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S o b r e T E M a t / A b o u t T E M a t

TEMat es una revista de divulgación de trabajos de estudiantes de matemáticas publicada sin ánimo de
lucro por la Asociación Nacional de Estudiantes de Matemáticas. Se busca publicar trabajos divulgativos
de matemáticas de todo tipo, escritos principalmente (pero no exclusivamente) por estudiantes.

TEMat persigue el doble objetivo de dar visibilidad a la calidad y diversidad de los trabajos realizados
por estudiantes de matemáticas a la vez que permite a los estudiantes publicar sus primeros artículos. Se
contemplan para su publicación artículos escritos en castellano de todas las áreas de las matemáticas,
puras y aplicadas, así como aplicaciones científicas o tecnológicas en las que las matemáticas jueguen un
papel central.

TEMat is a nonprofit journal for the dissemination of works written by mathematics students, published
by the Asociación Nacional de Estudiantes de Matemáticas.We aim to publish mathematics dissemination
papers of any kind, written mainly (but not exclusively) by students.

TEMat pursues the goal of showcasing the quality and diversity of the works written by students, while also
allowing them to publish their first papers. We will consider for publication any paper written in Spanish
about any area of mathematics, both pure and applied, as well as scientific or technological applications
where mathematics play a prominent role.

S o b r e T E M a t m o n o g r á f i c o s / A b o u t T E M a t m o n o g r á f i c o s

TEMat monográficos complementa los objetivos de TEMat, ofreciendo a escuelas de investigación, así
como seminarios, talleres o congresos de estudiantes, la posibilidad de que sus asistentes publiquen
artículos sobre los contenidos estudiados de manera homogénea, a la vez que se agrupan estos contenidos
para que otras personas que no hayan podido asistir al evento puedan estudiarlos por su cuenta. A la vez,
esto permite dar difusión a la labor de los organizadores y profesores que se encargan de los eventos y al
trabajo desarrollado por jóvenes matemáticos.

TEMat monográficos complements TEMat ’s goals by offering research schools, seminars, workshops
or student conferences the chance to publish a monographic volume where participants may publish
papers about the contents of said activity. Simultaneously, this allows to have all the content in one single
volume, so that individuals who could not attend the event may study this content by themselves. This
also showcases the work of organisers and lecturers, as well as the performance of young mathematicians.
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S o b r e e s t e v o l u m e n / A b o u t t h i s v o l u m e

En este volumen de TEMat monográficos se recogen los resúmenes extendidos de las contribuciones
presentadas en el tercer Congreso BYMAT - Bringing Young Mathematicians Together, celebrado telemáti-
camente del 1 al 3 de diciembre de 2020. Organizado conjuntamente por la Universitat de València y la
Universitat Politècnica de València, el congreso BYMAT tiene entre sus objetivos proporcionar un espacio
cálido y abierto para que jóvenes investigadores den a conocer su trabajo, desde el inicio de su carrera
científica.

This volume of TEMat monográficos contains the extended abstracts of the contributions presented at the
third BYMAT - Bringing Young Mathematicians Together Conference, held online from 1 to 3 December
2020. Organised jointly by the Universitat de València and the Universitat Politècnica de València, the
BYMAT Conference aims to provide a warm and open space for young researchers to present their work,
since the beginning of their scientific career.
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3rd BYMAT Conference (2020)

Invited article

C h a r a c t e r s o f f i n i t e g r o u p s

� C a r o l i n a V a l l e j o R o d r í g u e z

Universidad Carlos III de Madrid
carolina.vallejo@uc3m.es
carolina.vallejo@icmat.es

A b s t r a c t : Groups are the mathematical objects formally describing our idea of
symmetry. They appear naturally acting on vector spaces as groups of invertible
matrices. Group representation theory is the branch of mathematics that studies
such actions. More specifically, character theory studies the trace maps associated
to those actions. A fundamental question in the field is to understand how much
information about a finite group 𝐺 and its local subgroups can be extracted from
the knowledge of the character theory of 𝐺. In this note, I will report on recent
advances in this topic.

R e s u m e n : La teoría de grupos es la rama de las matemáticas que describe y estudia
las simetrías. Los grupos aparecen de forma natural actuando sobre espacios
vectoriales como matrices invertibles. La teoría de representaciones se encarga
de estudiar dichas acciones como homomorfismos entre grupos y grupos de
matrices. En particular, la teoría de caracteres estudia las trazas asociadas a tales
homorfismos. Un problema central en el área es descubrir qué información acerca
de la estructura de un grupo 𝐺 y sus subgrupos locales puede leerse en su tabla de
caracteres. El propósito de esta monografía es exponer recientes contribuciones a
este problema en el marco de las conjeturas globales-locales.

K e y w o r d s : finite groups, character tables, Sylow subgroups, global-local
conjectures.

M S C 2 0 1 0 : 20C15, 20C20.

A c k n o w l e d g e m e n t s : This works is partially supported by Spanish Ministerio de Ciencia e Innovación MTM2017-
82690-P and PID2019-103854GB-I00, FEDER funds and the ICMAT Severo Ochoa project SEV-2015-0554.

I would like to thank Eugenio Giannelli, Gabriel Navarro and Mandi Schaeffer Fry for their useful comments
on this note.

R e f e r e n c e : VALLEJO RODRÍGUEZ, Carolina. “Characters of finite groups”. In: TEMat monográficos, 2 (2021):
Proceedings of the 3rd BYMAT Conference, pp. 1-6. ISSN: 2660-6003. URL: https://temat.es/monograficos/
article/view/vol2-p1.

cb This work is distributed under a Creative Commons Attribution 4.0 International licence
https://creativecommons.org/licenses/by/4.0/

mailto:carolina.vallejo@uc3m.es
mailto:carolina.vallejo@icmat.es
https://temat.es/monograficos/article/view/vol2-p1
https://temat.es/monograficos/article/view/vol2-p1
https://creativecommons.org/licenses/by/4.0/


Characters of finite groups

1 . C h a r a c t e r t h e o r y : a b r i e f h i s t o r i c a l r e m a r k

The theory of groups is the abstract mathematical framework to describe the intuitive human concept
of symmetry. It has been said by the mathematician and sci-fi writer E. T. Bell that “wherever groups
disclose themselves or can be introduced, simplicity crystallizes out of comparative chaos”, a sentence
that highlights the usefulness of group theory in other branches of mathematics. In his Erlangen program,
F. Klein proposed to study the geometry of a space through its group of symmetries. Outside mathematics,
groups play a crucial role in several other disciplines like quantum physics, chemistry and cryptography.

The birth of group theory goes back to the work on polynomial equations of J. L. Lagrange and E. Galois,
where groups appeared as permutations of the roots of a polynomial. In his investigations, Galois already
introduced key concepts in group theory like those of normal subgroup, simple group and solvable group.
However, we owe the first abstract definition of group to Cayley by the end of the 19th century.

Character theory and, more generally, representation theory study how groups act on a vector space.
Properties of representations and characters of a group are intimately connected to the algebraic structure
of the group itself. This mutual influence is successfully used to study one in terms of the other. Indeed,
the study of finite groups bloomed in the early 20th century thanks to the springtime of representation and
character theory. The pioneering work of W. Burnside, F. G. Frobenius and I. Schur laid the foundations of
this area of mathematics. Burnside proved in 1904 that finite groups whose order is divisible by at most
two primes are solvable [3]. This was the first main application of character theory to group theory, and
we care to remark that a proof of Burnside’s 𝑝𝑎𝑞𝑏 theorem not involving character theoretical arguments
was not found until 1972 by D. Goldschmidt [6] and H. Bender [1].

In 1963, W. Feit and J. Thompson proved that groups of odd order are solvable [5]. Their (225 pages long)
proof requires a mixture of deep group and character theoretical arguments. For his contributions to
this success, Thompson was awarded a Fields Medal in 1970 and an Abel Prize in 2008. Moreover, the
solvability of groups of odd order lies at the heart of one of the greatest achievements of mathematics in
the last two centuries: the classification of finite simple groups [4].

2 . C h a r a c t e r t a b l e s a n d S y l o w s u b g r o u p s

In 1963, R. Brauer published an inspiring survey article on the representations of finite groups [2]. In its
introduction, Brauer writes that “A tremendous effort has been made by mathematicians for more than a
century to clear up the chaos in group theory. Still, we cannot answer some of the simplest questions.” Far
from being critical of the theory of finite groups, Brauer claims to be fascinated by its mysteries. In that
landmark survey, he set up a list of 42 problems that still guides the research on representation theory.
Among the most significant problems contained in his article we find the so-called Brauer’s 𝑘(𝐵)-conjecture
(Problem 20) and Brauer’s height zero conjecture (Problem 23). These conjectures remain open today,
although a great deal of work has been devoted to them (see [9, 11, 17], for instance).

In this note, we focus our attention on Brauer’s Problem 12. For a finite group 𝐺, we denote by Irr(𝐺) the
set of irreducible complex characters of 𝐺 (those characters afforded by 𝐺-actions on vector spaces without
𝐺-invariant subspaces). If 𝜒 ∈ Irr(𝐺), then 𝜒∶ 𝐺 → ℂ is a function constant on 𝐺-conjugacy classes. It is
well known, and follows from the Wedderburn decomposition of the algebra ℂ𝐺, that |Irr(𝐺)| = 𝑘 is the
number of 𝐺-conjugacy classes of 𝐺. Hence, we can arrange the values of the irreducible characters of 𝐺
in a (𝑘 × 𝑘)matrix 𝑋(𝐺) known as the character table of 𝐺. The value 𝜒(1) is the degree of 𝜒, and coincides
with the dimension of a 𝐺-vector space affording 𝜒. It is customary to arrange 𝑋(𝐺) so that its first column
is the column corresponding to irreducible character degrees. Also, the first row of 𝑋(𝐺) usually contains
the values of the principal character 1𝐺∶ 𝐺 → ℂ, coming from the trivial action of 𝐺 on ℂ. For example,
the character table of S 3, the symmetric group on 3 symbols, is

𝑋(S 3) = [
1 1 1
1 −1 1
2 0 −1

] .

Character tables are invertible matrices whose rows and columns satisfy amazing numerical relations
(see [7, Chapter 2] for details on the Schur orthogonality relations).

2 https://temat.es/monograficos

https://temat.es/monograficos


Vallejo Rodríguez

P r o b l e m (Brauer’s Problem 12). Given the character table 𝑋(𝐺) of a group 𝐺 and a prime 𝑝 dividing the
order |𝐺| of 𝐺, how much information about the structure of the Sylow 𝑝-subgroup 𝑃 of 𝐺 can be obtained?
In particular, can it be decided whether or not 𝑃 is abelian? ◀

We recall that a Sylow 𝑝-subgroup 𝑃 of 𝐺 is a 𝑝-subgroup of 𝐺 of order |𝐺|𝑝, the largest 𝑝-power dividing
|𝐺|. The set Syl𝑝(𝐺) of Sylow 𝑝-subgroups of 𝐺 is non-empty, its elements form a 𝐺-conjugacy class and
they dominate the 𝑝-subgroups of 𝐺. Sylow theory is a cornerstone of group theory. We care to mention
that the character table of a group does not determine the isomorphism class of its Sylow subgroups. For
instance, the dihedral group D 8 of order 8 and the quaternion group Q 8 have the same character table
(after possibly rearranging rows and columns).

The Sylow subgroups of S 3 are abelian for every prime 𝑝. How can this information be extracted from
𝑋(S 3)? For 𝑝 = 3, we notice that every irreducible character of S 3 has degree coprime to 𝑝. The Itô-Michler
theorem guarantees that such a condition is equivalent to S 3 having a normal and abelian Sylow 3-subgroup.
For 𝑝 = 2, we observe that not every irreducible character degree of S 3 is odd. Nevertheless, the degree of
every irreducible character belonging to the principal 2-block of S 3 is odd (the characters in the principal
2-block of S 3 are the ones corresponding to the first and second row of 𝑋(S 3), but we do not wish to get
into technical details at this point of the exposition). This condition is equivalent to S 3 having an abelian
Sylow 2-subgroup, by the principal block case of Brauer’s height zero conjecture (a key case that has been
recently proven [12]).

The character table 𝑋(𝐺) of a group 𝐺 determines the order |𝐺| of the group by the well-known formula

|𝐺| = ∑
𝜒∈Irr(𝐺)

𝜒(1)2.

In particular, we do not need to appeal to the Itô-Michler theorem nor the principal block case of Brauer’s
height zero conjecture to deduce that the Sylow subgroups of S 3 are abelian (but we thought it could be a
good way of informally introducing their statements). Once we know that 𝑋(𝐺) easily determines |𝑃|, the
order of a Sylow 𝑝-subgroup 𝑃 of 𝐺, it makes sense to wonder whether 𝑋(𝐺) determines the order |N𝐺(𝑃)|
of the normalizer of 𝑃 (see [15, Question 7]). At the time of this writing, that is an open question. A positive
answer is known in the special case where N𝐺(𝑃) = 𝑃. In other words, we can tell whether |N𝐺(𝑃)| = |𝐺|𝑝
after an easy inspection of 𝑋(𝐺). This follows from the main results of [19] and [24] for 𝑝 odd and 𝑝 = 2,
respectively.

What more can be said about the structure ofN𝐺(𝑃) in 𝑋(𝐺)? Apart from determining ifN𝐺(𝑃) is a 𝑝-group,
we can also determine ifN𝐺(𝑃) is 𝑝-nilpotent, that is, ifN𝐺(𝑃) = 𝑃 × 𝑋. This fact follows from [20] and [21]
for 𝑝 odd and from [22] and [26] for 𝑝 = 2.

Let us go back to the structure of 𝑃. We have mentioned above that, by the main result of [12], one can
determine if 𝑃 is abelian by looking at the character degrees of irreducible characters in the principal
𝑝-block of 𝑋(𝐺). The set of irreducible characters of 𝐺 belonging to the principal 𝑝-block is

{𝜒 ∈ Irr(𝐺) ∣ ∑
𝑥∈𝐺0

𝜒(𝑥) ≠ 0},

where 𝐺0 ⊆ 𝐺 consists of those elements of order not divisible by 𝑝. Without getting into further technical
details, we care to remark that, by Higman’s theorem [7, Theorem 8.21], the set of irreducible characters of
𝐺 belonging to the principal 𝑝-block can be determined after an easy inspection of 𝑋(𝐺).

It is also possible to determinewhether 𝑃 is cyclic by looking only at𝑋(𝐺) (an elementary proof can be found
in [15, Theorem 8]). A huge step further is to consider whether 𝑋(𝐺) determines if 𝑃 is 2-generated. For
example, if a group 𝐺 has a cyclic (1-generated) Sylow 2-subgroup, then 𝐺 has a normal 2-complement. In
particular, such a group is solvable by Feit-Thompson’s odd order theorem [5]. In opposition, there aremany
nonsolvable groups possessing a 2-generated Sylow 2-subgroup. Actually, the number of isomorphism
classes of 2-groups of order 2𝑛 that are 2-generated grows exponentially with 𝑛. Despite the greater degree
of difficulty, we have recently shown in [16] that 𝑋(𝐺) determines if a Sylow 2-subgroup is 2-generated.
What happens for odd primes, we do not know. We expect that 𝑋(𝐺) determines if 𝑃 is 2-generated if 𝑝 = 3,
but for larger primes the situation might be very different.
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3 . G l o b a l - l o c a l c o n j e c t u r e s

Thepurpose of this last section is to briefly describe a deep system of interconnected conjectures underlying
most of the results mentioned in the context of Brauer’s Problem 12 above. This system consists of the
so-called global-local conjectures. The common philosophy behind all these conjectures is that certain
essential information on the character theory of a finite group 𝐺 is encoded in its local subgroups (we refer
the reader to [10] for a detailed account on the global-local principle in representation theory). By local
subgroups of 𝐺 we mean its nontrivial 𝑝-subgroups and their normalizers, where 𝑝 is any fixed prime. The
most important local subgroups are the Sylow subgroups and their normalizers.

One of the most paradigmatic global-local conjectures is the McKay conjecture.

C o n j e c t u r e (McKay, 1971). Let 𝐺 be a finite group, let 𝑝 be a prime and 𝑃 ∈ Syl𝑝(𝐺). The number of
Irr(𝐺) of degree not divisible by 𝑝 equals the number of Irr(N𝐺(𝑃)) of degree not divisible by 𝑝.

We write Irr𝑝′(𝐺) = {𝜒 ∈ Irr(𝐺) | 𝜒(1) is not divisible by 𝑝}. As a global-local statement, the McKay
conjecture is telling us that global invariant |Irr𝑝′(𝐺)| is a local invariant, in the sense that it can be
computed as |Irr𝑝′(N𝐺(𝑃))| in the local subgroup N𝐺(𝑃).

In Section 2, we said that wether a group 𝐺 has a self-normalizing Sylow 𝑝-subgroup 𝑃, that is, N𝐺(𝑃) = 𝑃,
can be read off from 𝑋(𝐺). What does the McKay conjecture predict in such a situation? Assume that
N𝐺(𝑃) = 𝑃; then, the McKay conjecture asserts that |Irr𝑝′(𝐺)| = |Irr𝑝′(𝑃)|. As the degrees of irreducible
characters divide the order of the group, we have that |Irr𝑝′(𝐺)| = |Lin(𝑃)|, where Lin(𝑃) = Hom(𝑃,ℂ×) ≅
𝑃/𝑃′. Hence, if N𝐺(𝑃) = 𝑃, then the McKay conjecture predicts that |Irr𝑝′(𝐺)| = |𝑃 ∶ 𝑃′|. Unfortunately,
this property does not characterize groups with a self-normalizing Sylow 𝑝-subgroup (as shown by S 3 for
𝑝 = 3). More than that, we do not know if 𝑋(𝐺) determines |𝑃 ∶ 𝑃′| in the case where 𝑃′ > 1 (not even if
we restrict ourselves to the realm of 𝑝-solvable groups, as explained in [15]).

