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A b s t r a c t : A transversal of a partition is a set which contains exactly one element
from each member of the partition and nothing else. A colouring of a graph is a
partition of its vertex set into anticliques, that is, sets of pairwise nonadjacent ver-
tices. We study the following problem: Given a transversal 𝑇 of a proper colouring
𝒞 of some graph 𝐺, is there a partition ℌ of a subset of 𝑉(𝐺) into connected sets
such that 𝑇 is a transversal of ℌ and any two distinct sets of ℌ are adjacent?

It has been conjectured by Matthias Kriesell [9] that for any transversal 𝑇 of a
colouring 𝒞 of order 𝑘 of some graph 𝐺 such that any pair of colour classes induces
a connected subgraph, there exists such a partition ℌ with pairwise adjacent
sets. This would prove Hadwiger’s conjecture for the class of uniquely optimally
colourable graphs; however it is open for each 𝑘 ≥ 5.

This paper will provide an overview about the stated conjecture. It extracts asso-
ciated results from my PhD thesis and the related papers [2, 10, 11], summarises
their relevence to the stated problem, and discusses some unsuccessful attempts.

R e s u m e n : Una transversal de una partición es un conjunto que contiene exacta-
mente un elemento de cada miembro de la partición y nada más. Una coloración
de un grafo es una partición de sus vértices en conjuntos independientes, es decir,
conjuntos de vértices no adyacentes entre sí. Nosotros estudiamos el siguiente
problema: dada una transversal 𝑇 de una coloración 𝒞 de un grafo𝐺, ¿existe alguna
partición ℌ de un subconjunto de 𝑉(𝐺) en conjuntos conexos tal que 𝑇 sea una
transversal de ℌ y cualesquiera dos conjuntos distintos de ℌ sean adyacentes?

Matthias Kriesell [9] conjeturó que, para cualquier transversal 𝑇 de orden 𝑘 de una
𝑘-coloración 𝒞 de algún grafo 𝐺 tal que cualquier par de clases de colores inducen
un subgrafo conexo, existe tal partición ℌ con conjuntos adyacentes dos a dos.
Esto demostraría la conjetura de Hadwiger para la clase de grafos óptimamente
coloreables de forma única; sin embargo, el problema sigue abierto para todo
𝑘 ≥ 5.

Este artículo presenta una visión general sobre esta conjetura. Expone resultados
de mi tesis doctoral y los artículos relacionados [2, 10, 11], resume su relevancia
con el problema planteado y discute algunos intentos fallidos.
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Rooted structures in graphs

1 . H a d w i g e r ’ s c o n j e c t u r e

Hadwiger’s conjecture states that the order of a largest clique minor in a graph 𝐺 is at least its chromatic
number 𝜒(𝐺) [8]. It is known to be true for graphs with chromatic number at most 6, with 𝜒(𝐺) = 5
and 𝜒(𝐺) = 6 being merely equivalent to the Four-Colour-Theorem [14]. Even for subclasses of graphs,
Hadwiger’s conjecture seems to be challenging. Though it is solved for line graphs [13], only partial results
exist for claw-free graphs [7]. Paul Erdős [3] stated that it is “one of the deepest unsolved problems in
graph theory”, thus reinforcing the extreme nature and difficulty of this conjecture.

Instead of restricting to subclasses of graphs, one could also uniformly bound the order of the colour
classes. But even when forbidding anticliques of order 3, Hadwiger’s conjecture is widely open. This variant
is stated in a conjecture of Seymour (see [1]).

Matthias Kriesell suggested in [9] to bound the number of colourings and, in particular, consider uniquely
optimally colourable graphs. We will be interested in a rooted version of Hadwiger’s conjecture that
imposes additional assumptions on the colourings.

2 . K e m p e c o l o u r i n g s

All graphs in the present paper are assumed to be finite, undirected, and simple. For terminology not
defined here we refer to contemporary textbooks such as [4] or [6]. By 𝐾𝑆 we denote the complete graph
on a finite set 𝑆. A (minimal) transversal of a set ℭ of disjoint sets is a set 𝑇 containing exactly one member
of every 𝐴 ∈ ℭ and nothing else; we also say that ℭ is traversed by 𝑇. A colouring of a graph 𝐺 is a partition
𝒞 of its vertex set 𝑉(𝐺) into anticliques, that is, sets of pairwise non-adjacent vertices. The order of a
colouring 𝒞 is the number of anticliques in 𝒞 and an optimal colouring is a colouring of smallest order.
The chromatic number 𝜒(𝐺) is the order of an optimal colouring of 𝐺. A Kempe chain is a connected
component of 𝐺[𝐴 ∪ 𝐵] for some 𝐴 ≠ 𝐵 from 𝒞.

