On Grünbaum type inequalities

Francisco Marín Sola
Universidad de Murcia
francisco.marin7@um.es
Jesús Yepes Nicolás
Universidad de Murcia
jesus.yepes@um.es

Abstract: Given a compact set $K \subset \mathbb{R}^{n}$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where K^{-}denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum's inequality.

Resumen: Dado un conjunto compacto $K \subset \mathbb{R}^{n}$ y un hiperplano H pasando por su centroide, encontramos una cota inferior óptima para el cociente vol $\left(K^{-}\right) / \operatorname{vol}(K)$, dependiendo de la concavidad de la función que nos da el volumen de las secciones (paralelas a H) de K, donde K^{-}denota la intersección de K con el semiespacio delimitado por H. Cuando K es convexo, esta desigualdad recupera un resultado clásico de Grünbaum. Además, veremos que el caso log-cóncavo es la mínima concavidad exigible para este tipo de generalización de la desigualdad de Grünbaum.

Keywords: centroid, convex body, Grünbaum, inequality.
MSC2O1O: 52A40, 52A38, 52A20.

Acknowledgements: This work is partially supported by MICINN/FEDER project PGC2018-097046-B-100 and by
"Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 19901/GERM/15.

Reference: Marín Sola, Francisco, and Yepes Nicolás, Jesús. "On Grünbaum type inequalities". In: TEMat monográficos, 2 (2021): Proceedings of the 3rd BYMAT Conference, pp. 71-74. ISsN: 2660-6003. url: https: //temat.es/monograficos/article/view/vol2-p71.
((1) This work is distributed under a Creative Commons Attribution 4.0 International licence https://creativecommons.org/licenses/by/4.0/

1. Introduction

Let $K \subset \mathbb{R}^{n}$ be a compact set with positive volume $\operatorname{vol}(K)$ (i.e., with positive n-dimensional Lebesgue measure). The centroid of K is the affine-covariant point

$$
\mathrm{g}(K):=\frac{1}{\operatorname{vol}(K)} \int_{K} x \mathrm{~d} x
$$

Furthermore, if we write $[\cdot]_{1}$ for the first coordinate of a vector with respect to the basis, by Fubini's theorem, we get
(1)

$$
[g(K)]_{1}=\frac{1}{\operatorname{vol}(K)} \int_{a}^{b} t f(t) \mathrm{d} t .
$$

The classical Grünbaum inequality, originally proven in [2], states that if $K \subset \mathbb{R}^{n}$ is a convex body with centroid at the origin, then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)} \geq\left(\frac{n}{n+1}\right)^{n} \tag{2}
\end{equation*}
$$

where $K^{-}=K \cap\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq 0\right\}$ and $K^{+}=K \cap\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \geq 0\right\}$ represent the parts of K which are split by the hyperplane $H=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle=0\right\}$, for any given $u \in \mathbb{S}^{n-1}$. Equality holds, for a fixed $u \in \mathbb{S}^{n-1}$, if and only if K is a cone in the direction u, i.e., the convex hull of $\{x\} \cup(K \cap(y+H))$, for some $x, y \in \mathbb{R}^{n}$.
The underlying key fact in the original proof of (2) (see [2]) is the following classical result (see, e.g., [1, Section 1.2.1] and also [4, Theorem 12.2.1]).

Theorem 1 (Brunn's concavity principle). Let $K \subset \mathbb{R}^{n}$ be a non-empty compact and convex set and let H be a hyperplane. Then, the function $f: H^{\perp} \rightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is $(1 /(n-1))$-concave.

In other words, for any given hyperplane H, the cross-sections volume function f to the power $1 /(n-1)$ is concave on its support, which is equivalent (due to the convexity of K) to the well-known Brunn-Minkowski inequality.

Although this property cannot be in general enhanced, one can easily find compact convex sets for which f satisfies a stronger concavity, for a suitable hyperplane H. Thus, on the one hand, it is natural to wonder about a possible enhanced version of Grünbaum's inequality (2) for the family of those compact convex sets K such that (there exists a hyperplane H for which) f is p-concave, i.e., f to the power p is concave, with $1 /(n-1)<p$. On the other hand, one could expect to extend this inequality to compact sets K, not necessarily convex, for which f is p-concave (for some hyperplane H), with $p<1 /(n-1)$.
Observing that the equality case in Grünbaum's inequality (2) is characterized by cones, that is, those sets for which f is $(1 /(n-1))$-affine (i.e., such that $f^{1 /(n-1)}$ is an affine function), the following sets of revolution, associated to p-affine functions, arise as natural candidates to be the extremal sets, in some sense, of these inequalities.

Definition 2. Let $p \in \mathbb{R}$ and let $c, \gamma, \delta>0$ be fixed. Then:
(i) If $p \neq 0$, let $g_{p}: I \rightarrow \mathbb{R}_{\geq 0}$ be the non-negative function given by $g_{p}(t)=c(t+\gamma)^{1 / p}$, where $I=[-\gamma, \delta]$ if $p>0$ and $I=(-\gamma, \delta]$ if $p<0$.
(ii) If $p=0$, let $g_{0}:(-\infty, \delta] \rightarrow \mathbb{R}_{\geq 0}$ be the non-negative function defined by $g_{0}(t)=c \mathrm{e}^{\gamma t}$.