Nevertheless, we have mentioned that global-local conjectures underlie most of the results contained in
Section 2. The key is held by the so-called Galois version of the McKay conjecture proposed by Navarro [14],
also known as the McKay-Navarro conjecture.

The values of 𝜒 ∈ Irr(𝐺) are sums of roots of unity and lie in ℚ(e2πi/|𝐺|). Given 𝜎 ∈ 𝒢 = Gal(ℚ(e2πi/|𝐺|)/ℚ),
the function 𝜒𝜍 = 𝜎(𝜒) is an irreducible character of 𝐺. Hence, 𝒢 acts on Irr(𝐺) (so on the rows of 𝑋(𝐺)). As
the McKay conjecture predicts the existence of a bijection Irr𝑝′(𝐺) → Irr𝑝′(N𝐺(𝑃)), and the Galois group 𝒢
acts on both sets, it is natural to wonder if such a bijection can be expected to commute with the action of
𝒢 (that is, if such bijection can be expected to be 𝒢-equivariant). The general linear groupGL(2, 3) provides
a negative answer to that question for 𝑝 = 3, as GL(2, 3) has less rational-valued irreducible characters of
degree not divisible by 3 than the dihedral group D 12, the normalizer of a Sylow 3-subgroup.

Letℋ𝑝 ≤ 𝒢 be the subgroup consisting of those Galois automorphisms 𝜎 ∈ 𝒢 for which there exists a fixed
integer 𝑓 such that 𝜎(𝜉) = 𝜉𝑝𝑓 for every root of unity 𝜉 ∈ ℚ(e2πi/|𝐺|) of order not divisible by 𝑝.

C o n j e c t u r e (McKay-Navarro, 2004). Let 𝐺 be a finite group, let 𝑝 be a prime and 𝑃 ∈ Syl𝑝(𝐺). There exists
anℋ𝑝-equivariant bijection Irr𝑝′(𝐺) → Irr𝑝′(N𝐺(𝑃)).

In [14, Theorem 5.2 and Theorem 5.3], Navarro proves that the McKay-Navarro conjecture implies the main
results of [19] and [24]. We say those results are proven consequences of the conjecture. The interest of
proving consequences of global-local conjectures is twofold: they help us understand new connections
between global and local invariants of a group and, at the same time, they provide new evidence for the
validity of these elusive conjectures. In a similar way, the McKay-Navarro conjecture is behind the main
results of [26], [21] and [16].

In general, the method used to prove such consequences of the McKay-Navarro conjecture is based on a
reduction to simple groups of the statement and then on an exhaustive study of the character theory of the
finite nonabelian simple groups (and related groups, as the decorated groups). The first part of the method
is what we call proving a reduction theorem. The origin of the term goes back to the McKay conjecture.

The McKay conjecture was formulated in 1971 (originally just for simple groups and the prime 𝑝 = 2),
after evidence found on symmetric groups and the known sporadic groups. It immediately attracted the
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interest of the community for the simplicity of its formulation, and celebrated group-theorists started
verifying it for different families of groups such as solvable groups and general linear groups. The different
verifications used ad hoc methods, specific to each family. Despite overwhelming evidence, for several
decades no general strategy for proving this easy-to-state conjecture was envisaged. It was not until 2007
that a method was proposed. I. M. Isaacs, G. Malle and G. Navarro [8] showed that in order to prove the
McKay conjecture for all finite groups, it was enough to verify the so-called inductive McKay condition
only for all finite simple groups. Such a result is what we call a reduction theorem. We care to remark that it
is not enough that the conjecture is satisfied for all finite simple groups. The inductive McKay condition is
much stronger than the conjecture itself and its verification constitutes a true challenge for simple-group
theorists. (We omit a description of the inductive condition here due to its highly technical nature, instead
we refer the interested reader to [27].) However, the above strategy has proven to be successful. In 2016,
Malle and B. Späth [13] verified the inductive McKay condition for all simple groups at the prime 𝑝 = 2.
This has lead to one of the highlights in representation theory of the 21st century: the McKay conjecture
holds for the prime 2.

Inspired by the success of the reduction approach to the McKay conjecture, we have recently obtained
a reduction theorem for the McKay-Navarro conjecture [18]. Namely, we have shown that, in order to
prove the McKay-Navarro conjecture in full generality, it is enough to verify the inductive McKay-Navarro
condition for all finite simple groups. We have already mentioned that verifying the inductive McKay
condition is a challenge for simple-groups theorists. It is no surprise that verifying the inductive McKay-
Navarro condition constitutes a bigger challenge, as it requires a vast knowledge of the character values of
decorated simple groups and the interplay between Galois action and the action of group automorphisms
on characters. Some examples of finite simple groups satisfying the inductive McKay-Navarro condition
have appeared so far [23, 25], and we are aware that exciting new results will appear soon.
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A b s t r a c t : In this work we introduce a probabilistic proof of theMeir-Moon theorem.
This theorem gives an asymptotic formula for the coefficients of the solution to
Lagrange’s equation. Let 𝜓 be an analytic function, with non-negative coefficients,
on a disk around 𝑧 = 0 and 𝑓(𝑧) = 𝑧𝜓(𝑓(𝑧)) = ∑𝑛≥0 𝑎𝑛𝑧

𝑛 Lagrange’s equation with
data 𝜓. Under certain conditions over 𝜓, the coefficients of 𝑓 satisfy the asymptotic
formula

𝑎𝑛 ∼
1

√2π

𝜏𝜓(𝜏)𝑛

𝜎𝜓(𝜏)
1

𝑛3/2𝜏𝑛
, as 𝑛 → ∞,

for certain 𝜏 > 0. We make no use of saddle point approximation methods: we cast
the question in the probabilistic setting of Khinchin families and the local central
limit theorem for lattice random variables.

This is based on a joint work with José L. Fernández (Universidad Autónoma de
Madrid).

R e s u m e n : En este trabajo presentamos una prueba probabilística del teorema
de Meir-Moon. Este teorema da una fórmula asintótica para los coeficientes de
la solución de la ecuación de Lagrange. Sea 𝜓 una función analítica en un disco
alrededor de 𝑧 = 0, con coeficientes no negativos, y𝑓(𝑧) = 𝑧𝜓(𝑓(𝑧)) = ∑𝑛≥0 𝑎𝑛𝑧

𝑛 la
ecuación de Lagrange con dato 𝜓. Bajo ciertas condiciones sobre 𝜓, los coeficientes
de 𝑓 satisfacen la fórmula asintótica

𝑎𝑛 ∼
1

√2π

𝜏𝜓(𝜏)𝑛

𝜎𝜓(𝜏)
1

𝑛3/2𝜏𝑛
, cuando 𝑛 → ∞,

para cierto 𝜏 > 0. En esta demostración no utilizamos métodos de punto de silla,
los ingredientes son las familias de Khinchin combinadas con cierto teorema local
central del límite para variables aleatorias reticulares.

Esto está basado en un trabajo conjunto con José L. Fernández (Universidad
Autónoma de Madrid).
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central limit theorem, asymptotic analysis, analytic combinatorics.
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A probabilistic proof of Meir-Moon theorem

1 . I n t r o d u c t i o n a n d p r e l i m i n a r i e s

Our objective is to give an asymptotic formula for the coefficients of certain analytic functions. See [5]
and [6]. In particular, we want to study generating functions of combinatorial sequences, that is, analytic
functions with non-negative coefficients, which are solutions to Lagrange’s equation.

In this section, we introduce some definitions and auxiliary results that will be useful later. First, we
introduce Khinchin families. Later on, we enumerate some of their properties. We will continue here with
Lagrange’s equation and its solution: Lagrange inversion formula. Finally, we amalgamate all these tools
into a sketch of a proof of Meir-MoonTheorem. For complete details see [1] and [3].

1 . 1 . K h i n c h i n f a m i l i e s

We start by defining the class of analytic functions𝒦. This class is convenient for the study of generating
functions of combinatorial sequences.

D e f i n i t i o n 1 . We say that 𝜓(𝑧) = ∑𝑛≥0 𝑏𝑛𝑧
𝑛 is in the class 𝒦 if 𝜓 is an analytic function with radius of

convergence 𝑅 > 0, has non-negative coefficients, 𝑏0 > 0 and there exists certain integer 𝑛0 > 1 such that
𝑏𝑛0 > 0. ◀

Now we define the Khinchin family associated to a power series 𝜓 ∈ 𝒦.

D e f i n i t i o n 2 . Let 𝜓 ∈ 𝒦, an analytic function with power series representation 𝜓(𝑧) = ∑𝑛≥0 𝑏𝑛𝑧
𝑛. We

define the Khinchin family associated to 𝜓 as the indexed family of discrete random variables (𝑌𝑡)[0,𝑅). For
each 𝑡 ∈ [0,𝑅) we have

ℙ(𝑌𝑡 = 𝑛) =
𝑏𝑛𝑡𝑛

𝜓(𝑡)
, for all 𝑛 ∈ {0, 1, 2,… }. ◀

We will write (𝑌𝑡) instead of (𝑌𝑡)[0,𝑅) when the radius of convergence is clear from the context. After this
line, unless explicitly stated, 𝑅 > 0 will denote the radius of convergence of 𝜓 and (𝑌𝑡) the Khinchin family
associated to 𝜓.

The mean and variance functions are

�(𝑌𝑡) = 𝑚(𝑡) =
𝑡𝜓′(𝑡)
𝜓(𝑡)

,

�(𝑌𝑡) = 𝜎2(𝑡) = 𝑡𝑚′(𝑡),

for all 𝑡 ∈ [0,𝑅).

The characteristic function of (𝑌𝑡) is

� (ei𝜃𝑌𝑡) =
𝜓(𝑡ei𝜃)
𝜓(𝑡)

, for all 𝑡 ∈ [0,𝑅) and 𝜃 ∈ ℝ.

In particular, for the normalized Khinchin family ̆𝑌𝑡 = (𝑌𝑡 −𝑚(𝑡))/𝜎(𝑡) we have

� (ei𝜃�̆�𝑡) = � (ei𝜃𝑌𝑡/𝜍(𝑡)) e−i𝜃𝑚(𝑡)/𝜍(𝑡) =
𝜓(𝑡ei𝜃/𝜍(𝑡))

𝜓(𝑡)
e−i𝜃𝑚(𝑡)/𝜍(𝑡), for all 𝑡 ∈ [0,𝑅) and 𝜃 ∈ ℝ.

The following property will be crucial

L e m m a 3 . Suppose 𝑓, 𝑔 ∈ 𝒦, both with radius of convergence at least 𝑅 > 0, and let (𝑋𝑡) and (𝑊𝑡) be
its Khinchin families, respectively. Denote (𝑍𝑡) the Khinchin family associated to 𝑓 ⋅ 𝑔. Then, for each
𝑡 ∈ [0,𝑅), we have

𝑍𝑡
𝑑
= 𝑋𝑡 ⊕𝑊𝑡.

Here ⊕ denotes sum of independent random variables.
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1 . 2 . L a g r a n g e ’s e q u a t i o n

Let 𝜓 ∈ 𝒦. We will refer to the equation
𝑓(𝑧) = 𝑧𝜓(𝑓(𝑧))

as Lagrange equation with data 𝜓. The coefficients of 𝑓, the unique solution to Lagrange’s equation with
data 𝜓, are given by the following theorem.

T h e o r e m 4 (Lagrange inversion formula). Let 𝑓(𝑧) and 𝜓(𝑧) be two analytic functions at certain neighbor-
hood of 𝑧 = 0 such that 𝜓(0) ≠ 0 and

𝑓(𝑧) = 𝑧𝜓(𝑓(𝑧))

for 𝑧 ∈ 𝐷(0, 𝛿). Then,
𝑎𝑛 = COEFF𝑛 [𝑓(𝑧)] =

1
𝑛COEFF𝑛−1 [𝜓(𝑧)

𝑛] .

See, for instance, [4].

1 . 3 . A H a y m a n t y p e f o r m u l a

Denote 𝑆(𝑛)𝑡 = 𝑌 (1)
𝑡 ⊕⋯⊕ 𝑌 (𝑛)

𝑡 , where the random variables 𝑌 (𝑖)
𝑡 are (i.i.d.) copies of 𝑌𝑡.

L e m m a 5 . With the hypotheses above,

𝑎𝑛 =
1
2π

1
𝜎𝜓(𝑡)

𝜓(𝑡)𝑛

𝑡𝑛−1𝑛3/2
∫

π𝜍𝜓(𝑡)√𝑛

−π𝜍𝜓(𝑡)√𝑛
� (ei𝜃 ̆𝑆(𝑛)𝑡 /√𝑛) ei𝜃(𝑛−𝑛𝑚𝜓(𝑡))/(𝜍𝜓(𝑡)√𝑛) d𝜃.

C o r o l l a r y 6 . Suppose there exists 𝜏 ∈ (0,𝑅) such that 𝑚𝜓(𝜏) = 1, then

( 1 ) 𝑎𝑛 =
1
2π

𝜏𝜓(𝜏)𝑛

𝜎𝜓(𝜏)
1

𝑛3/2𝜏𝑛
∫

π𝜍𝜓(𝜏)√𝑛

−π𝜍𝜓(𝜏)√𝑛
� (ei𝜃 ̆𝑆(𝑛)𝜏 /√𝑛) d𝜃.

See [3].

2 . M e i r - M o o n t h e o r e m

T h e o r e m 7 (Meir-Moon). Let 𝜓(𝑧) ∈ 𝒦 be a holomorphic function in a disc of radius 𝑅 > 0 around 𝑧 = 0.
Let 𝜓(𝑧) = ∑∞

𝑛=0 𝑏𝑛𝑧
𝑛. Suppose that

• gcd{𝑛 ≥ 1 ∶ 𝑏𝑛 > 0} = gcd (𝜓) = 1,
• there exists 𝜏 ∈ (0,𝑅) such that

𝑚𝜓(𝜏) =
𝜏𝜓′(𝜏)
𝜓(𝜏)

= 1.

Then, the coefficients of 𝑓(𝑧) = 𝑧𝜓(𝑓(𝑧)) = ∑∞
𝑛=1 𝑎𝑛𝑧

𝑛 satisfy the asymptotic formula

𝑎𝑛 ∼
1

√2π

𝜏𝜓(𝜏)𝑛

𝜎𝜓(𝜏)
1

𝑛3/2𝜏𝑛
, as 𝑛 → ∞.

S k e t c h o f t h e p r o o f . Apply the local central limit theorem for lattice random variables to the integral 𝐼𝑛 on
the right-hand side of formula (1), see, for instance, [2] and [3]. Then we have that lim

𝑛→∞
𝐼𝑛 = √2π. ▪
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An introduction to knot homology theories

1 . C a t e g o r i f i c a t i o n

We start off by briefly discussing the idea of categorification. Let us borrow from Lurie [3] the term category
number as a loose measure of the amount of abstraction involved in a mathematical idea, construction,
theorem, etc. Themost concrete kind ofmathematics, such as numbers, or polynomials (arrays of numbers)
belong to category number zero. One level up, in category number one, we find mathematical structures
such as sets, groups, topological spaces, etc. These objects have certain structure and maps between
them which preserve the structure. Category number two refers to classes of mathematical structures,
that is, categories, where not only do we have arrows between the structures but also arrows between the
categories. And the ladder continues all the way up.

The problem of categorification consists of taking an object, statement, construction, etc. which happens
in some category number, and lifting it to another such taking place at a higher level, being able to recover
the original object, statement, construction, etc. in a rather simple way (decategorification).

E x a m p l e 1 . The category of finite sets is a categorification of the natural numbers: every 𝑛 ∈ ℕ is lifted to
the finite set 𝑆𝑛 of 𝑛 elements. Decategorification consists of taking cardinality, #𝑆𝑛 = 𝑛. ◀

E x a m p l e 2 . The category of finite dimensional chain complexes over a field 𝑘 is a categorification of the
integers. Decategorification sends a chain complex 𝐶∗ to its Euler characteristic 𝜒(𝐶∗) ≔ ∑𝑖 (−1)

𝑖 dim𝑘 𝐶𝑖.
◀

E x a m p l e 3 . Singular homology categorifies the Euler characteristic of finite-dimensional CW-complexes
(and hence the (non-)orientable genus of closed surfaces):

𝜒(𝑋) = 𝜒(𝐻∗(𝑋; 𝑘)) = ∑
𝑖
(−1)𝑖 dim𝑘𝐻𝑖(𝑋, 𝑘).

The homology groups of a CW-complex carry much more information about it than its Euler characteristic.
The success of homology relies on the following properties:

• 𝐻∶ T o p → g r V e c t 𝑘 is a functor.
• 𝐻(𝑋) only depends on the homotopy type of 𝑋, and the homology of the one-point space is one
copy of 𝑘 concentrated in degree 0.

• There is an isomorphism 𝐻(𝑋 × 𝑌; 𝑘) ≅ 𝐻(𝑋; 𝑘) ⊗𝑘 (𝐻(𝑌; 𝑘) for spaces 𝑋,𝑌 (Künneth formula).
• There are computational tools: Mayer-Vietoris, long exact sequences, etc. ◀

We will try to mimic the previous example 3 for knot polynomial invariants in the next section.

