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A b s t r a c t : A quadratic Lie algebra is a Lie algebra equipped with a non-degenerate
symmetric invariant bilinear form. Among all these algebras, we are going to focus
on the nilpotent ones whose nilpotency index is two and, particularly, on those
which are reduced. There exist different techniques to construct these algebras.
Double extension and 𝑇∗-extension are recursive methods that allow us to start
from smaller dimensions and grow up. Fixing an appropriate basis and using its
definition gives us another approach to these algebras. And finally, we have that
their classification is equivalent to the alternating trilinear forms one.

R e s u m e n : Un álgebra de Lie cuadrática es un álgebra de Lie dotada de una forma
bilineal invariante simétrica no degenerada. Entre todas las álgebras que cumplen
estas condiciones, vamos a centrarnos en aquellas que sean nilpotentes y cuyo
índice de nilpotencia sea 2, en particular, aquellas reducidas. Existen diferentes
técnicas para construir este tipo de álgebras. La doble extensión y 𝑇∗-extensión
son métodos clásicos recursivos que nos permiten obtenerlas partiendo de dimen-
siones pequeñas y aumentando progresivamente. Si fijamos una base apropiada y
usamos su definición, junto a alguna propiedades, conseguimos una nueva aproxi-
mación. Finalmente, tenemos que su clasificación es equivalente a la de formas
trilineales alternadas.
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Constructing quadratic 2-step nilpotent Lie algebras

1 . K e y w o r d s

Themain concepts we need in this paper are the following:

D e f i n i t i o n 1 (Lie algebra). A Lie algebra is a vector space𝔫with an alternating bilinear form [⋅, ⋅]∶ 𝔫×𝔫 → 𝔫
called Lie bracket that satisfies the Jacobi identity: [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0. ◀

D e f i n i t i o n 2 (t-step nilpotent). We say a Lie algebra 𝔫 is 𝑡-step nilpotent when 𝔫𝑡+1 = [𝔫𝑡,𝔫] = 0, but
𝔫𝑡 ≠ 0, and where 𝔫1 = 𝔫, [𝐴,𝐵] ≔ span⟨[𝑎, 𝑏] ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵⟩. ◀

D e f i n i t i o n 3 (quadratic). A quadratic Lie algebra 𝔫 is a Lie algebra equipped with a non-degenerate
symmetric invariant bilinear form 𝑓∶ 𝔫 × 𝔫 → �, which means that 𝑓([𝑥, 𝑦], 𝑧) + 𝑓(𝑦, [𝑥, 𝑧]) = 0 for every
𝑥, 𝑦, 𝑧 ∈ 𝔫. ◀

D e f i n i t i o n 4 (reduced). An algebra 𝔫 is said to be reduced in case 𝑍(𝔫) ⊆ 𝔫2. ◀

And, as stated in [9, Theorem 6.2]:

T h e o r e m 5 . Any non-reduced and non-abelian quadratic Lie algebra (𝔫,𝜑) decomposes as an orthogonal
direct sum of proper ideals, 𝔫 = 𝔫1 ⊕ 𝑎, where 𝜑 = 𝜑1 ⟂ 𝜑2 and (𝔫1,𝜑1) is a quadratic reduced Lie algebra
and (𝑎,𝜑2) is a quadratic abelian algebra.

Finally, we will note as 𝔫𝑑,𝑡 the free 𝑡-step Lie algebra on 𝑑 generators (see [1] for a formal definition).

2 . C o n s t r u c t i o n s

There exist several ways to construct quadratic Lie algebras or equivalent structures. In this section we
give an overview of some of them, with focus on the 2-step case.

Unless we specify the contrary, we will work over a generic field � and (𝐴,𝑓) will be a generic finite-
dimensional Lie algebra, while 𝐴∗ will denote its dual space. Moreover, ad∗ will represent the coadjoint
representation (i.e., ad∗ (𝑎)(𝛼)(𝑎′) = −𝛼([𝑎, 𝑎′]) for 𝑎, 𝑎′ ∈ 𝐴 and 𝛼 ∈ 𝐴∗).

2 . 1 . D o u b l e e x t e n s i o n

The first way is the classic double extension method (see [7] or [3]). To begin with the extension we need,
apart from (𝐴,𝑓) over a field � of characteristic zero, another finite-dimensional Lie algebra 𝐵 in the
same field and a Lie homomorphism 𝜙∶ 𝐵 → Der𝑓 (𝐴) where Der𝑓 (𝐴) is the space of all 𝑓-antisymmetric
derivations of A (i.e., 𝑓(𝑑(𝑎), 𝑎′)+𝑓(𝑎, 𝑑(𝑎′)) = 0 for 𝑑 ∈ Der𝑓 (𝐴) and 𝑎, 𝑎′ ∈ 𝐴). Let us define 𝑤∶ 𝐴×𝐴 →
𝐵∗ as (𝑎, 𝑎′) ↦ (𝑏 ↦ 𝑓(𝜙(𝑏)(𝑎), 𝑎′)) for 𝑏 ∈ 𝐵 and 𝑎, 𝑎′ ∈ 𝐴. If we take the vector space 𝐴𝐵 ≔ 𝐵 ⊕ 𝐴⊕ 𝐵∗,
define the following multiplication:

[𝑏 + 𝑎 + 𝛽, 𝑏′ + 𝑎′ + 𝛽′] ≔ [𝑏, 𝑏′] + 𝜙(𝑏)(𝑎′) − 𝜙(𝑏′)(𝑎) + [𝑎, 𝑎′] + 𝑤(𝑎, 𝑎′) + ad∗ (𝑏)(𝛽′) − ad∗ (𝑏′)(𝛽),

and the following symmetric bilinear form 𝑓𝐵 on 𝐴𝐵:

𝑓𝐵(𝑏 + 𝑎 + 𝛽, 𝑏′ + 𝑎′ + 𝛽′) ≔ 𝛽(𝑏′) + 𝛽(𝑏) + 𝑓(𝑎, 𝑎′),

for 𝑏, 𝑏′ ∈ 𝐵, 𝑎, 𝑎′ ∈ 𝐴, 𝛽, 𝛽′ ∈ 𝐵∗. Then, the pair (𝐴𝐵,𝑓𝐵) is a metrised Lie algebra over� and is called the
double extension of 𝐴 by 𝜙 and 𝐵.

And, as we can deduce from [7, Théorème III]:

C o r o l l a r y 6 . In characteristic zero, every quadratic solvable Lie algebra can be obtained from an abelian
Lie algebra extended by successive direct sums and double extensions by one-dimensional algebras.

In [4, Section 5] we can find examples of indecomposable quadratic 𝑡-step nilpotent Lie algebras (arbitary 𝑡).
The examples include the complete classification up to dimension 7 [4, 5.1. Proposition].
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2 . 2 . 𝑇∗
- e x t e n s i o n

The 𝑇∗-extension is a one-step method which was introduced in [3]. In contrast to double extension, it
can be applied not only to Lie algebras, but to arbitrary nonassociative algebras.
For a Lie algebra 𝐵, we consider an arbitrary 𝑤∶ 𝐵 × 𝐵 → 𝐵∗ bilinear map and define the following
multiplication on the vector space 𝑇∗

𝑤𝐵 ≔ 𝐵 ⊕ 𝐵∗ for 𝑏, 𝑏′ ∈ 𝐵 and 𝛽, 𝛽′ ∈ 𝐵∗:

[𝑏 + 𝛽, 𝑏′ + 𝛽′] ≔ [𝑏, 𝑏′] + 𝑤(𝑏, 𝑏′) + ad∗ (𝑏)(𝛽′) − ad∗ (𝑏′)(𝛽).

Moreover, we consider the symmetric bilinear form 𝑞𝐵 in 𝐵 ⊕ 𝐵∗ defined as follows:

𝑞𝐵(𝑏 + 𝛽, 𝑏′ + 𝛽′) ≔ 𝛽(𝑏′) + 𝛽′(𝑏).

And, as seen in [3, Lemma 3.1] we know if 𝐵, 𝐵∗, 𝑤 and 𝑞𝐵 are as above, then the pair (𝐵 ⊕ 𝐵∗, 𝑞𝐵) is a
metrised algebra if and only if 𝑤 is cyclic (i.e., 𝑤(𝑎, 𝑏)(𝑐) = 𝑤(𝑐, 𝑎)(𝑏) = 𝑤(𝑏, 𝑐)(𝑎) for all 𝑎, 𝑏, 𝑐 ∈ 𝐵).
Finally, we have the following theorem (see [3, Theorem 3.2]), which is really convenient as every quadratic
2-step Lie algebra fulfils every condition.

T h e o r e m 7 . Let (𝐴,𝑓) be a metrised algebra of finite dimension 𝑛 over a field � of characteristic not
equal to two. Then, (𝐴,𝑓) will be isometric to a 𝑇∗-extension (𝑇∗

𝑤𝐵, 𝑞𝐵) if and only if 𝑛 is even and 𝐴
contains an isotropic ideal 𝐼 (i.e., 𝐼 ⊂ 𝐼⟂) of dimension 𝑛/2. In this case: 𝐵 ≅ 𝐴/𝐼. Note that any isotropic
𝑛/2-dimensional subspace 𝐼 of 𝐴 is an ideal of 𝐴 if and only if it is abelian, i.e., 𝐼2 = 0.