Let $u \in \mathbb{S}^{n-1}$ be fixed. By C_{p} we denote the set of revolution whose section by the hyperplane $\left\{x \in \mathbb{R}^{n}\right.$: $\langle x, u\rangle=t\}$ is an $(n-1)$-dimensional ball of radius $\left(g_{p}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$ with axis parallel to u. (We warn the reader that, in the following, we will use the word "radius" to refer to such a generating function $\left(g_{p}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$ of the set C_{p}, for short.)
In this short paper we discuss the above-mentioned problem and show that it has a positive answer in the full range of $p \in[0, \infty]$ (in the following, $\sigma_{H^{\perp}}$ denotes the Schwarz symmetrization with respect to H^{\perp}).

2. Main results

As mentioned in the introduction, the sets C_{p} associated to (cross-sections volume) functions that are p-affine (see Definition 2) seem to be possible extremal sets of such expected inequalities. So, we start by showing the precise value of the ratio $\operatorname{vol}\left(\cdot^{-}\right) / \operatorname{vol}(\cdot)$ for the sets C_{p}.

Lemma 3 ([3]). Let $p \in(-\infty,-1) \cup[0, \infty)$ and let H be a hyperplane with unit normal vector $u \in \mathbb{S}^{n-1}$. Let g_{p} and D_{p}, with axis parallel to u, be as in Definition 2, for any fixed $c, \gamma, \delta>0$. If C_{p} has centroid at the origin, then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(C_{p}^{-}\right)}{\operatorname{vol}\left(C_{p}\right)}=\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p} \tag{3}
\end{equation*}
$$

where, if $p=0$, the above identity must be understood as

$$
\begin{equation*}
\frac{\operatorname{vol}\left(C_{0}^{-}\right)}{\operatorname{vol}\left(C_{0}\right)}=\lim _{p \rightarrow 0^{+}}\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}=\mathrm{e}^{-1} \tag{4}
\end{equation*}
$$

Before showing the general case, we have that if the cross-sections volume function f associated to a compact set K is increasing in the direction of the normal vector of H, then the minimum of the ratios $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$ and $\operatorname{vol}\left(K^{+}\right) / \operatorname{vol}(K)$ is attained at $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$, independently of the concavity nature of f.

Proposition 4 ([3]). Let $K \subset \mathbb{R}^{n}$ be a compact set with non-empty interior and with centroid at the origin. Let H be a hyperplane, with unit normal vector $u \in \mathbb{S}^{n-1}$, such that the function $f: H^{\perp} \rightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is quasi-concave with $f(b u)=\max _{x \in H^{\perp}} f(x)$, where $[a u, b u]=K \mid H^{\perp}$. Then,

$$
\frac{\operatorname{vol}\left(K^{+}\right)}{\operatorname{vol}(K)} \geq \frac{1}{2}
$$

Our main result reads as follows:
Theorem 5 ([3]). Let $K \subset \mathbb{R}^{n}$ be a compact set with non-empty interior and with centroid at the origin. Let H be a hyperplane such that the function $f: H^{\perp} \rightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is p-concave, for some $p \in[0, \infty)$. If $p>0$, then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)} \geq\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p} \tag{5}
\end{equation*}
$$

with equality if and only if $\sigma_{H^{\perp}}(K)=C_{p}$. If $p=0$, then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)} \geq \mathrm{e}^{-1} \tag{6}
\end{equation*}
$$

The inequality is sharp, that is, the quotient $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$ comes arbitrarily close to e^{-1}.
Note that the "limit case" $p=\infty$ in Theorem 5 is also trivially fulfilled. Indeed, if f is ∞-concave, then f is constant on $[a, b]$, and thus $0=[\mathrm{g}(K)]_{1}=b+a$ (see (1)), which yields that $a=-b$ and, hence,

$$
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}=\frac{1}{2}=\lim _{p \rightarrow \infty}\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}
$$

Finally, we show that Theorem 5 cannot be extended to the range of $p \in(-\infty,-1)$. In fact, we have a more general result:
Proposition 6 ([3]). Let $p \in(-\infty,-1)$. There exists no positive constant β_{p} such that

$$
\min \left\{\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}, \frac{\operatorname{vol}\left(K^{+}\right)}{\operatorname{vol}(K)}\right\} \geq \beta_{p}
$$

for all compact sets $K \subset \mathbb{R}^{n}$ with non-empty interior and with centroid at the origin, for which there exists H such that $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H)), x \in H^{\perp}$, is p-concave.

We conclude this work by discussing that the statement of Theorem 5 cannot be extended to the range of $p \in(-1 / 2,0)$ either. Therefore, this fact (jointly with the case in which $p \in(-\infty,-1)$, collected in Proposition 6) gives that $[0, \infty]$ is the largest subset of the real line (with respect to set inclusion) for which C_{p} provides us with the infimum value for the ratio $\operatorname{vol}\left(\cdot^{-}\right) / \mathrm{vol}(\cdot)$, among all compact sets with (centroid at the origin and) p-concave cross-sections volume function.

Note 7. The results presented in this contribution were originally proven in [3].

References

[1] Brazitikos, S.; Giannopoulos, A.; Valettas, Petros, and Vritsiou, Beatrice-Helen. Geometry of isotropic convex bodies. Vol. 196. Providence, RI: American Mathematical Society (AMS), 2014.
[2] Grünbaum, B. "Partitions of mass-distributions and of convex bodies by hyperplanes". In: Pacific Journal of Mathematics 10 (1960), pp. 1257-1261.
[3] Marín Sola, F. and Yepes Nicolás, J. "On Grünbaum type inqualities". In: Journal of Geometric Analysis (to appear).
[4] Матоušé, J. Lectures on discrete geometry. Vol. 212. New York, NY: Springer, 2002.