2 . K n o t s a n d K h o v a n o v h o m o l o g y

Knot theory has proved to be an important subject with many connections with category theory, physics,
quantum algebra, manifold theory, biology, etc. We recall that a knot 𝐾 is a smooth1 embedding 𝑆1 → 𝑆3. A
classical problem in knot theory consists of distinguishing knots up to isotopy. Roughly speaking, two knots
are isotopic when one can be deformed in the three-dimensional space into the other without cutting the
rope and pasting the endpoints later. A similar discussion follows for links (multiple component knots).

There are two classical link polynomial invariants that we present here:

• The Alexander polynomial 𝛥𝐿(𝑡) ∈ ℤ[𝑡, 𝑡−1] of a link 𝐿 captures topological information about the
link embedding, more precisely about the complement of the link in 𝑆3. It is completely determined
by the condition 𝛥unknot = 1 and the skein relation

𝛥𝐿+ − 𝛥𝐿− = (𝑡−
1
2 − 𝑡

1
2 )𝛥𝐿0,

1If you do not like derivatives you can safely replace “smooth” by “piecewise linear”.
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where 𝐿+, 𝐿− and 𝐿0 are links that are identical except in a small ball where they look like ,

and , respectively.

• The Jones polynomial 𝐽𝐿(𝑞) ∈ ℤ[𝑞, 𝑞−1] of a link 𝐿 has a combinatorial nature, but it can be interpreted
as a certain path integral in terms of Chern-Simons theory [7]. It is determined by the condition2
𝐽unknot = 𝑞 + 𝑞−1 and the skein relation

𝑞2𝐽𝐿+ − 𝑞2𝐽𝐿− = (𝑞 − 𝑞−1)𝐽𝐿0,

where 𝐿+, 𝐿− and 𝐿0 are as before.

Just like with the Euler characteristic of CW-complexes, the Alexander and Jones polynomials have category
number zero, and we would like to lift them to some “homology-like” theories, with similar features to the
ones singular homology has.

Let L i n k be the category whose objects are isotopy classes of oriented links in 𝑆3 and whose arrows 𝐿 → 𝐿′
are orientation-preserving homeomorphism classes of bordisms from 𝐿 to 𝐿′, that is, compact oriented
surfaces 𝛴 ⊆ 𝑆3 × 𝐼 such that 𝜕𝛴 = −𝐿 ⨿ 𝐿′. We also let b i g r V e c t

ℤ/2 be the category of bigraded ℤ/2-vector
spaces.

F i g u r e 1 : Some (local) pictures of link bordisms.

T h e o r e m 4 (Khovanov [2]). There exists a functor

Kh∶ L i n k → b i g r V e c t
ℤ/2

satisfying

( i ) If 𝛴∶ 𝐿 → 𝐿′ is an isotopy, then Kh(𝛴)∶ Kh(𝐿)
≅
→ Kh(𝐿′) is an isomorphism.

( i i ) Kh(unknot) = ℤ/2(0,1) ⊕ ℤ/2(0,−1)
( i i i ) Kh(𝐿1 ⨿ 𝐿2) ≅ Kh(𝐿1) ⊗ℤ/2 Kh(𝐿2).

( i v ) If 𝐿 is a link, denote by 𝐿0 and 𝐿∞ links identical to 𝐿 except around one crossing of the form

where they have been modified as and , respectively. Then there is an exact triangle

Kh(𝐿0) Kh(𝐿)

Kh(𝐿∞)

( v ) The Jones polynomial is the graded Euler characteristic of Kh:

𝐽𝐿(𝑞) = 𝜒𝑔𝑟(Kh(𝐿)) = ∑
𝑖,𝑗
(−1)𝑖𝑞𝑗 dimℤ/2 Kh

𝑖,𝑗(𝐿).

2Sometimes it is normalised so that 𝐽unknot = 1, but for the purpose of the exposition we do not do that.
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Bar-Natan’s work [1] has been very influential. Another excellent exposition is [6].

E x a m p l e 5 . The Khovanov homology of the right-handed trefoil 31 is Kh
𝑖,𝑗(31) = ℤ/2 for (𝑖, 𝑗) = (0, 1),

(0, 3), (2, 5), (3, 9) and trivial otherwise. Therefore,

𝜒𝑔𝑟(Kh(31)) = ∑
𝑖,𝑗
(−1)𝑖𝑞𝑗 dimℤ/2 Kh

𝑖,𝑗(𝐾) = 𝑞 + 𝑞3 + 𝑞5 − 𝑞9 = 𝐽31(𝑞)

as expected. ◀

R e m a r k 6 . Khovanov homology is strictly stronger than the Jones polynomial: there is a pair of knots
called 51 and 10132 with the same Jones polynomial but with non-isomorphic Khovanov homology. ◀

3 . K n o t F l o e r h o m o l o g y

Discovered independently by Ozsváth and Szabó [4] and Rasmussen [5], the knot Floer homology of a
knot 𝐾 ⊂ 𝑆3 is a bigraded ℤ/2-vector space

ĤFK(𝐾) = ⨁
𝑚,𝑠∈ℤ

ĤFK𝑚(𝐾, 𝑠)

which only depends on the isotopy type of 𝐾.

One of the major achievements of knot Floer homology is that it categorifies the Alexander polynomial:

T h e o r e m 7 (Oszváth-Szabó, Rasmussen). For any knot 𝐾 we have

𝛥𝐾(𝑡) = 𝜒𝑔𝑟(ĤFK(𝐾)) = ∑
𝑚,𝑠

(−1)𝑚𝑡𝑠 dimℤ/2 ĤFK𝑚(𝐾, 𝑠).

E x a m p l e 8 . Knot Floer homology is strictly stronger than the Alexander polynomial: there is a pair of
celebrated knots, called the Conway knot 11𝑛34 and the Kinoshita-Terasaka knot 11𝑛42, with the same
Alexander polynomial (equal to one) but with non-isomorphic knot Floer homology. ◀

R e m a r k 9 . Knot Floer homology strengthens some well-known properties of the Alexander polynomial.
For instance, Alexander gives a lower bound for the knot genus3, 𝑔(𝐾) ≥ 1

2
deg𝛥𝐾(𝑡); whereas knot Floer

detects the knot genus [4]: 𝑔(𝐾) = max{𝑠 ∈ ℤ ∶ ĤFK(𝐾, 𝑠) ≠ 0}. ◀
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Free Banach lattices

1 . I n t r o d u c t i o n

We all know that the starting point of functional analysis was the investigation of the classical function
spaces, which provide its most important applications. However, the natural order in these spaces was
neglected almost completely. A first attempt to include a compatible order structure in the study of linear
and normed spaces was due to F. Riesz, H. Freudenthal and L. V. Kantorovič in the mid-thirties. In the
following years, schools of research on vector lattices were subsequently founded and these investigations
were continued by various mathematicians in the Soviet Union (B. Z. Vulikh, A. G. Pinsker, A. I. Judin), in
Japan (H. Nakano, T. Ogasawara, K.Yosida), and in United States (G. Birkhoff, S. Kakutani, H. F. Bohnenblust,
M. H. Stone).

L. V. Kantorovič and his school first recognized the importance of studying vector lattices in connection
with Banach’s theory of normed spaces; they investigated normed vector lattices as well as order-related
linear operators between such vector lattices.

This paper is about the basic theory of free Banach lattices. We define the free Banach lattices generated
by a set, by a Banach space, and by a lattice, and show some of their properties. We refer the reader to
[1–9] for more background on free Banach lattices.

2 . F r e e B a n a c h l a t t i c e s

Recall that a Banach lattice is a Banach space (𝑋, ‖ ⋅ ‖) together with a partial order ≤ with the following
properties:

( i ) For every pair of elements 𝑥, 𝑦 ∈ 𝑋 there exist 𝑥 ∨ 𝑦 ≔ sup {𝑥, 𝑦} and 𝑥 ∧ 𝑦 ≔ inf {𝑥, 𝑦}.
( i i ) 𝑥 ≤ 𝑦 implies 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 for every 𝑥, 𝑦, 𝑧 ∈ 𝑋,
( i i i ) 0 ≤ 𝑥 implies 0 ≤ 𝑡𝑥 for every 𝑥 ∈ 𝑋 and 𝑡 ∈ ℝ+,
( i v ) |𝑥| ≤ |𝑦| implies ‖𝑥‖ ≤ ‖𝑦‖ for every 𝑥, 𝑦 ∈ 𝑋, where |𝑥| ≔ 𝑥 ∨ (−𝑥).

Properties (i), (ii) and (iii) together can be read as (𝑋,≤) is a vector lattice, while property (iv) means that
‖ ⋅ ‖ is a lattice norm.

The natural morphisms in this category are those maps that preserve the structure of Banach space and
vector lattice. A map 𝑇∶ 𝑋 → 𝑌 between two Banach lattices, 𝑋 and 𝑌, is said to be a Banach lattice
homomorphism if it is a bounded linear operator and preserves the lattice operations. If 𝑇 is also bijective
and 𝑇−1 is a Banach lattice homomorphism, we say that 𝑇 is a Banach lattice isomorphism. If moreover, 𝑇
preserves the norm (that is, ‖𝑇(𝑥)‖ = ‖𝑥‖ for every 𝑥 ∈ 𝑋), we say that 𝑇 is a Banach lattice isometry.

The first authors who introduced the concept of free object within the category of Banach lattices were B.
de Pagter and A.W.Wickstead in 2015, who defined and studied properties about the free Banach lattice
generated by a set [9].

D e f i n i t i o n 1 . Let 𝐴 be a non-empty set. A free Banach lattice over or generated by 𝐴 is a Banach lattice
𝐹 together with a bounded map 𝜙∶ 𝐴 → 𝐹 with the property that for every Banach lattice 𝑋 and every
bounded map 𝑇∶ 𝐴 → 𝑋 there is a unique Banach lattice homomorphism ̂𝑇 ∶ 𝐹 → 𝑋 such that 𝑇 = ̂𝑇 ∘ 𝜙
and ‖ ̂𝑇‖ = ‖𝑇‖.

𝐴

𝜙
��
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Here, the norm of 𝑇 is ‖𝑇‖ ≔ sup {‖𝑇(𝑎)‖ ∶ 𝑎 ∈ 𝐴}, while the norm of ̂𝑇 is the usual for Banach spaces.

This property uniquely determines 𝐹 up to Banach lattices isometries, and so we can speak of the free
Banach lattice generated by 𝐴, denoted by 𝐹𝐵𝐿(𝐴).
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Now, the question is whether such an object exists. The answer is affirmative. B. de Pagter and A. W.
Wickstead prove it in [9], but A. Avilés, J. Rodríguez and P. Tradacete give an alternative and more tangible
way of constructing it in [4]. They describe it as a space of functions:

For 𝑎 ∈ 𝐴, let 𝛿𝑎∶ [−1, 1]𝐴 → ℝ be the evaluation function given by 𝛿𝑎(𝑥∗) = 𝑥∗(𝑎) for every 𝑥∗ ∈ [−1, 1]𝐴,
and for 𝑓∶ [−1, 1]𝐴 → ℝ define

‖𝑓‖ = sup {
𝑛
∑
𝑖=1

|𝑓(𝑥∗𝑖 )| ∶ 𝑛 ∈ ℕ, 𝑥∗1 ,… , 𝑥∗𝑛 ∈ [−1, 1]𝐴, sup
𝑎∈𝐴

𝑛
∑
𝑖=1

|𝑥∗𝑖 (𝑎)| ≤ 1} .

T h e o r e m 2 ([4, Corollary 2.9]). The free Banach lattice generated by a set 𝐴 is the closure of the vector
lattice generated by {𝛿𝑎 ∶ 𝑎 ∈ 𝐴} under the above norm inside the Banach lattice of all functions
𝑓 ∈ ℝ[−1,1]𝐴 with ‖𝑓‖ < ∞, endowed with the norm ‖ ⋅ ‖, the pointwise order and the pointwise operations.

The natural identification of 𝐴 inside 𝐹𝐵𝐿(𝐴) is given by the map 𝜙∶ 𝐴 → 𝐹𝐵𝐿(𝐴) where 𝜙(𝑎) = 𝛿𝑎 for
every 𝑎 ∈ 𝐴. Since every function in 𝐹𝐵𝐿(𝐴) is a uniform limit of such functions, they are all continuous
(in the product topology) and positively homogeneous (that is, 𝑓(𝜆𝑥∗) = 𝜆𝑓(𝑥∗) for every 𝑥∗ ∈ [−1, 1]𝐴
and for every 𝜆 ≥ 0 such that 𝜆𝑥∗ ∈ [−1, 1]𝐴, or equivalently, 𝑓(𝜆𝑥∗) = 𝜆𝑓(𝑥∗) for every 𝑥∗ ∈ [−1, 1]𝐴 and
for every 0 ≤ 𝜆 ≤ 1).

This definition was soon generalized by A. Avilés, J. Rodríguez and P. Tradacete in [4] to the free Banach
lattice generated by a Banach space 𝐸 in the following sense:

D e f i n i t i o n 3 . Let 𝐸 be a Banach space. A free Banach lattice over or generated by 𝐸 is a Banach lattice
𝐹 together with a bounded operator 𝜙∶ 𝐸 → 𝐹 with the property that for every Banach lattice 𝑋 and
every bounded operator 𝑇∶ 𝐸 → 𝑋 there is a unique Banach lattice homomorphism ̂𝑇 ∶ 𝐹 → 𝑋 such that
𝑇 = ̂𝑇 ∘ 𝜙 and ‖ ̂𝑇‖ = ‖𝑇‖.

𝐸

𝜙
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This property uniquely determines 𝐹 up to Banach lattices isometries, and so we can speak of the free
Banach lattice generated by 𝐸, denoted by 𝐹𝐵𝐿[𝐸]. This definition generalizes the notion of the free Banach
lattice generated by a set 𝐴 in the sense that the free Banach lattice generated by a set 𝐴 is the free Banach
lattice generated by the Banach space ℓ1(𝐴) (see [4, Corollary 2.9]).

This definition is not very friendly to work with it. However, similar to the previous case, it is possible to
give an explicit description of it as a space of functions:

Let us denote by 𝐻[𝐸] the vector subspace of ℝ𝐸∗ consisting of all positively homogeneous functions
𝑓∶ 𝐸∗ → ℝ (that is, all functions that satisfy 𝑓(𝜆𝑥∗) = 𝜆𝑓(𝑥∗) for every 𝑥∗ ∈ 𝐸∗ and for every 𝜆 ≥ 0). For
any 𝑓 ∈ 𝐻[𝐸] let us define

‖𝑓‖ = sup {
𝑛
∑
𝑖=1

|𝑓(𝑥∗𝑖 )| ∶ 𝑛 ∈ ℕ, 𝑥∗1 ,… , 𝑥∗𝑛 ∈ 𝐸∗, sup
𝑥∈𝐵𝐸

𝑛
∑
𝑖=1

|𝑥∗𝑖 (𝑥)| ≤ 1} .

Let us take𝐻0[𝐸] = {𝑓 ∈ 𝐻[𝐸] ∶ ‖𝑓‖ < ∞}. It is easy to check that𝐻0[𝐸] is a Banach lattice when equipped
with the norm ‖⋅‖ and the pointwise order.

Now, given 𝑥 ∈ 𝐸, let 𝛿𝑥∶ 𝐸∗ → ℝ be the evaluation function given by 𝛿𝑥(𝑥∗) = 𝑥∗(𝑥) for every 𝑥∗ ∈ 𝐸∗.

T h e o r e m 4 ([4, Theorem 2.5]). The free Banach lattice generated by a Banach space 𝐸 is the closure of the
vector lattice generated by {𝛿𝑥 ∶ 𝑥 ∈ 𝐸} under the above norm inside 𝐻0[𝐸].

The natural identification of 𝐸 inside 𝐹𝐵𝐿[𝐸] is given by the map 𝜙∶ 𝐸 → 𝐹𝐵𝐿[𝐸] where 𝜙(𝑥) = 𝛿𝑥 for
every 𝑥 ∈ 𝐸 (it is a linear isometry between 𝐸 and its image in 𝐹𝐵𝐿[𝐸]). Moreover, all the functions in
𝐹𝐵𝐿[𝐸] are weak∗-continuous when restricted to the closed unit ball 𝐵𝐸∗ (see [4, Lemma 4.10]).

On the other hand, the notion of the free Banach lattice generated by a lattice � is due to A. Avilés and J. D.
Rodríguez Abellán [5].
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Free Banach lattices

D e f i n i t i o n 5 . Given a lattice �, a free Banach lattice over or generated by � is a Banach lattice 𝐹 together
with a bounded lattice homomorphism 𝜙∶ � → 𝐹 with the property that for every Banach lattice 𝑋
and every bounded lattice homomorphism 𝑇∶ � → 𝑋 there is a unique Banach lattice homomorphism
̂𝑇 ∶ 𝐹 → 𝑋 such that 𝑇 = ̂𝑇 ∘ 𝜙 and ‖ ̂𝑇‖ = ‖𝑇‖.
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Here, the norm of 𝑇 is ‖𝑇‖ ≔ sup {‖𝑇(𝑥)‖ ∶ 𝑥 ∈ �}, while the norm of ̂𝑇 is the usual for Banach spaces.

This definition determines a Banach lattice that we denote by 𝐹𝐵𝐿⟨�⟩ in an essentially unique way. When
� is a distributive lattice (which is a natural assumption in this context, see [5, Section 3]) the function
𝜙 is injective and, loosely speaking, we can view 𝐹𝐵𝐿⟨�⟩ as a Banach lattice which contains a subset
lattice-isomorphic to � in a way that its elements work as free generators modulo the lattice relations on
�.

In order to give an explicit description of it similar to the previous cases, define

�∗ = {𝑥∗∶ � → [−1, 1] ∶ 𝑥∗ is a lattice homomorphism} .