We call a graph 𝐺 uniquely 𝑘-colourable if 𝜒(𝐺) = 𝑘 and for any two optimal colourings 𝒞 and 𝒞′ of 𝐺, we
have 𝒞 = 𝒞′. Such graphs have the property that the union of any two distinct colour classes induces a
connected graph [5]. To see this, assume to the contrary that there is a graph 𝐺 with a unique optimal
colouring 𝒞 and there are 𝐴,𝐵 ∈ 𝒞, 𝐴 ≠ 𝐵, such that 𝐺[𝐴 ∪ 𝐵] has at least two components. Let 𝐻 be one
of the components and consider the colouring 𝒞′ with

𝒞′ = (𝒞 ⧵ {𝐴,𝐵}) ∪ {(𝐴 ⧵ 𝑉(𝐻)) ∪ (𝐵 ∩ 𝑉(𝐻))} ∪ {(𝐵 ⧵ 𝑉(𝐻)) ∪ (𝐴 ∩ 𝑉(𝐻))}.

Then 𝒞′ is another optimal colouring of 𝐺 and distinct from 𝒞, a contradiction.

However restricting to uniquely colourable graphs seems excessive provided that in most situations we
only make use of the above property that any two colour classes induce a connected graph. This leads us
to the following definition.

D e f i n i t i o n 1 . A colouring 𝒞 of a graph 𝐺 is a Kempe colouring if any two vertices from distinct colour
classes belong to the same Kempe chain or, in other words, the union of any two colour classes induces a
connected subgraph in 𝐺. ◀

If 𝐺 is graph and 𝒞 is a Kempe colouring of 𝐺 for which the vertices 𝑥1,… , 𝑥𝑘 are given different colours,
then it is easy to see that there exists a system of edge-disjoint 𝑥𝑖,𝑥𝑗-paths (𝑖 ≠ 𝑗 from {1,… , 𝑘}), a so-called
(weak) clique immersion of order 𝑘 at 𝑥1,… , 𝑥𝑘. The natural question to ask is whether there exists a clique
minor of the same order such that 𝑥1,… , 𝑥𝑘 are in different bags.

A graph 𝐻 is a minor of a graph 𝐺 if there exists a family 𝑐 = (𝑉𝑡)𝑡∈𝑉(𝐻) of pairwise disjoint subsets of
𝑉(𝐺), called bags, such that 𝑉𝑡 is nonempty and 𝐺[𝑉𝑡] is connected for all 𝑡 ∈ 𝑉(𝐻) and there is an edge
connecting 𝑉𝑡 and 𝑉𝑠 for all 𝑠𝑡 ∈ 𝐸(𝐻). Any such 𝑐 is called an 𝐻-certificate in 𝐺, and a rooted 𝐻-certificate if,
moreover, 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝑡 ∈ 𝑉𝑡 for all 𝑡 ∈ 𝑉(𝐻). If there exists a rooted 𝐻-certificate, then 𝐻 is a rooted
minor of 𝐺.

A positive answer to the question above was conjecture by Matthias Kriesell.

96 https://temat.es/monograficos

https://temat.es/monograficos


Mohr

C o n j e c t u r e 2 (Kriesell [9]). Let 𝐺 be a graph, 𝒞 be a Kempe colouring of size 𝑘 and 𝑇 a transversal of 𝒞,
then 𝐺 contains a 𝐾𝑘-minor rooted at 𝑇.

Using a result by Fabila-Monroy andWood [15], a confirmation of Conjecture 2 for 𝑘 ≤ 4 follows immediately.
In [11], it is proved for line graphs.

T h e o r e m 3 (Kriesell, Mohr [11]). For every transversal 𝑇 of every Kempe colouring of the line graph 𝐿(𝐺)
of any graph 𝐺 there exists a complete minor in 𝐿(𝐺) traversed by 𝑇.

It should be mentioned that a Kempe colouring can have significantly more colours than an optimal
colouring. However a positive answer to Conjecture 2 will prove Hadwiger’s conjecture for uniquely
colourable graphs.

3 . T w o - c o l o u r e d p a t h s

In the previous section, we have seen that for each transversal 𝑇 of any Kempe colouring of order 𝑘, there
exists a clique immersion of order 𝑘 at 𝑇. It is natural to ask whether the requirement of a Kempe colouring
can be weakened to only demanding that two distinct vertices 𝑥, 𝑦 of a transversal 𝑇 belong to the same
connected component of 𝐺[𝐴 ∪ 𝐵], where 𝐴,𝐵 ∈ 𝒞, 𝒞 is the colouring of the graph 𝐺, and 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

C o n j e c t u r e 4 . Let 𝐺 be a graph and 𝒞 be one of its 𝑘-colourings (𝑘 not necessary optimal). Furthermore,
let 𝑇 be an arbitrary transversal of 𝒞.

