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A b s t r a c t : The Ring Learning with Errors (RLWE) problem has been widely used
for the construction of new quantum-resistant cryptographic primitives. Most of
the existing RLWE-based schemes make use of power-of-two cyclotomic rings due
to their good performance and simplicity. This talk explores the replacement of
power-of-two cyclotomic rings by multiquadratics. We show that for polynomials
with 𝑛 coefficients, the cost of the polynomial operations can be reduced from
𝒪(𝑛 log 𝑛)multiplications to 𝒪(𝑛)multiplications and 𝒪(𝑛 log 𝑛) additions. Finally,
we discuss the benefits that these rings can bring about when implementing the
OLE (Oblivious Linear Function Evaluation) primitive, which is a basic block used
in many Secure Multiparty Computation (MPC) protocols.

R e s u m e n : El problema Ring Learning with Errors (RLWE) ha sido utilizado am-
pliamente para la construcción de nuevas primitivas criptográficas resistentes a
ataques por parte de un ordenador cuántico. La mayoría de los esquemas existen-
tes basados en RLWE hacen uso de anillos ciclotómicos de orden potencia de dos,
debido a su buen comportamiento y sencillez. Esta charla explora el reemplazo de
los anillos ciclotómicos potencia de dos por anillos multicuadráticos. Se muestra
que, para polinomios con 𝑛 coeficientes, el coste de las operaciones polinomia-
les puede ser reducido de 𝒪(𝑛 log 𝑛)multiplicaciones a 𝒪(𝑛)multiplicaciones y
𝒪(𝑛 log 𝑛) sumas. Finalmente, se discuten los beneficios que estos anillos intro-
ducen al implementar la primitiva OLE (Oblivious Linear Function Evaluation),
que es un bloque básico utilizado en muchos protocolos de Secure Multiparty
Computation (MPC).
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Multiquadratic rings and oblivious linear function evaluation

1 . I n t r o d u c t i o n

This extended abstract corresponds to a talk given in the BYMAT 2020 conference, and covers some of the
results previously introduced in [3] and [4]. Due to space constraints, our main aim here is to provide a
high-level overview of the most important aspects highlighted in the presentation. We refer the reader
to [3, 4] for further technical details.

N o t a t i o n . We first introduce the notation used in this work. Vectors and matrices are represented by
boldface lowercase and uppercase letters. Polynomials are denoted with regular lowercase letters, omitting
the polynomial variable (i.e., 𝑎 instead of 𝑎(𝑧)) when there is no ambiguity. We follow a recursive definition
for multivariate quotient rings: 𝑅𝑞[𝑧] = ℤ𝑞[𝑧]/𝑓(𝑧) denotes the polynomial quotient ring in the variable
𝑧modulo 𝑓(𝑧) with coefficients belonging to ℤ𝑞. In general, 𝑅𝑞[𝑥1,… , 𝑥𝑙] (resp. 𝑅[𝑥1,… , 𝑥𝑙]) represents
the multivariate quotient polynomial ring with coefficients in ℤ𝑞 (resp. ℤ) and reduced modulo 𝑓𝑖(𝑥𝑖)
for 1 ≤ 𝑖 ≤ 𝑙. The polynomial 𝑎 can also be denoted by a column vector 𝒂 whose components are the
corresponding polynomial coefficients. Finally, the Hadamard (resp. Kronecker) product of two matrices
is 𝑨 ∘ 𝑩 (resp. 𝑨⊗ 𝑩), and [𝑙] denotes the set {1, 2,… , 𝑙}. ◀

1 . 1 . P r e l i m i n a r i e s : R i n g L e a r n i n g w i t h E r r r o s

The security of modern homomorphic encryption (HE) schemes [1] relies on the hardness of the Ring
Learning with Errors (RLWE) problem [6], where power-of-two cyclotomic rings as 𝑅𝑞 = ℤ𝑞[𝑧]/(1+ 𝑧𝑛) are
usually considered. An informal definition of RLWE is included in Figure 1, where we can see how the
hardness relies on the computational indistinguishability between (𝑎𝑖, 𝑏𝑖) and (𝑎𝑖, 𝑢𝑖), where 𝜒[𝑧] generates
polynomials in 𝑅𝑞, whose coefficients are independent and follow a Gaussian distribution.