For every 𝑥 ∈ � consider the evaluation function 𝛿𝑥∶ �∗ → ℝ given by 𝛿𝑥(𝑥∗) = 𝑥∗(𝑥), and for 𝑓 ∈ ℝ�∗,
define

‖𝑓‖ = sup {
𝑛
∑
𝑖=1

|𝑓(𝑥∗𝑖 )| ∶ 𝑛 ∈ ℕ, 𝑥∗1 ,… , 𝑥∗𝑛 ∈ �∗, sup
𝑥∈�

𝑛
∑
𝑖=1

|𝑥∗𝑖 (𝑥)| ≤ 1} .

T h e o r e m 6 ([5, Theorem 1.2]). Consider 𝐹 to be the closure of the vector lattice generated by {𝛿𝑥 ∶ 𝑥 ∈ �}
under the norm ‖ ⋅ ‖ inside the Banach lattice of all functions 𝑓 ∈ ℝ�∗ with ‖𝑓‖ < ∞, endowed with
the norm ‖ ⋅ ‖, the pointwise order and the pointwise operations. Then 𝐹, together with the assignment
𝜙(𝑥) = 𝛿𝑥, is the free Banach lattice generated by �.
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Crossing limit cycles for piecewise linear differential centers

1 . I n t r o d u c t i o n a n d m a i n s t a t e m e n t s

One of the main problems for the piecewise linear differential systems (pwls) is to determine the existence
and the maximum number of limits cycles that these systems can exhibit. That is the version of Hilbert’s
16th problem for pwls. In the plane the class of pwls separated by a straight line is apparently the simplest
class to study, and has been studied in several papers, see [1, 2] and references quoted therein, but it is still
an open problem to know if three is the maximum number of crossing limit cycles that this class can have.
In particular when the class of pwls separated by a straight line is formed by linear differential centers
we know that these systems have no crossing limit cycles (clc), see [4]. However, there are more recent
works which study planar discontinuous piecewise linear differential centers (pwlc) where the curve of
discontinuity is not a straight line, see [5], there it was proved that there are clc in those systems. Moreover
in the paper [3] it was provided the maximum number of clc for pwlc separated by any conic. In this work
we study the existence of crossing limit cycles for piecewise linear differential systems formed by linear
differential centers and separated by a reducible cubic curve, formed by a parabola and a straight line.
Namely

𝛴𝑘 = {(𝑥, 𝑦) ∈ ℝ2 ∶ (𝑦 − 𝑘)(𝑦 − 𝑥2) = 0, 𝑘 ∈ ℝ} .

Let ℱ𝛴𝑘− be the family of pwlc separated by 𝛴𝑘 with 𝑘 < 0. In this case, we have the following three regions
in the plane:

𝑅1𝛴𝑘− = {𝑦 > 𝑥2}, 𝑅2𝛴𝑘− = {𝑘 < 𝑦 < 𝑥2}, 𝑅3𝛴𝑘− = {𝑦 < 𝑥2, 𝑦 < 𝑘}.

Let ℱ𝛴0 be the family of pwlc separated by 𝛴𝑘 with 𝑘 = 0. Here we have the four regions

𝑅1𝛴0 = 𝑅1𝛴𝑘− , 𝑅2𝛴0 = {0 < 𝑦 < 𝑥2, 𝑥 < 0}, 𝑅3𝛴0 = 𝑅3𝛴𝑘− , 𝑅4𝛴0 = {0 < 𝑦 < 𝑥2, 𝑥 > 0}.

Here we have two types of clc, first clc of type 4 formed by parts of orbits of the four regions, see Figure
1b. Second clc of type 5, see Figure 1c, which intersect 𝑅1𝛴0,𝑅

3
𝛴0 and 𝑅

4
𝛴0. Let ℱ𝛴𝑘+ be the family of pwlc

separated by 𝛴𝑘 with 𝑘 > 0, here we have the five regions

𝑅1𝛴𝑘+ = {𝑘 < 𝑦 < 𝑥2, 𝑥 > √𝑘}, 𝑅2𝛴𝑘+ = {𝑦 > 𝑥2, 𝑦 > 𝑘},

𝑅3𝛴𝑘+ = {𝑘 < 𝑦 < 𝑥2, 𝑥 < −√𝑘}, 𝑅4𝛴𝑘+ = 𝑅3𝛴𝑘− , 𝑅5𝛴𝑘+ = {𝑥2 < 𝑦 < 𝑘}.

Here we have six types of clc. First we have clc such that are formed by parts of orbits of 𝑅1𝛴𝑘+ , 𝑅
2
𝛴𝑘+ , 𝑅

5
𝛴𝑘+

and 𝑅4𝛴𝑘+ , or clc formed by parts of 𝑅2𝛴𝑘+ , 𝑅
3
𝛴𝑘+ , 𝑅

4
𝛴𝑘+ and 𝑅

5
𝛴𝑘+ , namely clc of type 6+ and clc of type 6−,

respectively, see Figure 1d. Second we have clc of type 7, see Figure 1e, which intersect 𝑅2𝛴𝑘+ , 𝑅
5
𝛴𝑘+ and

𝑅4𝛴𝑘+ . Third we have the clc of type 8, see Figure 1f, which intersect 𝑅1𝛴𝑘+ , 𝑅
2
𝛴𝑘+ , 𝑅

3
𝛴𝑘+ and 𝑅

4
𝛴𝑘+ . And finally

we have the clc such that intersect 𝑅1𝛴𝑘+ , 𝑅
2
𝛴𝑘+ and 𝑅

4
𝛴𝑘+ , or clc formed by parts of orbits of 𝑅2𝛴𝑘+ , 𝑅

3
𝛴𝑘+ and

𝑅4𝛴𝑘+ , namely clc of type 9+ and clc of type 9−, respectively, see Figure 1g. In what follows we exhibit the
main results and their respective configurations.

T h e o r e m 1 . The following statements hold.

( i ) There are pwlc in ℱ𝛴𝑘− that have 4 clc that intersect 𝛴𝑘, see Figure 1𝑎.
( i i ) There are pwlc in ℱ𝛴0 that have 4 clc of type 4, see Figure 1𝑏.
( i i i ) There are pwlc in ℱ𝛴0 that have 3 clc of type 5, see Figure 1𝑐.
( i v ) There are pwlc in ℱ𝛴𝑘+ that have 5 clc of type 6

+, see Figure 1𝑑.
( v ) There are pwlc in ℱ𝛴𝑘+ that have 3 clc of type 7, see Figure 1𝑒.
( v i ) There are pwlc in ℱ𝛴𝑘+ that have 4 clc of type 8, see Figure 1𝑓.
( v i i ) There are pwlc in ℱ𝛴𝑘+ that have 3 clc of type 9

+, see Figure 1𝑔.
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F i g u r e 1 : (a) 4 clc with four points on 𝛴𝑘. (b) 4 clc of type 4. (c) 3 clc of type 5. (d) 5 clc of type 6+. (e) 3 clc
of type 7. (f) 4 clc of type 8. (g) 3 clc of type 9+. These limit cycles are traveled in counterclockwise.

( a ) ( b )

F i g u r e 2 : (a) 4 clc of type 4 and 2 clc of type 5. (b) 4 clc of type 6+ and 4 clc of type 6−. These limit cycles
are traveled in counterclockwise.

In the following theorem, we study the pwlc in the families ℱ�̃�𝑘, 𝑘 ∈ ℝ, with two and three clc of different
types, simultaneously.

T h e o r e m 2 . The following statements hold.

( i ) There are pwlc in ℱ�̃�0 that have simultaneously 4 clc of type 4 and 2 clc of type 5, see Figure 2𝑎.
( i i ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 4 clc of type 6+ and 4 clc of type 6−, see Figure 2𝑏.
( i i i ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 4 clc of type 6+ and 2 clc of type 7, see Figure 3𝑎.
( i v ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 3 clc of type 6+ and 4 clc of type 8, see Figure 3𝑏.
( v ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 4 clc of type 6+ and 2 clc of type 9+, see Figure 3𝑐.
( v i ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 3 clc of type 7 and 4 clc of type 8, see Figure 3𝑑.
( v i i ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 4 clc of type 8 and 2 clc of type 9+, see Figure 3𝑒.
( v i i i ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 2 clc of type 6+, 2 clc of type 7 and 4 clc of type 8,

see Figure 3𝑓.
( i x ) There are pwlc in ℱ�̃�𝑘+ that have simultaneously 4 clc of type 6+, 3 clc of type 8 and 2 clc of type 9+,

see Figure 3𝑔.
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Crossing limit cycles for piecewise linear differential centers

( a ) ( b )

( c )
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( d ) ( e )

( f ) ( g )

F i g u r e 3 : (a) 4 clc of type 6+ and 2 clc of type 7. (b) 3 clc of type 6+ and 4 clc of type 8. (c) 4 clc of type 6+
and 2 clc of type 9+. (d) 3 clc of type 7 and 4 clc of type 8. (e) 4 clc of type 8 and 2 clc of type 9+. (f) 2 clc
of type 6+, 2 clc of type 7 and 4 clc of type 8. (g) 4 clc of type 6+, 3 clc of type 8 and 2 clc of type 9+. These
limit cycles are traveled in counterclockwise.
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A b s t r a c t : Complex analysis and minimal surfaces are strongly connected via the
Weierstrass representation formula. This fact has been exploited recently to con-
struct lots of examples of such surfaces with different properties. We would present
the first results dealing with interpolation in the setting of minimal surfaces. These
results are inspired by classicalWeierstrass Interpolation theorem for holomorphic
functions and are proved using techniques coming from complex analysis.

More concretely, given an open Riemann surface𝑀, we would construct conformal
minimal immersions 𝑀 → ℝ𝑛, 𝑛 ≥ 3, such that the values of the immersion at
some points of𝑀 are prescribed.

R e s u m e n : El análisis complejo y las superficies mínimas están fuertemente re-
lacionados a través de la fórmula conocida como representación deWeierstrass.
Esta relación ha permitido recientemente construir muchos ejemplos de tales
superficies con diferentes propiedades. A continuación presentamos los primeros
resultados sobre interpolación en el ambiente de superficies mínimas. Estos resul-
tados están inspirados en el teorema clásico de interpolación deWeierstrass para
funciones holomorfas y se prueban utilizando técnicas provenientes del análisis
complejo.

Concretamente, dada una superficie de Riemann abierta 𝑀, construiremos in-
mersiones mínimas conformes𝑀 → ℝ𝑛, 𝑛 ≥ 3, de manera que los valores de la
inmersión en algunos puntos de𝑀 estén prescritos.
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Recent results on interpolation by minimal surfaces

1 . I n t r o d u c t i o n

An immersed surface in the Euclidean space of dimension 𝑛 ≥ 3 is called aminimal surface if it is locally
area-minimizing, that is, small pieces of it are the ones with least area among all the surfaces with the
same boundary. Minimal surfaces are usually defined as those surfaces with vanishing mean curvature
vector field; which is equivalent to the previous definition. In the classical theory of minimal surfaces in
ℝ𝑛, we may point out the so-called Enneper-Weierstrass representation formula. This formula provides any
minimal surface in ℝ𝑛 in terms of holomorphic data defined on an open Riemann surface.

Let 𝑀 be an open Riemann surface and 𝑋 = (𝑋1,… ,𝑋𝑛)∶ 𝑀 → ℝ𝑛 a conformal minimal immersion,
denoting by 𝜕 the complex linear part of the exterior differential 𝑑 = 𝜕 + 𝜕 on 𝑀 (here 𝜕 denotes the
antilinear part), we have that the 1-form 𝜕𝑋 = (𝜕𝑋1,… , 𝜕𝑋𝑛), assuming values in ℂ𝑛, is holomorphic, has
no zeros, and satisfies∑𝑛

𝑗=1 (𝜕𝑋𝑗)
2 = 0. Furthermore, its real part ℜ(𝜕𝑋) is an exact 1-form on𝑀.

Conversely, every holomorphic 1-form 𝛷 = (𝜙1,… ,𝜙𝑛) with values in ℂ𝑛, vanishing nowhere on 𝑀,
satisfying the nullity condition∑𝑛

𝑗=1 (𝜙𝑗)
2 = 0 everywhere on𝑀, and whose real part ℜ(𝛷) is exact on𝑀,

determines a conformal minimal immersion 𝑋∶ 𝑀 → ℝ𝑛 by the classical Enneper-Weierstrass (or simply
Weierstrass) representation formula:

𝑋(𝑝) = 𝑥0 +∫
𝑝

𝑝0
ℜ(𝛷), 𝑝 ∈ 𝑀,

for any fixed base point 𝑝0 ∈ 𝑀 and initial condition 𝑋(𝑝0) = 𝑥0 ∈ ℝ𝑛. This formula yields minimal
surfaces in ℝ𝑛 from holomorphic 1-forms assuming values in the complex subvariety of ℂ𝑛 determined by
𝔄∗ ≔ {(𝑧1,… , 𝑧𝑛) ∈ ℂ𝑛 ∶ 𝑧21 +⋯+ 𝑧2𝑛 = 0} ⧵ {0}.

Weierstrass representation formula has provided powerful tools coming from complex analysis in one
and several variables to the study of minimal surfaces in ℝ𝑛. In particular, Runge-Mergelyan theorem
for open Riemann surfaces (see [9, 11]) has resulted very useful in the study of minimal surfaces in the
Euclidean space. For instance, the pioneer works of Jorge and Xavier [8] or Nadirashvili [10] combined the
classical Runge approximation theorem with theWeierstrass formula to refute the belief that hyperbolic
Riemann surfaces play a marginal role in the global theory of minimal surfaces. An open Riemann surface
is hyperbolic, by definition, if it carries nonconstant negative subharmonic functions.

However, the most recent results that combine complex analysis andWeierstrass representation formula
in this setting use methods coming from modern Oka theory. Roughly speaking, Oka manifolds are natural
target for holomorphic functions; the key is that the punctured null quadric 𝔄∗ is an Oka manifold and
hence Oka theory applies. A detailed explanation may be seen at the survey [3].

2 . I n t e r p o l a t i o n r e s u l t s f o r c o n f o r m a l m i n i m a l i m m e r s i o n s

General existence results for minimal surfaces in ℝ𝑛 have been proved using Oka theory. Further, one
may add very interesting global properties to the solutions. In the following sections, we are going to
show some of these results concerning interpolation. In particular we show in §2.1 those of interpolation
for conformal minimal immersions in ℝ𝑛, 𝑛 ≥ 3. Next, we state in §2.2 the corresponding analogues
for minimal surfaces of finite total curvature in ℝ3. Finally, we show some applications in §2.3 to the
construction of examples.

2 . 1 . R e s u l t s f o r c o n f o r m a l m i n i m a l i m m e r s i o n s i n a n y d i m e n s i o n 𝑛 ≥ 3

Approximation by holomorphic functions began with the classical Runge Theorem. It gives a topological
characterization of those subsets of ℂ for which any holomorphic function on them may be uniformly
approximated by entire functions. Interpolation by holomorphic functions is another main research topic
in Complex Analysis. It began with the classical Weierstrass Interpolation Theorem that ensures that one
may prescribe the values of an entire function on a discrete subset of ℂ. Both results have been generalized
to the framework of maps from Stein manifolds into Oka manifolds, and in particular for functions from
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open Riemann surfaces. Recall that any open Riemann surface is a Stein manifolds and that the null
quadric is an Oka manifold.
Focusing on minimal surfaces, Alarcón, Forstnerič, and López have developed an uniform approximation
theory for conformal minimal immersions in ℝ𝑛, 𝑛 ≥ 3 and more general families of holomorphic
immersions in ℂ𝑛; see [4, 5]. Concerning interpolation for conformal minimal immersion the author in
collaboration with Alarcón proved the following analogue to theWeierstrass interpolation theorem for
conformal minimal immersions in ℝ𝑛. This result is proved in [1].

T h e o r e m 1 . (Weierstrass InterpolationTheorem for conformal minimal surfaces). Let𝛬 be a closed discrete
subset of an open Riemann surface, 𝑀, and let 𝑛 ≥ 3 be an integer. Every map 𝛬 → ℝ𝑛 extends to a
conformal minimal immersion𝑀 → ℝ𝑛.

The assumptions on 𝛬 in Theorem 1 are necessary since 𝛬 has no accumulation point by the Identity
Principle for harmonic maps. We obtain in that paper a much more general result which ensures not only
interpolation but also jet-interpolation of given finite order, uniform approximation on Runge compact
subsets, control on the flux, and global properties such as completeness and, under natural assumptions,
properness and injectivity; see [1, Theorem 1.2] for the detailed statement and the necessary definitions.
In addition, an analogue for directed holomorphic curves in ℂ𝑛 is proved, see [1, Theorem 1.3].

2 . 2 . C o n f o r m a l m i n i m a l i m m e r s i o n s o f f i n i t e t o t a l c u r v a t u r e i n d i m e n s i o n 𝑛 = 3

One of the main topic of research in the global theory of minimal surfaces in ℝ3 are complete minimal
surfaces with finite total curvature. We recall that a conformal minimal immersion 𝑋∶ 𝑀 → ℝ3 has finite
total curvature if

𝑇𝐶(𝑋) ≔ ∫
𝑀
𝐾 d𝑠2 = −∫

𝑀
|𝐾| d𝑠2 > −∞,

here d𝑠2 is the area element of the surface and𝐾 denotes theGauss curvature of (𝑀, d𝑠2). These surfaces have
the simplest topological, conformal, and asymptotic geometry. They are intimately related to meromorphic
functions and 1-forms on compact Riemann surfaces. Indeed, given an open Riemann surface 𝑀 and
a complete conformal minimal immersion 𝑋∶ 𝑀 → ℝ3 with finite total curvature, there are a compact
Riemann surface 𝛴 and a finite subset ∅ ≠ 𝐸 ⊂ 𝛴 such that𝑀 is biholomorphic to 𝛴 ⧵ 𝐸.
The author in collaboration with Alarcón and López proved the following interpolation result for complete
minimal surfaces in ℝ3 with finite total curvature. It is proved in [2].