Assume that for each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑇 there is a Kempe chain containing both vertices 𝑥
and 𝑦. Then 𝐺 contains a 𝐾𝑘-minor rooted at 𝑇.

Conjecture 2 would follow if Conjecture 4 held for all graphs 𝐺, colourings 𝒞, and transversals 𝑇. However
Conjecture 4 turned out to be too restrictive to be true: There exists a graph with a 7-colouring that does
not contain a rooted 𝐾7-minor.

T h e o r e m 5 (Kriesell, Mohr [10]).

( i ) Let 𝐺 be a graph and 𝒞 be one of its 𝑘-colourings (𝑘 not necessary optimal). Furthermore, let 𝑇 be
an arbitrary transversal of 𝒞. Assume that for each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑇 there is a Kempe
chain containing both vertices 𝑥 and 𝑦.
If 𝑘 ≤ 4, or 𝑘 = 5 and 𝐺[𝑇] is connected, then 𝐺 contains a 𝐾𝑘-minor rooted at 𝑇.

( i i ) There is a graph with a 7-colouring 𝒞 and a transversal 𝑇 of 𝒞 such that each pair of distinct vertices
𝑥, 𝑦 ∈ 𝑇 belongs to the same Kempe chain, and this graph does not contain a 𝐾7-minor rooted at 𝑇.

We have seen that the setting of Conjecture 4 is insufficient to guarantee a rooted 𝐾7-minor (and any
𝐾𝑘-minor with 𝑘 ≥ 7). This troublesome graph 𝐾7 is known to be the smallest 6-connected graph and one
may ask whether it is possible to find a 6-connected minor instead.

To address this problem, we move away from colourings and ask the following question [12]:
Given an integer 𝑘, does there exist an integer ℓ(𝑘) such that for each graph 𝐺 and 𝑋 ⊆ 𝑉(𝐺) for which there
is no separator 𝑆 in 𝐺 with |𝑆| < ℓ(𝑘) separating vertices of 𝑋, 𝐺 has a 𝑘-connected minor (or topological
minor) that “contains 𝑋”?

This questions demands a local connectedness of the vertices from 𝑋. Clearly, ℓ(𝑘) must be at least 𝑘 since
𝑋 might be equal to 𝑉(𝐺). If each separator 𝑆 in a graph 𝐺 with |𝑆| < ℓ splits the graph into components
such that only one contains vertices from 𝑋 (|𝑋| ≥ ℓ + 1), we say that 𝑋 is ℓ-connected in 𝐺. Moreover,
the definition of a rooted minor given in Section 2 is not suitable in our setting since the 𝑘-connected
minor can have significantly more vertices than |𝑋|. We adapt the definition and say that a graph 𝐻 is an
𝑋-minor of a graph 𝐺 with 𝑋 ⊆ 𝑉(𝐺) if 𝑋 ⊆ 𝑉(𝐻) and there exists an 𝐻-certificate 𝑐 = (𝑉𝑡)𝑡∈𝑉(𝐻) in 𝐺 such
that 𝑡 ∈ 𝑉𝑡 for all 𝑡 ∈ 𝑋. Armed with this refined definition, we prove the following:
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T h e o r e m 6 (Böhme, Harant, Kriesell, Mohr, Schmidt [2]). Let 𝑘 ∈ {1, 2, 3, 4}, 𝐺 be a graph, and 𝑋 ⊆ 𝑉(𝐺)
be a 𝑘-connected set in 𝐺. Then:

( i ) 𝐺 has a 𝑘-connected 𝑋-minor.
( i i ) If 1 ≤ 𝑘 ≤ 3, then 𝐺 has a 𝑘-connected topological 𝑋-minor.

Moreover, the theorem is best possible in the sense that there exist graphs 𝐺1 and 𝐺2 with 𝑋1 ⊆ 𝑉(𝐺1)
and 𝑋2 ⊆ 𝑉(𝐺2) such that 𝑋1 (𝑋2) is 5-connected (4-connected) in 𝐺1 (𝐺2) and neither 𝐺1 nor 𝐺2 contain a
5-connected 𝑋1-minor and a 4-connected topological 𝑋2-minor, respectively.

In summary, Theorems 5 and 6 lead us to the following insights. First, to confirm Conjecture 2 and in turn
prove the rooted version of Hadwiger’s conjecture for uniquely colourable graphs, it is not possible to
restrict to clique immersions. It would seem that a certain connectedness property, which is provided by
Kempe colourings, is necessary. Second, lifting the problem away from the colouring doesn’t feel like a
promising approach either, since a high connectedness gives no guarantee on any highly connected minor.
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