F i g u r e 1 : Sketch of the RLWE problem.

The use of RLWE provides two important advantages for the construction of encryption schemes:

• RLWE is believed to be difficult to solve by quantum computers.
• Polynomial arithmetic can be done very efficiently with Number Theoretic Transforms (NTTs) [5].

1 . 2 . N T T r e p r e s e n t a t i o n

Instead of directly working with the coefficient representation, current HE libraries [1] accelerate computa-
tion by making use of a double CRT (Chinese Remainder Theorem) and NTT representation (see Figure 2).
In particular, by considering power-of-two cyclotomics, a negacyclic NTT is used which introduces an
overhead of 𝒪(𝑛 log 𝑛)multiplications. Consequently, motivated by this overhead, in [3, 4] we explored the
substitution in RLWE of the conventional power-of-two cyclotomics by multiquadratic rings (see Figure 1).
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F i g u r e 2 : Toy example of the CRT-NTT representation.

2 . M u l t i q u a d r a t i c R i n g s a n d f a s t e r a r i t h m e t i c

Multiquadratic quotient rings as 𝑅𝑞[𝑥1,… , 𝑥𝑙] = ℤ𝑞[𝑥1,… , 𝑥𝑙]/(𝑑1+𝑥21,… , 𝑑𝑙+𝑥2𝑙 ) can satisfy a convolution
property with a variant of theWalsh-Hadamard transform that we call 𝜶-generalizedWHT in [3, 4]. 𝑾𝑙 and
𝑾−1
𝑙 denote, respectively, the direct and inverse transform matrices associated to 𝑅𝑞[𝑥1,… , 𝑥𝑙].

Figure 3 includes the matrix expressions for both transforms of length 𝑛 = 2𝑙, where, in order to the ring
𝑅𝑞 factors into linear terms [5], 𝑑𝑗 = −𝛼−1𝑗 mod 𝑞 and the square-roots of 𝛼𝑗 must exist in 𝑅𝑞 for all 𝑗.

F i g u r e 3 : GeneralizedWalsh-Hadamard Transform.

This transform can be very efficiently computed by decomposing it into two different matrices:

• A diagonal matrix which can be computed with a cost of 𝑛 products.
• AWalsh-Hadamard matrix 𝑯𝑙 which can be computed with a cost of only 𝒪 (𝑛 log 𝑛) additions.

Hence, comparing to the more conventional negacyclic NTT used in the RLWE problem, the use of
multiquadratic rings reduces the multiplicative cost of polynomial multiplications by a factor of log2 𝑛.

3 . O L E a p p l i c a t i o n s

The OLE (Oblivious Linear function Evaluation) primitive is a very important building block in many
MPC (Secure Multiparty Computation) protocols [2], and consequently, any achieved improvement on its
efficiency brings about important benefits on a wide variety of applications.
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An informal description of the OLE primitive can be seen in Figure 4 (we refer to [2, 4] for a formal
definition). It considers a set 𝒫 = {𝒫R ,𝒫S } with two different parties:

• The receiver 𝒫R , which holds an input 𝑥 and learns the output 𝑓(𝑥) = 𝑎𝑥 + 𝑏, but nothing more
about 𝑎 and 𝑏 than can be inferred from both 𝑥 and 𝑓(𝑥).

• The sender 𝒫S , which holds inputs 𝑎 and 𝑏, and learns nothing regarding 𝑥.

F i g u r e 4 : OLE primitive.

3 . 1 . A H E - b a s e d O L E

The OLE primitive from Figure 4 can be implemented with additively homomorphic encryption (AHE):

• 𝒫R sends E (𝑥) to 𝒫S . Note that E (⋅) represents the encryption functionality.
• 𝒫S homomorphically calculates 𝑎 ⋅ E (𝑥) + 𝑏 = E (𝑎𝑥 + 𝑏).
• 𝒫R receives E (𝑎𝑥 + 𝑏) and decrypts it to obtain 𝑓(𝑥).

We instantiated in [4] an AHE scheme based on the RLWE problem with both multiquadratic and power-
of-two cyclotomic rings. A very brief summary of the obtained results with 128 bits of security is:

• Multiquadratic-based OLE is at least two times faster than its power-of-two cyclotomic counterpart.
• Multiquadratic-based OLE has higher storage needs (requires around 1.7 times more bits).
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