T h e o r e m 2 . (Weierstrass Interpolation Theorem for conformal minimal immersions with finite total
curvature). Let 𝛴 be a compact Riemann surface with empty boundary and let 𝐸 ≠ ∅ and 𝛬 be disjoint
finite sets in 𝛴. Every map 𝛬 → ℝ3 extends to a complete conformal minimal immersion 𝛴 ⧵ 𝐸 → ℝ3 with
finite total curvature.

We shall obtain a more general result providing also uniform approximation, jet-interpolation of given
finite order, and control on the flux, see [2, Theorem 3.1] for details and definitions.

2 . 3 . A p p l i c a t i o n s a n d o t h e r r e s u l t s

Finally, we finish with some applications to the construction of examples. As we said before, an uniform
approximation theory on compact subset have been developed for conformal minimal immersions,
analogous to the one of holomorphic functions ([4, 5]). Continuing a natural sequence of approximation
results, one may ask whether Carleman approximation theorem holds for minimal surfaces. Carleman
theorem for holomorphic functions asserts that one may approximate any continuous function ℝ→ ℂ by
entire functions better than any given positive function. Next result is an analogue for conformal minimal
immersions and it is proved in [7].

T h e o r e m 3 (Carleman Theorem for conformal minimal immersions). Let𝑀 be an open Riemann surface
and let 𝑅 ⊂ 𝑀 be a proper embedded curve. Let 𝑓∶ 𝑅 → ℝ𝑛, 𝑛 ≥ 3, and 𝜖∶ 𝑀 → ℝ+ be continuous maps.
There exists a complete conformal minimal immersion 𝑋∶ 𝑀 → ℝ𝑛 such that ‖𝑋(𝑝)−𝑓(𝑝)‖ < 𝜖(𝑝), 𝑝 ∈ 𝑀.
Furthermore, if 𝑛 ≥ 5, then 𝑋may be chosen to be injective.
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Similarly to the previous results, in collaboration with Chenoweth we proved an analogue to holomorphic
directed immersions which is stated in [7, Theorem 1.2]. Furthermore, the solutions may be chosen to be
complete and proper under natural assumptions, see [7, Theorems 1.3 and 1.4].

On the other hand, the next interpolation result ensures that one may construct minimal surfaces with all
coordinates prescribed but two. The theorem is proved in [6].

T h e o r e m 4 . Let𝑀 be an open Riemann surface and 𝑛 ≥ 3 be an integer. Let 𝛬 ⊂ 𝑀 be a closed discrete
subset and let ℎ∶ 𝑀 → ℝ𝑛−2 be a nonconstant harmonic map. For any map 𝐹∶ 𝛬 → ℝ2, there is a
complete conformal minimal immersion 𝑋 = (𝑋1,𝑋2,… ,𝑋𝑛)∶ 𝑀 → ℝ𝑛 such that (𝑋1,𝑋2)|𝛬 = 𝐹 and
(𝑋3,… ,𝑋𝑛) = ℎ.

As a consequence of the previous result, it is shown on [6] that we may interpolate by minimal surfaces
in ℝ𝑛, 𝑛 ≥ 3, whose generalized Gauss map 𝐺𝑋 is nondegenerate and fails to intersect 𝑛 hyperplanes in
general position. In dimension 𝑛 = 3, we have the following.

C o r o l l a r y 5 . Let𝑀 be an open Riemann surface and 𝛬 ⊂ 𝑀 be a closed discrete subset. Any map 𝛬 → ℝ3

extends to a complete nonflat conformal minimal immersion 𝑋∶ 𝑀 → ℝ3 whose Gauss map 𝑀 → �2

omits two (antipodal) values of the sphere �2.

For the general statement of the previous result and the necessary definitions, see [6, Theorem 1.1].
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A b s t r a c t : Veech groups are an important tool to examine translation surfaces
and related mathematical objects. Origamis, also known as square-tiled surfaces,
form an interesting class of translation surfaces with finite index subgroups of
SL(2,ℤ) as Veech groups. We study when Veech groups of origamis with maximal
symmetry group are totally non-congruence groups, i.e., when they surject onto
SL(2,ℤ/𝑛ℤ) for each 𝑛 ∈ ℤ+. For this, we use a result of Schlage-Puchta and
Weitze-Schmithüsen to deduce sufficient conditions on the deck transformation
group of the origami. More precisely, we show that origamis with certain quotients
of triangle groups as deck transformation groups satisfy this condition. All Hurwitz
groups are such quotients.

R e s u m e n : Los grupos de Veech son una herramienta importante para exami-
nar superficies de traslación y objetos matemáticos relacionados. Los origamis,
también conocidos como superficies cuadradas, forman una clase interesante de
superficies de traslación con subgrupos de índice finito en SL(2,ℤ) como grupos
de Veech. Estudiamos cuándo los grupos de Veech de los origamis con grupo de
simetría máximo son grupos totalmente no congruentes, es decir, cuándo surgen
en SL(2,ℤ/𝑛ℤ) para cada 𝑛 ∈ ℤ+. Para ello, utilizamos un resultado de Schlage-
Puchta y Weitze-Schmithüsen para deducir condiciones suficientes sobre el grupo
de transformación de deck del origami. Más concretamente, mostramos que los
origamis con ciertos cocientes de grupos triangulares como grupos de transfor-
mación de deck satisfacen esta condición. Todos los grupos de Hurwitz son tales
cocientes.

K e y w o r d s : translation surfaces, square-tiled surfaces, origamis, Veech groups,
totally non-congruence groups, triangle groups, simple groups.
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Regular origamis with totally non-congruence groups as Veech groups

1 . I n t r o d u c t i o n

A translation surface is a closed Riemann surface with an additional structure which can be described by
certain gluing data. We construct such a surface as finitely many polygons in the Euclidean plane with
edge identifications along pairs of parallel edges. If all polygons are unit squares one obtains an origami
(also known as square-tiled surface). Each origami naturally defines a torus cover sending each square in
the tiling to the torus. We are interested in the case where this cover is normal. Then the symmetry group
of the origami is maximal and we call the origami regular. A regular origami is completely determined by
its deck transformation group 𝐺 and two deck transformations 𝑥 and 𝑦 mapping a fixed square to its right
and upper neighbor, respectively (see, e.g., [2]). We denote such an origami by the tuple (𝐺, 𝑥, 𝑦).

The matrix group SL(2,ℝ) acts on translation surfaces by sheering the polygons in the Euclidean plane.
Sometimes the orbit defines an algebraic curve in the moduli space of complex algebraic curves called
Teichmüller curve. The stabilizer under this action captures whether this happens and - assuming a positive
answer - much of the geometry of the Teichmüller curve. For a translation surface 𝑋, the stabilizer is called
the Veech group of 𝑋 and is denoted by SL(𝑋). Origamis define always Teichmüller curves. The Veech
groups of reduced origamis, i.e., the geodesic segments between singularities span ℤ2, are finite index
subgroups of SL(2,ℤ). Here a singularity means a vertex of a square in the tiling with cone angle larger
than 2𝜋. Since non-trivial regular orgiamis are reduced, we restrict to study the SL(2,ℤ)-action. On a
regular origami 𝒪 = (𝐺, 𝑥, 𝑦) this action is defined by 𝑆 ⋅ 𝒪 = (𝐺, 𝑦−1, 𝑥) and 𝑇 ⋅ 𝒪 = (𝐺, 𝑥, 𝑦𝑥−1), where
𝑆 = ( 0 −1

1 0 ) , 𝑇 = ( 1 1
0 1 ). For more details, see, e.g., [6] and [7].

We are interested in the following open question: for which origamis are the Veech groups congruence
subgroups and for which are they far away from being a congruence subgroup? Weitze-Schmithüsen
showed in [6] that almost all congruence groups occur as Veech groups. However, Hubert and Leliévre
proved that in the stratum ℋ(2) all but one of the occurring Veech groups are not congruence groups
(see [3]). In [7], Weitze-Schmithüsen introduced the deficiency of finite index subgroups of SL(2,ℤ). It
measures how far the group is from being a congruence subgroup. She also established the notion of totally
non-congruence groups. Such a group projects surjectively onto SL(2,ℤ/𝑛ℤ) for each 𝑛 ∈ ℤ+, i.e., no
information about the group itself can be recovered from the images under these natural projections. In [5],
an infinite family of origamis with totally non-congruence subgroups as Veech groups are constructed for
each stratum. These origamis had only few symmetries. In this article, we present sufficient conditions
for regular origamis to have totally non-congruence subgroups as Veech groups and introduce a class of
regular origamis satisfying this condition.

2 . P r e r e q u i s i t e s a n d p r e l i m i n a r y r e s u l t s

In this section, we introduce basic concepts and preliminary results, which are used in Section 3. Note
that the Euclidean metric on ℝ2 lifts to a metric on a translation surface. Therefore, notions as directions
and geodesics are well-defined on translation surfaces. A cylinder on a translation surface is a maximal
collection of parallel closed geodesics. Given a cylinder on a translation surface there exist 𝑤, ℎ > 0 such
that the cylinder is isometric to a Euclidean cylinder ℝ/𝑤ℤ × (0, ℎ). One calls 𝑤 the circumference, ℎ the
height, and the quotient ℎ

𝑤
themodulus of the cylinder. If the genus of the translation surface is larger than

one, a cylinder is bounded by geodesics between singularities. We call such a geodesic a saddle connection.
The direction of a saddle connection bounding a cylinder is called the direction of the cylinder. A cylinder
decomposition is a collection of pairwise disjoint cylinders such that the union of their closures covers the
whole surface.

The cylinder decompositions of an origami lead to a parabolic element in its Veech group given the
following situation. Let 𝒪 be an origami, 𝑣 ∈ ℤ2 be a rational direction, and 𝐴 ∈ SL(2,ℤ) be a matrix
mapping 𝑒1 = (10) to 𝑣. If 𝒪 decomposes into cylinders 𝐶1,… ,𝐶𝑘 with inverse moduli 𝑚1,… ,𝑚𝑘 and 𝑚
is the smallest common integer multiple of all the 𝑚𝑖, then the matrix 𝐴 ⋅ ( 1 𝑚

0 1 ) ⋅ 𝐴−1 is contained in the
Veech group SL(𝒪) (see, e.g., [7, Section 2.1]).

We conclude this section giving a sufficient condition when finite index subgroups of SL(2,ℤ) are totally
non-congruence groups. It is used in the proofs of Proposition 3 and Theorem 6.
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Thevis

T h e o r e m 1 ([5, Theorem 1]). Let 𝛤 be a finite index subgroup of SL(2,ℤ). Suppose that for each prime 𝑝
there exist matrices 𝐴1,𝐴2 ∈ SL(2,ℤ) with the following properties:

( i ) For all 𝑗 ∈ ℤ+, 𝐴1𝑒1 ≠ 𝑗 ⋅ 𝐴2𝑒1 modulo 𝑝.
( i i ) There exist 𝑚1,𝑚2 ∈ ℤ+ with 𝐴1𝑇𝑚1𝐴−11 , 𝐴2𝑇𝑚2𝐴−12 ∈ 𝛤 such that 𝑝 divides neither 𝑚1 nor 𝑚2.

Then, 𝛤 is a totally non-congruence group.

3 . A p p l i c a t i o n t o r e g u l a r o r i g a m i s

In this section, we use cylinder decompositions in different directions to construct the matrices occurring
in Theorem 1. The following lemma computes the inverse moduli of the cylinders in the directions of
interest.

L e m m a 2 . Let 𝒪 = (𝐺, 𝑥, 𝑦) be a regular origami. For 𝑚 ∈ ℤ≥0, the inverse modulus of all cylinders in
direction ( 1

−𝑚) coincides with the order of 𝑥𝑦
𝑚.

P r o o f . Denote ( 1
−𝑚) by 𝑣. Acting with the matrix 𝐴 = ( 1 0

−𝑚 1 ) = (𝑆3𝑇𝑆)𝑚 ∈ SL(2,ℤ) maps the horizontal
direction to the direction 𝑣, i.e., 𝐴 ⋅ 𝑒1 = 𝑣. The inverse modulus of all horizontal cylinders of the origami
𝐴 ⋅ 𝒪 = (𝐺, 𝑥𝑦𝑚, 𝑦) coincides with the order of 𝑥𝑦𝑚. Note that acting by matrices in SL(2,ℤ) does not
change the modulus of a cylinder. Hence, the inverse modulus of the cylinder in direction 𝑣 of the origami
𝒪 coincides with the order of 𝑥𝑦𝑚. ▪

Using Theorem 1 and Lemma 2, we deduce a sufficient condition for regular origamis to have a totally
non-congruence group as Veech group.

P r o p o s i t i o n 3 . Let 𝒪 = (𝐺, 𝑥, 𝑦) be a regular origami. If for each prime 𝑝 one of the following holds

( i ) there exist 𝑚1,𝑚2 ∈ ℤ≥0 with 𝑚1 ≢ 𝑚2 mod 𝑝 and gcd(𝑝, ord(𝑥𝑦−𝑚1) ⋅ ord(𝑥𝑦−𝑚2)) = 1 or
( i i ) gcd(𝑝, ord(𝑦) ⋅ ord(𝑦𝑥)) = 1,

then the Veech group SL(𝒪) is a totally non-congruence group.

P r o o f . Fix a prime 𝑝. If condition (i) holds, then let 𝑚1,𝑚2 be natural numbers satisfying condition (i).
Define the matrices 𝐴1 = ( 1 0

𝑚1 1 ), 𝐴2 = ( 1 0
𝑚2 1 ). Since 𝑚1 ≢ 𝑚2 mod 𝑝, we have 𝐴1𝑒1 ≠ 𝑗 ⋅ 𝐴2𝑒1 modulo 𝑝

for each 𝑗 ∈ ℤ+.

As gcd(𝑝, ord(𝑥𝑦−𝑚1) ⋅ ord(𝑥𝑦−𝑚2)) = 1, set 𝑘1 = ord(𝑥𝑦−𝑚1) and 𝑘2 = ord(𝑥𝑦−𝑚2). Using Lemma 2, we
conclude that the matrices 𝐴𝑖𝑇𝑘𝑖𝐴−1𝑖 are contained in the Veech group of the origami 𝒪.

If condition (ii) holds, consider the matrices 𝑆−1𝑇−1 = ( 0 1
−1 1 ) and 𝑇𝑆−1 = ( −1 1

−1 0 ).We obtain 𝑆−1𝑇−1 ⋅ 𝒪 =
(𝐺, 𝑦𝑥, 𝑥−1) and 𝑇𝑆−1 ⋅ 𝒪 = (𝐺, 𝑦, 𝑥−1𝑦−1). The moduli of the horizontal cylinders of the regular origamis
(𝐺, 𝑦𝑥, 𝑥−1) and (𝐺, 𝑦, (𝑦𝑥)−1) are ord(𝑦𝑥) ≕ 𝑎 and ord(𝑦) ≕ 𝑏, respectively. Hence, 𝑆−1𝑇−1 ⋅ 𝑇𝑎 ⋅ 𝑇𝑆
and 𝑇𝑆−1 ⋅ 𝑇𝑏 ⋅ 𝑆𝑇−1 lie in the Veech group SL(𝒪). Moreover, we obtain for each 𝑗 ∈ ℤ the inequality
𝑆−1𝑇−1 ⋅ 𝑒1 = ( 0−1) ≠ 𝑗 ⋅ (−1−1) = 𝑗 ⋅ 𝑇𝑆−1 ⋅ 𝑒1 modulo 𝑝. By Theorem 1, the claim follows. ▪

In the following corollary, we construct generating sets {𝑥, 𝑦} of alternating groups 𝐴𝑛 satisfying the
conditions given in Proposition 3. Consequently, the infinite family of regular origamis (𝐴𝑛, 𝑥, 𝑦) have
totally non-congruence groups as Veech groups.

C o r o l l a r y 4 . For each prime 𝑛 ≥ 5, the regular origami (𝐴𝑛, (1, 2, 3), (1, 2, 3,… , 𝑛)) has a totally non-
congruence group as Veech group.

P r o o f . Set 𝑥 ≔ (1, 2, 3) and 𝑦 ≔ (1, 2, 3,… , 𝑛). For each prime 𝑝 ≠ 𝑛, we consider the group elements 𝑦𝑥
and 𝑦. Since the orders of 𝑦 and 𝑦𝑥 are equal to 𝑛, the prime 𝑝 does not divide ord(𝑦) ⋅ ord(𝑦𝑥).

For the prime 𝑛, we consider the group elements 𝑥𝑦𝑛−1 and 𝑥, i.e., 𝑚1 = 1 − 𝑛 and 𝑚2 = 0. Note that
1 − 𝑛 ≢ 0 mod 𝑛. The permutation 𝑥𝑦𝑛−1 has the fixed point 2 and thus 𝑛 does not divide the order of
𝑥𝑦𝑛−1. Since ord(𝑥) = 3 < 𝑛, the prime 𝑛 does not divide the order of 𝑥 either. By Proposition 3, the claim
follows. ▪
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Regular origamis with totally non-congruence groups as Veech groups

Corollary 4 motivates to examine finite simple groups more generally. Simple groups form an interesting
class of 2-generated groups. The natural question, how the orders of generators for a fixed group can
be chosen, has been studied intensively (see, e.g., [4] for further information). This question suggests to
consider (𝑎, 𝑏, 𝑐)-groups.

