglotz’s
variational principle. Here the Lagrangian not only depends on the positions and velocities, but also on
the action itself. Hence, the action is no longer the integral of the Lagrangian, but it is the solution of a
non-autonomous ODE. This will allow us to model a wider class of systems.

2 . 1 . H e r g l o t z ’ s p r i n c i p l e a n d H e r g l o t z ’ s e q u a t i o n s

Let 𝐿∶ 𝑇𝑄 × ℝ → ℝ be the Lagrangian function, where the last coordinate will be denoted by 𝑧6. In
order to formalize the idea of an “action dependent Lagrangian”, we will define the action through a
non-autonomous ODE, instead of an integral. First we fix the initial action 𝑧0 ∈ ℝ, and we define the
Herglotz action 𝒜∶ 𝛺 → ℝ as follows. Given 𝑐 ∈ 𝛺, we solve the Cauchy problem ̇𝑧𝑐 = 𝐿(𝑐, ̇𝑐, 𝑧𝑐) with
initial condition 𝑧𝑐(0) = 𝑧0. Now we define the Herglotz action7 𝒜 as

𝒜(𝑐) = 𝑧𝑐(𝑇) − 𝑧0 = ∫
𝑇

0
𝐿(𝑐(𝑡), ̇𝑐(𝑡), 𝑧𝑐(𝑡)) d𝑡.

In this case, 𝑐 is a critical point of 𝒜 ∶ 𝛺 → ℝ if and only if (𝑐, ̇𝑐, 𝑧𝑐) satisfies Herglotz’s equations [6]:

d
d𝑡 (

𝜕𝐿
𝜕 ̇𝑞𝑖

) −
𝜕𝐿
𝜕𝑞𝑖

= 𝜕𝐿
𝜕 ̇𝑞𝑖

𝜕𝐿
𝜕𝑧 .

We note that the energy 𝐸𝐿 = 𝐿 − ̇𝑞𝑖 𝜕𝐿
𝜕 ̇𝑞𝑖

is dissipated along the solutions 𝜒 of Herglotz equations at a rate

𝜕𝐿/𝜕𝑧. Indeed, if we pick 𝐿 = 1

2
( ̇𝑞)2−𝑞−𝛾𝑧, the Herglotz equation is the equation of motion of the damped

harmonic oscillator (1), and we have d𝐸𝐿/ d𝑡 = −𝛾𝐸𝐿.

3 . F u r t h e r t o p i c s

In the recent years a considerable amount of new results related to the Herglotz principle and Lagrangian
contact mechanics have been published. We list some of the topics on which there is active research.

• Contact geometry is to Herglotz’s principle [7] as symplectic geometry is to Hamilton’s principle. A
contact form 𝜂𝐿 = d𝑧 − 𝜕𝐿/𝜕 ̇𝑞𝑖d𝑞𝑖 is preserved by the flow of the system.

• Noether theorems [8] also exist in this context. However, symmetries do not correspond to conserved,
but to dissipated quantities, that is, quantities that decay at the same rate as the energy.

• Variational integrators can be constructed through the Herglotz principle [15, 16].
• Herglotz’s principle and some related variational principles can be applied to the description of
thermodynamic processes [14] and mechanical systems with dissipation [2], among others.

6We can also use Hamilton’s principle for explicitly time dependent Lagrangians 𝐿∶ 𝑇𝑄 × ℝ → ℝ, where we think of the ℝ

coordinate as “time” 𝑡. The corresponding Euler-Lagrange equations have the same form as in Hamilton’s principle. These should not
be confused with contact Hamiltonian systems and Herglotz’s variational principle, where the extra coordinate represents the “action”.

7We remark that this action coincides with the Euler-Lagrange action when 𝐿 does not depend on 𝑧. It is also important to note
that the action functional does not only depend on the Lagrangian, like in Hamilton’s principle, but also on the initial action 𝑧0.
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• Higher order systems can be considered [4]. Lagrangians depend not only on positions and velocities,
but also on higher order derivatives.

• Constraints can be added to the motion of these systems. They can be either vakonomic, that is,
implemented on the variations, or nonholonomic [5], on the infinitesimal variations. The first ones
are useful for optimal control theory [9], while the second ones appear on mechanical systems.

• We can also study the inverse problem. Given a second order ODE, does there exist a Lagrangian
such that the ODE is its Euler-Lagrange/Herglotz equation?

• Contact Lagrangian mechanics can be extended to noncorservative field theories [10].
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