2 . 3 . C o m p u t a t i o n a l a p p r o a c h u s i n g H a l l B a s i s

Having a well-defined basis is the first requirement to be able to define algorithmically a construction
method. For this purpose, we can use the Hall Basis defined in [6].
The Hall Basis of 𝔫𝑑,2 is {𝑥𝑖 ∶ 𝑖 = 𝑑,… , 1} ∪ {[𝑥𝑖, 𝑥𝑗] ∶ 𝑖 = 1,… , 𝑑; 𝑗 = 𝑖 + 1,… , 𝑑}. As we can see, the main
advantage of this basis is that the Lie products of every element are already defined, taking into account
that every element [𝑥𝑖, 𝑥𝑗] belongs to the centre as this is a 2-step free nilpotent Lie algebra. And, as stated
in [5], any 2-step nilpotent Lie algebra 𝔫 of type 𝑑 is a homomorphic image of 𝔫𝑑,2 as 𝔫 ≅ 𝔫𝑑,2/𝐼, with 𝐼 an
ideal of 𝔫𝑑,2 such that 𝐼 ⊊ 𝔫2𝑑,2.
So we only need to know how the bilinear form works. For this part we can generate a generic symmetric
matrix of dimension 𝑑(𝑑+1)

2
× 𝑑(𝑑+1)

2
. After that, we just have to reduce the variables in the entries of

the matrix by imposing the bilinear form is invariant. The whole process is detailed in [1], where lots of
examples are displayed.
Finally, we have to find the kernel of the bilinear form to do the quotient by it, as the bilinear form is
non-degenerate. And, every quadratic 2-step nilpotent Lie algebra can be obtained this way as we can see
in [1, Proposition 4.1]. This proposition says:

P r o p o s i t i o n 8 . Let (𝔫,𝐵) be a quadratic 2-step nilpotent Lie algebra of type 𝑑 and 𝜑∶ 𝔫𝑑,2/𝐼 → 𝔫 be
an isomorphism of Lie algebras. If we take the map 𝐵∶ 𝔫𝑑,2/𝐼 × 𝔫𝑑,2/𝐼 → � defined as 𝐵(𝑥 + 𝐼, 𝑦 + 𝐼) =
𝐵(𝜑(𝑥 + 𝐼),𝜑(𝑦 + 𝐼)), then 𝜑 is an isometry from (𝔫𝑑,2/𝐼,𝐵) onto (𝔫,𝐵).

It is worthwhile to mention that the kernel of this bilinear form is always of dimension 𝑑(𝑑+1)
2

− 2𝑑 = 𝑑(𝑑−3)
2

for quadratic 2-step Lie algebras. Indeed, using this property shared by all these algebras, we know that
their dimension is always 2𝑑 and we can simplify the process, as we can see in [2].

2 . 4 . T r i v e c t o r s

In [8, 3.5 Théorème and 3.6 Corollaire] the relation between quadratic 2-step nilpotent Lie algebras and
trivectors appears. They are the following ones:

T h e o r e m 9 . There exists a natural bijection between isomorphism classes of reduced quadratic 2-step
nilpotent Lie algebras and dimension 2𝑛 and the equivalence classes of trilinear forms of rank 𝑛.

C o r o l l a r y 1 0 . In an algebraically closed field or ℝ, there exists a finite number of isomorphic classes of
reduced quadratic 2-step nilpotent Lie algebras if its dimension is less than 17.
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3 . C o n c l u s i o n s

The first clear conclusion we obtain is that having this variety of methods gives us a lot of possibilities. We
have several approaches and we can choose the one that fits better for our case.

If we focus on the classic methods (double and 𝑇∗ extensions), which have been extensively studied, both
allow us to incrementally construct all these algebras. The main difference is that:

• Double extension is a more general method but involves several steps.
• 𝑇∗-extension is a simpler method, as it is just one step, but it is only valid for some particular Lie
algebras. Although it can be used for more general algebras than the Lie ones.

Nevertheless, for the algebras we are interested in, nilpotent 2-step, both methods are perfectly valid for
reaching all of them.

On the other hand, the computational approach using Hall Basis is a newer method which can be quite
convenient for constructing a lot of examples or checking if some algebra belongs to the class of Lie
algebras we are interested in. Moreover, this method can be easily extended to an arbitrary nilpotency
index without trouble, and even more, for 2-step Lie algebras we can improve the efficiency using special
features of this particular case.

Finally, the fact that trivectors are equivalent allows us to obtain a classification of these algebras, as
trivectors have been already classified. Therefore, we can know how many quadratic 2-step Lie algebras
are there up to isometrically isomorphisms using less than 9 generators. This data is show in Table 1.

Dimension 6 8 10 12 14 16 ≥ 18
Number 1 0 1 2 5 13 ∞

T a b l e 1 : Non-isometric reduced quadratic 2-step Lie algebras in ℂ (source [10]).
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