D e f i n i t i o n 5 . A finite group generated by two elements 𝑥, 𝑦 with ord(𝑥) = 𝑎, ord(𝑦) = 𝑏, and ord(𝑥𝑦) = 𝑐
is called an (𝑎, 𝑏, 𝑐)-group. We call such generators (𝑎, 𝑏, 𝑐)-generators. ◀

Each (𝑎, 𝑏, 𝑐)-group is a finite quotient of the triangle group 𝑇(𝑎,𝑏,𝑐) = ⟨𝑥, 𝑦, 𝑧 | 𝑥𝑎 = 𝑦𝑏 = 𝑧𝑐 = 𝑥𝑦𝑧 = 1⟩. The
following theorem shows that (𝑎, 𝑏, 𝑐)-groups where 𝑎, 𝑏, 𝑐 are chosen pairwise coprime produce regular
origamis with a totally non-congruence group as Veech group.

T h e o r e m 6 . Let 𝑎, 𝑏, 𝑐 ∈ ℤ≥0 be pairwise coprime and 𝐺 be an (𝑎, 𝑏, 𝑐)-group with (𝑎, 𝑏, 𝑐)-generators 𝑥, 𝑦.
The Veech group of the regular origami (𝐺, 𝑦, 𝑥) is a totally non-congruence group.

P r o o f . We prove that the assumptions of Theorem 1 are satisfied for the Veech group of the regular origami
𝒪 = (𝐺, 𝑦, 𝑥). Let 𝑝 be a prime. Since 𝑎, 𝑏, and 𝑐 are pairwise coprime, 𝑝 divides at most one of the numbers
𝑎, 𝑏, and 𝑐. We consider each of the three cases separartely.
If 𝑝 is coprime to 𝑏 ⋅ 𝑐, then consider the matrices 𝐼 and 𝑆−1𝑇−1 = ( 0 1

−1 1 ). We obtain 𝐼 ⋅ 𝒪 = 𝒪 and
𝑆−1𝑇−1 ⋅ 𝒪 = (𝐺, 𝑥𝑦, 𝑦−1). The inverse moduli of the horizontal cylinders of the regular origamis 𝒪 and
(𝐺, 𝑥𝑦, 𝑦−1) are ord(𝑦) = 𝑏 and ord(𝑥𝑦) = 𝑐, respectively. Hence 𝑇𝑏 and 𝑆−1𝑇−1 ⋅ 𝑇𝑐 ⋅ 𝑇𝑆 lie in the Veech
group SL(𝒪). Moreover, we obtain 𝑆−1𝑇−1 ⋅ 𝑒1 = ( 0−1) ≠ 𝑗 ⋅ (10) modulo 𝑝 for each 𝑗 ∈ ℤ.

If 𝑝 is coprime to 𝑎 ⋅ 𝑐, then consider the matrices 𝑆−1𝑇−1 = ( 0 1
−1 1 ) and 𝑇𝑆−1 = ( −1 1

−1 0 ). We obtain the
regular origamis 𝑆−1𝑇−1 ⋅ 𝒪 = (𝐺, 𝑥𝑦, 𝑦−1) and 𝑇𝑆−1 ⋅ 𝒪 = (𝐺, 𝑥, 𝑦−1𝑥−1). The moduli of the horizontal
cylinders of the regular origamis (𝐺, 𝑥𝑦, 𝑦−1) and (𝐺, 𝑥, (𝑥𝑦)−1) are ord(𝑥𝑦) = 𝑐 and ord(𝑥) = 𝑎, respectively.
Hence 𝑆−1𝑇−1 ⋅ 𝑇𝑐 ⋅ 𝑇𝑆 and 𝑇𝑆−1 ⋅ 𝑇𝑎 ⋅ 𝑆𝑇−1 lie in the Veech group SL(𝒪). Moreover, we obtain for each
𝑗 ∈ ℤ the inequality 𝑆−1𝑇−1 ⋅ 𝑒1 = ( 0−1) ≠ 𝑗 ⋅ (−1−1) = 𝑗 ⋅ 𝑇𝑆−1 ⋅ 𝑒1 modulo 𝑝.

If 𝑝 is coprime to 𝑎 ⋅ 𝑏, then consider the matrices 𝐼 and 𝑆−1 = ( 0 1
−1 0 ). We obtain the regular origamis

𝐼 ⋅ 𝒪 = 𝒪 and 𝑆−1 ⋅ 𝒪 = (𝐺, 𝑥, 𝑦−1). The moduli of the horizontal cylinders of the regular origamis 𝒪 and
(𝐺, 𝑥, 𝑦−1) are ord(𝑦) = 𝑏 and ord(𝑥) = 𝑎, respectively. Hence 𝑇𝑏 and 𝑆−1 ⋅ 𝑇𝑎 ⋅ 𝑆 lie in the Veech group
SL(𝒪). Moreover, we have 𝑆−1 ⋅ 𝑒1 = ( 0−1) ≠ 𝑗 ⋅ (10) modulo 𝑝 for each 𝑗 ∈ ℤ. ▪

E x a m p l e 7 . A well-studied family of groups satisfying the assumptions in Theorem 6 are (2, 3, 7)-groups,
which are also called Hurwitz groups (see, e.g., [1]). ◀

R e f e r e n c e s

[1] CONDER, Marston. “An update on Hurwitz groups”. In: Groups. Complexity. Cryptology 2.1 (2010),
pp. 35–49. ISSN: 1867-1144. https://doi.org/10.1515/GCC.2010.002.

[2] FLAKE, Johannes and THEVIS, Andrea. “Strata of 𝑝-Origamis”. In: arXiv e-prints (2020). arXiv: 2003.
13297 [math.GT].

[3] HUBERT, Pascal and LELIÈVRE, Samuel. “Prime arithmetic Teichmüller discs in 𝐻(2)”. In: Israel Journal
of Mathematics 151 (2006), pp. 281–321. ISSN: 0021-2172. https://doi.org/10.1007/BF02777365.

[4] JAMBOR, Sebastian; LITTERICK, Alastair, and MARION, Claude. “On finite simple images of triangle
groups”. In: Israel Journal of Mathematics 227.1 (2018), pp. 131–162. ISSN: 0021-2172. https://doi.
org/10.1007/s11856-018-1722-0.

[5] SCHLAGE-PUCHTA, Jan-Christoph and WEITZE-SCHMITHUESEN, Gabriela. “Totally non congruence
Veech groups”. In: arXiv e-prints (2018). arXiv: 1802.05024 [math.GT].

[6] SCHMITHÜSEN, Gabriela. “An algorithm for finding the Veech group of an origami”. In: Experimental
Mathematics 13.4 (2004), pp. 459–472. ISSN: 1058-6458. https://doi.org/10.1080/10586458.2004.
10504555.

[7] WEITZE-SCHMITHÜSEN, Gabriela. “The Deficiency of being a Congruence Group for Veech Groups
of Origamis”. In: International Mathematics Research Notices 2015.6 (2013), pp. 1613–1637. ISSN:
1073-7928. https://doi.org/10.1093/imrn/rnt268.

30 https://temat.es/monograficos

https://doi.org/10.1515/GCC.2010.002
https://arxiv.org/abs/2003.13297
https://arxiv.org/abs/2003.13297
https://doi.org/10.1007/BF02777365
https://doi.org/10.1007/s11856-018-1722-0
https://doi.org/10.1007/s11856-018-1722-0
https://arxiv.org/abs/1802.05024
https://doi.org/10.1080/10586458.2004.10504555
https://doi.org/10.1080/10586458.2004.10504555
https://doi.org/10.1093/imrn/rnt268
https://temat.es/monograficos


3rd BYMAT Conference (2020)

S u b h a r m o n i c s i n a c l a s s o f p l a n a r p e r i o d i c

p r e d a t o r - p r e y m o d e l s

� E d u a r d o M u ñ o z - H e r n á n d e z

Universidad Complutense de Madrid
Instituto de Matemática Interdisciplinar

eduardmu@ucm.es

A b s t r a c t : This contribution studies the existence of positive subharmonics of
arbitrary order in the planar periodic Volterra predator-prey model. When the
model is non-degenerate, in the sense that the birth rate of the prey intersects the
support of the death rate of the predator, as in [8], then the existence of positive
subharmonics can be derived from the Poincaré–Birkhoff theorem version [3].
Nevertheless, in the degenerate case when these supports do not intersect, then,
the Poincaré–Birkhoff theorem fails in general. Still in these degenerate situations,
the techniques of [7] provide us with the existence of positive subharmonics of
arbitrary order.

This is based on a joint work with Julián López-Gómez (UCM) and Fabio Zanolin
(UNIUD).

R e s u m e n : Este trabajo analiza la existencia de subarmónicos positivos de orden
arbitrario en el modelo plano periódico de presa y depredador de Volterra. Cuando
el modelo es no degenerado, en el sentido de que la tasa de natalidad de la presa
interseca el soporte de la tasa de mortalidad del depredador, como en [8], entonces
la existencia de subarmónicos positivos puede ser derivada mediante un la versión
del teorema de Poincaré–Birkhoff que se establece en [3]. Sin embargo, en el caso
degenerado cuando los soportes no intersecan, el teorema de Poincaré–Birkhoff no
puede aplicarse directamente. En estos casos, las técnicas de [7] nos proporcionan
la existencia de subarmónicos positivos de orden arbitrario.

Esta colaboración está basada en un trabajo conjunto con Julián López-Gómez
(UCM) y Fabio Zanolin (UNIUD).

K e y w o r d s : periodic predator-prey model of Volterra type, subharmonic
coexistence states, Poincaré–Birkhoff twist theorem, degenerate versus
non-degenerate models.

M S C 2 0 1 0 : 34C25, 37B55, 37E40.

A c k n o w l e d g e m e n t s : This note has been written under the auspices of the the Contract CT42/18-CT43/18 of
Complutense University of Madrid. The author would like to thank his PhD advisors Julián López-Gómez and
Fabio Zanolin for their constant support and the beautiful mathematics they have taught him.

R e f e r e n c e : MUÑOZ-HERNÁNDEZ, Eduardo. “Subharmonics in a class of planar periodic predator-prey models”. In:
TEMat monográficos, 2 (2021): Proceedings of the 3rd BYMAT Conference, pp. 31-34. ISSN: 2660-6003. URL:
https://temat.es/monograficos/article/view/vol2-p31.

cb This work is distributed under a Creative Commons Attribution 4.0 International licence
https://creativecommons.org/licenses/by/4.0/

mailto:eduardmu@ucm.es
https://temat.es/monograficos/article/view/vol2-p31
https://creativecommons.org/licenses/by/4.0/


Subharmonics in a class of planar periodic predator-prey models

1 . I n t r o d u c t i o n

In this contribution, we analyze the existence of positive subharmonics of arbitrary order (𝑛𝑇-periodic
coexistence states) of the periodic Volterra predator-prey model

( 1 ) {
𝑢′ = 𝜆𝛼(𝑡)𝑢(1 − 𝑣),
𝑣′ = 𝜆𝛽(𝑡)𝑣(−1 + 𝑢),

where 𝜆 > 0 is a real parameter, and, for some 𝑇 > 0, 𝛼(𝑡) and 𝛽(𝑡) are 𝑇-periodic real continuous functions.
We set

𝐴 ≔ ∫
𝑇

0
𝛼(𝑠) d𝑠 and 𝐵 ≔ ∫

𝑇

0
𝛽(𝑠) d𝑠.

They can arise two different cases according to whether, or not, the following condition holds

( 2 ) supp 𝛼 ∩ supp 𝛽 ≠ ∅.

In this non-degenerate situation the existence of subharmonics of arbitrary order can be obtained through
an updated version of the celebrated Poincaré–Birkhoff twist theorem for sufficiently large 𝜆. Nevertheless,
in the degenerate case when the next condition holds

( 3 ) supp 𝛼 ∩ supp 𝛽 = ∅

the Poincaré–Birkhoff theorem is unable to provide, in general, with subharmonics of arbitrary order,
unless 𝛼(𝑡) and 𝛽(𝑡) have some special nodal structure.

2 . T h e n o n - d e g e n e r a t e c a s e

The non-degenerate case when (2) is satisfied has been studied in [8] by adapting some original ideas
in [3] (later revised and applied in [2]), where a Poincaré–Birkhoff version for Hamiltonian systems was
presented. Through the change of variables

𝑥 = log 𝑢, 𝑦 = log 𝑣,

(1) is transformed into the planar Hamiltonian system

( 4 ) {
𝑥′ = −𝜆𝛼(𝑡)(e𝑦 − 1),
𝑦′ = 𝜆𝛽(𝑡)(e𝑥 − 1).

The [3] version of the Poincaré–Birkhoff twist theorem that we will use reads as follows:

T h e o r e m 1 (Poincaré–Birkhoff). Assume that there exist 0 < 𝜚0 < 𝜚1 and a positive integer 𝜔 such that

rot𝜚0[(𝑥0, 𝑦0); [0, 𝑛𝑇]] > 𝜔 and rot𝜚1[(𝑥0, 𝑦0); [0, 𝑛𝑇]] < 𝜔,

where
rot𝜌[(𝑥0, 𝑦0); [0, 𝑛𝑇]] =

𝜃(𝑛𝑇) − 𝜃(0)
2π

with ‖(𝑥0, 𝑦0)‖ = 𝜌, 𝜃(𝑡) being the angular polar coordinate of the solution starting at (𝑥0, 𝑦0), (𝑥(𝑡), 𝑦(𝑡)).
Then, (4) admits, at least, two 𝑛𝑇-periodic solutions lying in different periodicity classes with rotation
number 𝜔.

As a consequence of Theorem 1, we get the next result:

T h e o r e m 2 . Assume (2). Then, for every positive integers 𝜔 and 𝑛, there exists 𝜆𝜔𝑛 > 0 such that (4)
possesses, at least, two 𝑛𝑇-periodic solutions with rotation number 𝜔 for every 𝜆 > 𝜆𝜔𝑛.
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P r o o f . First, we focus attention into the small solutions of (4). There exists 𝜀 > 0 such that

( 5 ) (e𝜉 − 1)𝜉 ≥
𝜉2

2 if |𝜉| < 𝜀.

It can be chosen an initial data (𝑥(0), 𝑦(0)) = (𝑥0, 𝑦0) sufficiently close to (0, 0), say |(𝑥0, 𝑦0)| ≤ 𝜚0, so that
the solution of (4), (𝑥(𝑡), 𝑦(𝑡)), satisfy |(𝑥(𝑡), 𝑦(𝑡))| < 𝜀 for all 𝑡 ∈ [0, 𝑛𝑇]. This is possible by continuous
dependence on the initial conditions. According to (2), there are 𝜏 ∈ (0,𝑇) and 𝛿 > 0 such that 𝛼(𝑡)𝛽(𝑡) > 0
for every 𝑡 ∈ [𝜏 − 𝛿, 𝜏 + 𝛿] ⊊ [0,𝑇]. Thus,

( 6 ) 𝜁 ≔ min
𝑡∈[𝜏−𝛿,𝜏+𝛿]

{𝛼(𝑡), 𝛽(𝑡)} > 0.

Consequently, due to (4), (5) and (6), we obtain that, for every 𝑡 ∈ [0, 𝑛𝑇],

( 7 ) 𝜃′(𝑡) =
𝑦′(𝑡)𝑥(𝑡) − 𝑥′(𝑡)𝑦(𝑡)

𝑥2(𝑡) + 𝑦2(𝑡)
=
𝜆𝛽(𝑡)(e𝑥(𝑡) − 1)𝑥(𝑡) + 𝜆𝛼(𝑡)(e𝑦(𝑡) − 1)𝑦(𝑡)

𝑥2(𝑡) + 𝑦2(𝑡)
≥
𝜆𝜁
2 .

Hence, owing to (7),

rot𝜚0[(𝑥0, 𝑦0); [0, 𝑛𝑇]] =
𝜃(𝑛𝑇) − 𝜃(0)

2π = 1
2π ∫

𝑛𝑇

0
𝜃′(𝑠) d𝑠 ≥ 𝑛

2π ∫
𝜏+𝛿

𝜏−𝛿
𝜃′(𝑠) d𝑠 ≥

𝑛𝜆𝜁2𝛿
2π > 𝜔

if 𝜆 > π𝜔
𝑛𝜁𝛿

≕ 𝜆𝜔𝑛.

On the other hand, solutions with sufficiently large initial data do not rotate (see, for further details,
Theorem 2.2 of [8]). Hence, the hypothesis of Theorem 1 holds for every 𝜆 > 𝜆𝜔𝑛, which ends the proof. ▪

3 . T h e d e g e n e r a t e c a s e

To analyze the problem (1) under the condition (3), we suppose that

( 8 ) supp𝛼 ⊆ [0, 𝑇
2
] and supp 𝛽 ⊆ [𝑇

2
,𝑇].

In case (8), introduced in [5], we have that, for every 𝑡 ∈ [0,𝑇],

𝑢(𝑡) = 𝑢0e(1−𝑣0)𝜆∫
𝑡
0 𝛼(𝑠) d𝑠, 𝑣(𝑡) = 𝑣0e(ᵆ(𝑇)−1)𝜆∫

𝑡
0 𝛽(𝑠) d𝑠,

Hence, the 𝑇-time Poincaré map is

(𝑢1, 𝑣1) ≔ 𝒫1(𝑢0, 𝑣0) ≔ (𝑢(𝑇), 𝑣(𝑇)) = (𝑢0e(1−𝑣0)𝜆𝐴, 𝑣0e(ᵆ1−1)𝜆𝐵).

Consequently, iterating 𝑛 times this map, it becomes apparent that

( 9 )

(𝑢𝑛, 𝑣𝑛) ≔ 𝒫𝑛(𝑢0, 𝑣0) = 𝒫𝑛
1 (𝑢0, 𝑣0) ≔ (𝑢(𝑛𝑇), 𝑣(𝑛𝑇)) = (𝑢𝑛−1e(1−𝑣𝑛−1)𝜆𝐴, 𝑣𝑛−1e(ᵆ𝑛−1)𝜆𝐵)

= (𝑢0e(𝑛−𝑣0−𝑣1−⋯−𝑣𝑛−1)𝜆𝐴, 𝑣0e(ᵆ1+ᵆ2+⋯+ᵆ𝑛−𝑛)𝜆𝐵).

By the uniqueness for the underlying Cauchy problem, the 𝑛𝑇-periodic coexistence states of (1) are given
by the positive fixed points of 𝒫𝑛. Thus, by (9), we are driven to solve the system

( 1 0 ) {
𝑛 = 𝑢0 + 𝑢1 +⋯+ 𝑢𝑛−1,
𝑛 = 𝑣0 + 𝑣1 +⋯+ 𝑣𝑛−1.

The next result proves the existence and multiplicity of 𝑛𝑇-periodic coexistence states of (1) when 𝑛 ≥ 2 in
case (8). To get it, we impose the following condition:

( 1 1 ) 𝐴 = 𝐵 and 𝑢0 = 𝑣0 = 𝑥.
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T h e o r e m 3 . Assume (8) and (11). Then, for every 𝜆 > 2

𝐴
, (1) admits, at least, 𝑛 coexistence states with

period 𝑛𝑇 if 𝑛 is even, and 𝑛 − 1 coexistence states with period 𝑛𝑇 if 𝑛 is odd.

P r o o f . By (11), it turns out that, given 𝜑1(𝑥) = 𝑥 − 1,

𝜑𝑛(𝑥) = 𝜑𝑛−1(𝑥) − 1 + 𝐸𝑛−1(𝑥),

is the map whose zeros provide us with the 𝑛𝑇-periodic coexistence states of (1), where 𝐸𝑛(𝑥) is a sequence
of exponential functions. In order to obtain some information concerning the 𝑛𝑇-periodic coexistence
states of (1), we analyze the variational equations of these maps at the trivial curve (𝜆, 1),

𝑝𝑛(𝜆) ≔
𝜕𝜑𝑛
𝜕𝑥 (𝜆, 1).

It is easy to prove that 𝑝𝑛(𝜆) is a sequence of polynomials in the indeterminate 𝜆 that satisfy the recursive
formula

𝑝𝑛(𝜆) = [2 − (−1)𝑛𝐴𝜆]𝑝𝑛−1(𝜆) − 𝑝𝑛−2(𝜆),

where 𝑝1(𝜆) = 1 and 𝑝2(𝜆) = 2 − 𝐴𝜆. From this recursive formula, it can be shown that any root of 𝑝𝑛 is
real and algebraically simple. Thanks to these facts, for any given 𝑟 ∈ 𝑝−1𝑛 (0), the transversality condition
of Crandall-Rabinowitz [1] holds. Thus, for any given 𝑟 ∈ 𝑝−1𝑛 (0), the algebraic multiplicity of Esquinas and
López-Gómez [4] equals one at every point (𝑟, 1). So, according to Crandall and Rabinowitz [1, Th. 1.7],
a local bifurcation occurs at every point (𝑟, 1). Moreover, by the unilateral theorem of López-Gómez [6,
Th. 6.4.3], the underlying subcomponents of 𝑛𝑇-periodic coexistence states are unbounded in 𝜆. As the
number of positive roots of 𝑝𝑛(𝜆) equals

𝑛
2
if 𝑛 is even and 𝑛−1

2
if 𝑛 is odd, the result holds. This ends the

proof. ▪
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Integrability and rational soliton solutions for gauge invariant derivative nonlinear Schrödinger equations

1 . I n t r o d u c t i o n

The nonlinear Schrödinger (NLS) equation is one of the most famous integrable equations in soliton theory
and mathematical physics. Among the several integrable generalizations of NLS, we are interested in the
study of modified NLS systems with derivative-type nonlinearities in 1 + 1 dimensions, which are known
as derivative nonlinear Schrödinger (DNLS) equations. There exist three celebrated equations of this kind,
i.e., the Kaup-Newell (KN) system [4],

( 1 ) i𝑚𝑡 −𝑚𝑥𝑥 − i (|𝑚|2𝑚)𝑥 = 0,

the Chen-Lee-Liu (CLL) equation [2],

( 2 ) i𝑚𝑡 −𝑚𝑥𝑥 − i|𝑚|2𝑚𝑥 = 0,

and the Gerdjikov-Ivanov (GI) equation [3]

( 3 ) i𝑚𝑡 −𝑚𝑥𝑥 + i𝑚2𝑚𝑥 −
1
2 |𝑚|

4𝑚 = 0,

where𝑚 is a complex valued function and 𝑚 denotes the complex conjugate of 𝑚.

It is already known that these three equations are equivalent via a 𝑈(1)-gauge transformation [5]. If𝑚(𝑥, 𝑡)
is a solution of the KN system (1), it is easy to find that the new field𝑀(𝑥, 𝑡)

( 4 ) 𝑀(𝑥, 𝑡) = 𝑚(𝑥, 𝑡)e
i𝛾
2
𝜃(𝑥,𝑡), with 𝜃𝑥 = |𝑚|2, 𝜃𝑡 = i(𝑚𝑚𝑥 −𝑚𝑚𝑥) +

3
2 |𝑚|

4,

satisfies the CLL equation for 𝛾 = 1, and the GI equation for 𝛾 = 2.

Gauge transformations constitute an useful tool to link integrable evolution equations in soliton theory,
since they provide Bäcklund transformations between those equations as well as the relation of their
associated linear problems [6]. In this contribution we exploit this gauge invariance property to construct
a Lax pair and rational soliton solutions for these three equations. For a detailed analysis and explicit
calculations, we refer the reader to [1].

2 . I n t e g r a b i l i t y a n d L a x p a i r

The Painlevé test [7] has been proved to be a powerful criterion for the identification of integrable partial
differential equations (PDEs). A PDE is said to posses the Painlevé property, frequently considered as a
proof of integrability, when its solutions are singled-valued about the movable singularity manifolds. This
requires the generalized Laurent expansion for the field 𝑚(𝑥, 𝑡) = ∑∞

𝑗=0 𝑎𝑗(𝑥, 𝑡)𝜙(𝑥, 𝑡)
𝑗−𝜇, where 𝜙(𝑥, 𝑡) is

an arbitrary function called the singular manifold and the index 𝜇 ∈ ℕ is an integer.

The Painlevé test is unable to check the integrability of any DNLS equation since the leading index is not
integer, 𝜇 = 1

2
. This fact allow us to introduce two new real fields 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡)

( 5 ) 𝑚(𝑥, 𝑡) = √2𝛼𝑥e
i
2
𝛽(𝑥,𝑡), with 𝛼𝑥 =

1
2 |𝑚|

2, 𝛽 = (2𝛾 − 3)𝛼 +∫
𝛼𝑡
𝛼𝑥

d𝑥,

with 𝛾 = 0 for the KN system, 𝛾 = 1 for the CLL equation and 𝛾 = 2 for the GI equation. This ansatz yields
an identical differential equation for 𝛼 in each case, expressed in the conservative form

( 6 ) [𝛼2𝑥 − 𝛼𝑡]𝑡 = [𝛼𝑥𝑥𝑥 + 𝛼3𝑥 −
𝛼2𝑡 + 𝛼2𝑥𝑥

𝛼𝑥
]
𝑥
.

From expression (4), it can be easily seen that the probability density 𝜃𝑥 = |𝑚|2 = |𝑀|2 is invariant under a
𝑈(1)-gauge transformation, indeed it constitutes the first conservation law for these systems. Due to this
symmetry, it is straightforward to see that once we obtain a soliton solution for a particular DNLS equation,
it is immediate to derive soliton solutions for any DNLS equation linked by a 𝑈(1)-gauge transformation.
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Since 𝛼𝑥 =
𝜃𝑥
2
, we may conclude that equation (6) is the representative equation for the probability density

of any DNLS equation. Equation (6) passes the Painlevé test, but it possesses two branches of expansion.
The best method to overcome this inconvenience requires the splitting of the field 𝛼 as

( 7 ) 𝛼 = i(𝑢 − 𝑢), 𝛼2𝑥 − 𝛼𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥𝑥.

The combination of equations in (7) yields two Miura transformations for {𝑢, 𝑢} and the condition

( 8 ) 𝑢𝑥𝑥 =
1
2 (𝛼

2
𝑥 − 𝛼𝑡 − i𝛼𝑥𝑥) , 𝑢𝑥𝑥 =

1
2 (𝛼

2
𝑥 − 𝛼𝑡 + i𝛼𝑥𝑥) , i𝑢𝑡 + 𝑢𝑥𝑥 − i𝑢𝑡 + 𝑢𝑥𝑥 + (𝑢𝑥 − 𝑢𝑥)2 = 0,

which finally lead to the same nonlocal Boussinesq equation for both 𝑢(𝑥, 𝑡) and 𝑢(𝑥, 𝑡), of the form

( 9 ) [𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 + 2𝑢2𝑥𝑥 −
𝑢2𝑥𝑡 + 𝑢2𝑥𝑥𝑥

𝑢𝑥𝑥
]
𝑥
= 0.

Equation (9) has the Painlevé property with an unique branch of expansion. Hence, this equation is
conjectured integrable and it is possible to derive an equivalent linear spectral problem associated to the
nonlinear equation (9). This aim may be achieved by means of the singular manifold method (SMM).
The SMM [7] focuses on solutions which emerge from the truncated Painlevé series, as auto-Bäcklund
transformations of the form 𝑢[1] = 𝑢[0] + log(𝜙). Thus, the singular manifold 𝜙 is no longer an arbitrary
function, since it satisfies the singular manifold equations. The associated linear problem arises from the
linearization of these equations, and it can be demonstrated that the Lax pair for 𝑢 reads [1]

( 1 0 )

𝜓𝑥𝑥 = (
𝑢[0]𝑥𝑥𝑥 − i𝑢[0]𝑥𝑡

2𝑢[0]𝑥𝑥
− i𝜆) 𝜓𝑥 − 𝑢[0]𝑥𝑥𝜓, 𝜓𝑡 = i𝜓𝑥𝑥 − 2𝜆𝜓𝑥 + i (2𝑢[0]𝑥𝑥 + 𝜆2) 𝜓,

𝜒𝑥𝑥 = (
𝑢[0]𝑥𝑥𝑥 + i𝑢[0]𝑥𝑡

2𝑢[0]𝑥𝑥
+ i𝜆) 𝜒𝑥 − 𝑢[0]𝑥𝑥𝜒, 𝜒𝑡 = −i𝜒𝑥𝑥 − 2𝜆𝜒𝑥 − i (2𝑢[0]𝑥𝑥 + 𝜆2) 𝜒,

where {𝜒,𝜓} are two complex conjugated eigenfunctions satisfying 𝜓𝑥𝜒𝑥
𝜓𝜒

+ 𝑢[0]𝑥𝑥 = 0 and 𝜆 is the spectral
parameter. From (10), we may compute the Lax pair for the DNLS equations, obtaining

( 1 1 )

𝜒𝑥𝑥 = [i𝜆 − i(𝛾 − 2)
2

||𝑚[0]||
2
+ 𝑚[0]

𝑥

𝑚[0]
]𝜒𝑥 +

1
2 [i𝑚

[0]𝑚[0]
𝑥 −

𝛾 − 1
2

||𝑚[0]||
4
] 𝜒,

𝜒𝑡 = i𝜒𝑥𝑥 − [(𝛾 − 2) ||𝑚[0]||
2
+ 2i𝑚[0]

𝑥

𝑚[0]
]𝜒𝑥 − i𝜆2𝜒,

and its complex conjugate, for the corresponding value of 𝛾. It is worthwhile to remark that the condition
𝜓𝑥𝜒𝑥
𝜓𝜒

− i

2
𝑚[0]𝑚[0]

𝑥 + 𝛾−1
4
||𝑚[0]||

4
= 0 allows us to determine an equivalent Lax pair for those systems.

3 . R a t i o n a l s o l i t o n s o l u t i o n s

Once the Lax pair have been obtained for a given PDE by means of the SMM, binary Darboux transforma-
tions can be constructed in order to obtain iterated solutions for that PDE.We implement the Darboux
transformation formalism over the spectral problem (10) so as to provide a general iterative procedure
to compute up to the 𝑛th iteration for 𝑢. By virtue of expressions (4), (5) and (7), solutions for the DNLS
equations can be forthrightly established. Thus, soliton solutions for DNLS equations may be derived by
considering a suitable choice for the seed solution and the eigenfunctions in the Lax pair.

In the following lines we summarize the main results regarding this procedure, oriented to the obtention
of rational soliton solutions. Further details and a general rigorous analysis may be found in [1].

We start from a polynomial seed solution 𝑢[0] for (9) and binary exponential eigenfunctions for (10),

( 1 2 ) 𝑢[0] = −
𝑗20
4 [𝑗20𝑧20𝑥 (

𝑥
2 + 𝑗20(𝑧20 + 1)𝑡) i (𝑥 + 𝑗20 (𝑧20 +

1
2) 𝑡)] , 𝜒𝜍 = e

i
2
𝑗20𝑧0𝜍[𝑥+𝑗20(−

𝜍
2𝑧0

(𝑧40+7𝑧20+1)+3(𝑧20+1))𝑡],
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where 𝜓𝜍 = 𝜒𝜍, 𝑗0 and 𝑧0 are arbitrary parameters, 𝜎 = ±1 and 𝜆𝜍 = 𝑗20
2
(2𝜎𝑧0 − (𝑧20 + 1)). The first and

second iterations 𝑢[𝑗], 𝑗 = 1, 2 can be performed and the soliton solution profile may be computed as
||𝑚[𝑗]||

2
= 2i(𝑢[𝑗]𝑥 − 𝑢[𝑗]𝑥 ). The results are displayed in Figure 1.

• The first iteration (𝑗 = 1) provides a rational soliton-like travelling wave along the
𝑥 − 𝑗20 (𝜎𝑧0 − (𝑧20 + 1)) 𝑡 direction and constant amplitude, of expression

( 1 3 )
||𝑚

[1]
𝜍 ||

2
= 𝑗20 −

4

𝑗20𝑧0(𝜎 − 𝑧0) [(𝑥 − 𝑗20 (𝜎𝑧0 − (𝑧20 + 1)) 𝑡)2 + 1

𝑗40𝑧20(𝜍−𝑧0)2
]
, 𝜎 = ±1.

• For the second iteration (𝑗 = 2), we get the two-soliton solution

( 1 4 ) ||𝑚[2]||
2
= 𝑗20 +

8 [(𝑥 + 𝑗20(𝑧20 + 2) 𝑡)2 + 𝑗40(𝑧20 − 1) 𝑡2 + 1

𝑗40(𝑧20−1)
]

𝑗20(𝑧20 − 1) [((𝑥 + 𝑗20(𝑧20 + 1) 𝑡)2 − 𝑗40𝑧20𝑡2 −
1

𝑗40(𝑧20−1)
)
2
+ 4(𝑥+𝑗20(𝑧20+2) 𝑡)

2

𝑗40(𝑧20−1)2
]
.

leading to a two asymptotically travelling rational solitons of the form (13) (for 𝜎 = 1 and 𝜎 = −1,
respectively) interacting at the origin.

F i g u r e 1 : Spatio-temporal plot of ||𝑚[1]||
2
and ||𝑚[2]||

2
for parameters 𝜎 = −1, 𝑗0 = 1, 𝑧0 =

1

6
.
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A b s t r a c t : Attached to any topological space𝑋we find its character variety. This is an
algebraic variety parametrizing isomorphism classes of representations 𝜋1(𝑋) → 𝐺
of the fundamental group of𝑋 into an algebraic reductive group𝐺. These spaces are
particularly useful in classical knot theory, since they provide very subtle invariants
of knot 𝐾 ⊂ ℝ3 by taking 𝑋 = ℝ3 − 𝐾. However, even in the simplest cases a full
understanding of these character varieties is an open problem. In this paper, we
compute the motif of the irreducible character variety of representations of the
fundamental group of the complement of an arbitrary torus knot into 𝐺 = SL4 (𝑘).
For that purpose, we introduce a stratification of the variety in terms of the type of
a canonical filtration attached to any representation. This allows us to reduce the
computation of the virtual class to a purely combinatorial problem.

R e s u m e n : Asociado a cada espacio topológico𝑋 tenemos su variedad de caracteres.
Esta es una variedad algebraica que parametriza las clases de isomorfismo de
representaciones 𝜋1(𝑋) → 𝐺 del grupo fundamental de 𝑋 en un grupo algebraico
reductivo𝐺. Estos espacios resultan especialmente útiles en teoría de nudos clasica,
pues proveen de invariates muy sutiles de nudos 𝐾 ⊂ ℝ3 al tomar 𝑋 = ℝ3 − 𝐾.
A pesar de esta importancia, incluso en los casos más simples el entendimiento
completo de estas variedades de caracteres es un problema abierto. En este artículo,
calculamos el motivo de la variedad de caracteres irreducible de representaciones
del grupo fundamental de un nudo toroidal arbitrario en 𝐺 = SL4 (𝑘). Para este
fin, introducimos una estratificación de la variedad en términos del tipo de una
filtración canónica asociada a cada representación. Esto permite reducir el cálculo
de la clase virtual a un problema puramente combinatorio.
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Character varieties of torus knots

1 . M o t i v i c t h e o r y o f c h a r a c t e r v a r i e t i e s

Let 𝛤 be a finitely generated group and let 𝐺 be a reductive linear algebraic group over an algebraically
closed field 𝑘. The space 𝑅(𝛤,𝐺) of representations 𝜌∶ 𝛤 → 𝐺 forms an algebraic variety known as
the 𝐺-representation variety. Additionally, consider the open subset 𝑅irr(𝛤,𝐺) ⊆ 𝑅(𝛤,𝐺) of irreducible
representations. By Schur’s lemma the adjoint action of 𝐺 by conjugation on 𝑅irr(𝛤,𝐺) is closed and its
stabilizer at any point is the center of 𝐺. Therefore, the orbit space

𝔐irr(𝛤,𝐺) = 𝑅irr(𝛤,𝐺)/𝐺

is an algebraic variety known as the irreducible 𝐺-character variety. These varieties play a prominent
role in the topology of 3-manifolds, starting with the foundational work of Culler and Shalen [1] on the
study of hyperbolic geometry via SL2 (ℂ)-character varieties. Due to its importance, the algebro-geometric
properties of character varieties have been widely studied, particularly regarding their motivic class.

D e f i n i t i o n 1 . The Grothendieck ring of algebraic varieties 𝐾𝒱𝑎𝑟𝑘 is the ring generated by isomorphism
classes of algebraic varieties [𝑋], called virtual classes or motives in this context, with the relations
[𝑋1 ⊔ 𝑋2] = [𝑋1] + [𝑋2] and [𝑋1 × 𝑋2] = [𝑋1] ⋅ [𝑋2] for any algebraic varieties 𝑋1 and 𝑋2. ◀

R e m a r k 2 . Great efforts have been made to compute the virtual classes [𝔐irr(𝛤,𝐺)] ∈ 𝐾𝒱𝑎𝑟𝑘. Three
approaches are proposed in the literature: the arithmetic viewpoint [4], the geometric perspective [6] and
through Topological Quantum Field Theories [3]. ◀

An useful tool for studying the geometry of the character variety is the so- called semi-simple filtration.
This is the analogue of the composition series or the Harder-Narasimhan filtration in the representation
theoretic framework. Working similarly to the Jordan-Hölder theorem, we get the following result.

P r o p o s i t i o n 3 . Let 𝜌∶ 𝛤 → GL(𝑉) be a representation. There exists an unique filtration of 𝛤-modules

0 = 𝑉0 ⊂ 𝑉1 ⊂ … ⊂ 𝑉𝑖 ⊂ … ⊂ 𝑉𝑠 = 𝑉,

such that Gr𝑖 (𝑉•) = 𝑉𝑖/𝑉𝑖−1 is a maximally semi-simple subrepresentation of 𝑉/𝑉𝑖−1.

By restriction, the semi-simple filtration also exists for representations onto any linear group 𝐺. Thanks
to this filtration, we can decompose the graded pieces of a representation into its isotypic components
Gr𝑖 (𝑉•) ≅ ⨁𝑠𝑖

𝑗=1𝑊
𝑚𝑖,𝑗
𝑖,𝑗 , with 𝑊𝑖,1,… ,𝑊𝑖,𝑠𝑖 non-isomorphic representations. From this information, we

define the shape of the representation as the tuple collecting of dimensions and multiplicities of this
decomposition 𝜉 = ({(dim𝑊𝑖,𝑗,𝑚𝑖,𝑗)}𝑗)𝑖.
Moreover, we can add spectral information to the shape. For each 𝛾 ∈ 𝛤, denote by 𝜎𝑖,𝑗(𝛾) the collection
of eigenvalues of 𝜌(𝛾) ∈ End(𝑊𝑖,𝑗) and set 𝜎 = (𝜎𝑖,𝑗(𝛾)). The pair 𝜏 = (𝜉,𝜎) is called the type of the
representation and it is invariant under the adjoint action. Writing 𝒯(𝛤,𝐺) for the space of possible types
arising in representations 𝛤 → 𝐺, we get a natural map

𝛷∶ 𝑅(𝛤,𝐺) → 𝒯(𝛤,𝐺)

assigning each representation to its underlying type. Also set 𝒯 irr(𝛤,𝐺) for the types of irreducible rep-
resentations, all of which have the same shape. The map 𝛷 restricts to 𝛷∶ 𝑅irr(𝛤,𝐺) → 𝒯 irr(𝛤,𝐺). Notice
that if 𝒯 irr(𝛤,𝐺) is finite, the morphism 𝛷 induces a stratification of 𝑅irr(𝛤,𝐺).

2 . C h a r a c t e r v a r i e t i e s o f t o r u s k n o t s

Given a knot 𝐾 ⊂ ℝ3, it natural to study the fundamental group of its complement 𝜋1(ℝ3 − 𝐾). An
important case arises when 𝐾 = 𝐾𝑛,𝑚 is the (𝑛,𝑚)-torus knot (gcd(𝑛,𝑚) = 1) whose fundamental group
of the complement is 𝛤𝑛,𝑚 = 𝜋1(ℝ3 − 𝐾𝑛,𝑚) = ⟨𝑥, 𝑦 ∣ 𝑥𝑛 = 𝑦𝑚⟩. Using the image of the generators 𝑥, 𝑦 to
identify a representation, we get that the representation variety is

𝑅(𝛤𝑛,𝑚,𝐺) = {(𝐴,𝐵) ∈ 𝐺 ∣ 𝐴𝑛 = 𝐵𝑚} .

The 𝐺-character varieties of torus knots have been studied for 𝐺 = SL2 (ℂ) [5, 8], 𝐺 = SL3 (ℂ) [9] and
𝐺 = SU(2) [7], among others. However, very little is known in the higher rank case 𝐺 = SL𝑟 (𝑘) for 𝑟 ≥ 4. A
key observation towards this aim is the following.
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P r o p o s i t i o n 4 . Any irreducible representation 𝜌∶ 𝛤𝑛,𝑚 → 𝐺 lifts, up to rescalling, to a representation
̃𝜌 ∶ ℤ𝑛 ⋆ ℤ𝑚 → 𝐺.

P r o o f . Set 𝑃 = 𝐴𝑛 = 𝐵𝑚. Trivially 𝑃𝐴 = 𝐴𝑃 and 𝑃𝐵 = 𝐵𝑃, so 𝑃−1𝜌𝑃 = 𝜌. Thus, 𝑃 is a 𝛤-equivariant
automorphism of 𝜌 which, by Schur’s lemma, implies that 𝑃 = 𝜛Id for some𝜛 ∈ 𝑘∗. ▪

C o r o l l a r y 5 . 𝒯 irr(𝛤𝑛,𝑚, SL𝑟 (𝑘)) is finite.

P r o o f . In this case the scalling factor 𝜛 ∈ 𝑘∗ of Proposition 4 must satisfy 𝜛𝑟 = 1, so there are only
finitely many posibilities. Thus, it is enough to show that 𝒯 irr(ℤ𝑛 ⋆ ℤ𝑚, SL𝑟 (𝑘)) is finite. If (𝐴,𝐵) ∈
𝑅irr(ℤ𝑛 ⋆ ℤ𝑚, SL𝑟 (𝑘)), then 𝐴 ∈ 𝑅(ℤ𝑛, SL𝑟 (𝑘)) and 𝐵 ∈ 𝑅(ℤ𝑚, SL𝑟 (𝑘)) so they are diagonalizable in so far
as representations of finite abelian groups. Moreover, 𝐴𝑛 = 𝐵𝑚 = Id so the eigenvalues of 𝐴 and 𝐵must be
roots of unit. These are finitely many for fixed 𝑛,𝑚, implying that 𝒯 irr(ℤ𝑛 ⋆ ℤ𝑚, SL𝑟 (𝑘)) is finite. ▪

From now on, we focus on 𝐺 = SL𝑟 (𝑘), 𝑟 ≥ 1, as target group so we will omit it from the notation. Fixed a
spectrum 𝜅 = (𝜎𝐴,𝜎𝐵) for the matrices of a representation (𝐴,𝐵) ∈ 𝑅(𝛤𝑛,𝑚), let us denote by 𝒯𝜅 the set of
types 𝜏 = (𝜉,𝜎) ∈ 𝒯(𝛤𝑛,𝑚)whose spectral data 𝜎 are drawn from 𝜅. Set𝒯 irr

𝜅 = 𝒯𝜅∩𝒯 irr(𝛤𝑛,𝑚),𝒯red
𝜅 = 𝒯𝜅−𝒯 irr

𝜅 ,
𝑅𝜅(ℤ𝑛 ⋆ ℤ𝑚) = 𝛷−1(𝒯𝜅) and 𝑅irr𝜅 (ℤ𝑛 ⋆ ℤ𝑚) = 𝛷−1(𝒯 irr

𝜅 ). Then, we have that

( 1 ) 𝑅irr(𝛤𝑛,𝑚) ≅ ⨆
𝜅
𝑅irr𝜅 (ℤ𝑛 ⋆ ℤ𝑚) = ⨆

𝜅
(𝑅𝜅(ℤ𝑛 ⋆ ℤ𝑚) − ⨆

𝜏∈𝒯red
𝜅

𝑋(𝜏)),

where 𝑋(𝜏) = 𝛷−1(𝜏) is the set of (reducible) representations of type 𝜏. The virtual class [𝑅𝜅(ℤ𝑛 ⋆ ℤ𝑚)] ∈
𝐾𝒱𝑎𝑟𝑘 can be easily computed as the product of the adjoint orbits of two diagonal matrices. Hence,
Equation (1) shows that, to compute the virtual class of 𝑅irr(𝛤𝑛,𝑚), it is enough to compute the virtual
classes of 𝑋(𝜏) for all 𝜅 and 𝜏 ∈ 𝒯red

𝜅 . This amounts to a combinatorial problem and the knowledge of
[𝑅irr(𝛤𝑛,𝑚, SL𝑠 (𝑘))] for 𝑠 < 𝑟, so the computation can be performed recursively. For further details, check
[2, Section 3].

2 . 1 . C o u n t i n g c o m p o n e n t s

Consider partitions 𝜋 = {1𝑒1, 2𝑒2,… , 𝑟𝑒𝑟} and 𝜋′ = {1𝑒′1, 2𝑒′2,… , 𝑟𝑒′𝑟} of 𝑟 with 𝑟 = ∑𝑖 𝑖𝑒𝑖 = ∑𝑖 𝑖𝑒
′
𝑖. Denote by

𝑀𝜋,𝜋′
𝑛,𝑚,𝑟 the collection of (unordered) spectra 𝜅 = (𝜎𝐴,𝜎𝐵) where 𝜎𝐴 (resp. 𝜎𝐵) has 𝑒𝑖 (resp. 𝑒′𝑖) collections of 𝑖

equal eigenvalues for 𝑖 = 1,… , 𝑟. Notice that, for any 𝜅, 𝜅′ ∈ 𝑀𝜋,𝜋′
𝑛,𝑚,𝑟 we have that [𝛷−1(𝒯red

𝜅 )] = [𝛷−1(𝒯red
𝜅′ )].

Hence, we can collect the summands in (1) that contribute equaly to get

( 2 ) [𝑅irr(𝛤𝑛,𝑚)] = ∑
𝜋,𝜋′

|𝑀𝜋,𝜋′
𝑛,𝑚,𝑟|( [𝑅𝜅(𝜋,𝜋′)(ℤ𝑛 ⋆ ℤ𝑚)] − ∑

𝜏∈𝒯red
𝜅(𝜋,𝜋′)

[𝑋(𝜏)] ).

Here, we have fixed an element 𝜅(𝜋,𝜋′) ∈ 𝑀𝜋,𝜋′
𝑛,𝑚,𝑟 for every permutations 𝜋,𝜋′. The first step towards the

calculation of all the terms involved this sum is provided in the following result.

T h e o r e m 6 ([2, Section 6 and Theorem 6.8]). If gcd(𝑛, 𝑟) = gcd(𝑚, 𝑟) = 1 or 𝑟 ≤ 4, then we have

|𝑀𝜋,𝜋′
𝑛,𝑚,𝑟| =

𝑟
𝑛𝑚 ( 𝑛

𝑒1, 𝑒2,… , 𝑒𝑟
) ( 𝑚
𝑒′1, 𝑒′2,… , 𝑒′𝑟

) =
𝑟
𝑛𝑚

𝑛!
𝑒1!⋯𝑒𝑟!(𝑛 − 𝑒1 −… − 𝑒𝑟)!

𝑚!
𝑒′1!⋯𝑒′𝑟!(𝑛 − 𝑒′1 −… − 𝑒′𝑟)!

.

R e m a r k 7 . It is an open problem whether this formula also holds true for 𝑟 ≥ 5 without the awkward
hypothesis gcd(𝑛, 𝑟) = gcd(𝑚, 𝑟) = 1. ◀

2 . 2 . C o u n t i n g r e p r e s e n t a t i o n s o f f i x e d t y p e

Fix a type 𝜏, let 𝑚𝑖,𝑗 be the multiplicity of the isotypic piece 𝑊𝑖,𝑗 of the semi-simple filtration and set
𝜅𝑖,𝑗 = (𝜎𝑖,𝑗(𝑥),𝜎𝑖,𝑗(𝑦)) for the corresponding eigenvalues of these pieces. Then we consider

ℐ(𝜏) =
𝑠
∏
𝑖=1

𝑠𝑖
∏
𝑗=1

Sym𝑚𝑖,𝑗 (𝑅irr𝜅𝑖,𝑗(ℤ𝑛 ⋆ ℤ𝑚)) , ̂ℐ(𝜏) =
𝑠
∏
𝑖=1

𝑠𝑖
∏
𝑗=1

(𝑅irr𝜅𝑖,𝑗(ℤ𝑛 ⋆ ℤ𝑚))
𝑚𝑖,𝑗 .
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There is a map Gr•∶ 𝑋(𝜏) → 𝐼(𝜏) that assigns any representation to its graded complex (its “semi-
simplification”). Pulling-back Gr• through the quotient map ̂ℐ(𝜏) → ℐ(𝜏), we obtain a morphism
̂Gr•∶ 𝑋(𝜏) ×ℐ(𝜏) ̂ℐ(𝜏) → ̂ℐ(𝜏). It is a Zariski locally trivial fibration whose fiber 𝐹𝜚 at 𝜚 ∈ ̂ℐ(𝜏) is the set of

ways we can complete the block- diagonal semi-simple representation induced by 𝜚 with off-diagonal
elements.

These calculations of the virtual classes of the fibers 𝐹𝜚 can be carried out using Schubert calculus (see [2,
Sections 4 and 5], where the calculations for rank 𝑟 ≤ 4 are performed). Moreover, if for every𝑚𝑖,𝑗 > 1 we
have that dim𝑊𝑖,𝑗 = 1 (i.e. if all the repeated irreducible representations are 1-dimensional) then we have
that ̂ℐ(𝜏) = ℐ(𝜏) so [𝑋(𝜏)] = [𝐹𝜚][ℐ(𝜏)]. These conditions hold for 𝑟 ≤ 4 [2, Corollary 4.7 and Proposition
8.1]. Thus performing these calculations for all the possible combinations of permutations and types, we
can compute the virtual class of 𝑅irr(𝛤𝑛,𝑚, SL𝑟 (𝑘)) by means of (2) for 𝑟 ≤ 4.

In the case 𝑟 = 4, there are 10 posible partitions such that 𝒯 irr
𝜅(𝜋,𝜋′) ≠ ∅ and more than 350 types must be

analyzed for these partitions. Carrying out the calculations with a symbolic algebra system, we finally
obtain the following result (see [2, Section 8] for further details).

T h e o r e m 8 . The virtual class of the irreducible SL4 (𝑘)-character variety of the (𝑛,𝑚)-torus knot is

[𝔐irr(𝛤, SL4 (𝑘)]=
4

𝑛𝑚
(𝑛4)(

𝑚
4 )(𝑞

9 + 6𝑞8 + 20𝑞7 + 17𝑞6 − 98𝑞5 − 26𝑞4 + 38𝑞3 + 126𝑞2 − 144)

+ 4

𝑛𝑚
( 𝑛2,1)(

𝑚
2,1)(𝑞

5 + 2𝑞4 − 10𝑞3 + 7𝑞2 + 11𝑞 − 17) + 4

𝑛𝑚
((𝑛4)(

𝑚
2 ) + (𝑛2)(

𝑚
4 ))(𝑞

5 + 4𝑞4 − 11𝑞3 + 𝑞2 + 18𝑞 − 18)

+ 4

𝑛𝑚
((𝑛4)(

𝑚
1,1) + ( 𝑛1,1)(

𝑚
4 ))(𝑞

3 − 4𝑞2 + 6𝑞 − 4) + 4

𝑛𝑚
(( 𝑛2,1)(

𝑚
2 ) + (𝑛2)(

𝑚
2,1))(𝑞

3 − 3𝑞2 + 5𝑞 − 4)

+ 4

𝑛𝑚
((𝑛4)(

𝑚
2,1) + ( 𝑛2,1)(

𝑚
4 ))(𝑞

7 + 5𝑞6 + 7𝑞5 − 34𝑞4 + 34𝑞2 + 18𝑞 − 48),

where 𝑞 = [�1
𝑘] ∈ 𝐾𝒱𝑎𝑟𝑘 is the virtual class of the affine line.
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On the prime graph associated with class sizes of a finite group

1 . I n t r o d u c t i o n

Hereafter, only finite groups will be considered. A well-established area of research within finite group
theory is the study of the connection between the structure of a group 𝐺 and the arithmetical properties
of certain sets of positive integers associated to it. In particular, the set 𝑐𝑠(𝐺) = {|𝐺 ∶ CCC𝐺(𝑥)| ∶ 𝑥 ∈ 𝐺}
of conjugacy class sizes of 𝐺 has been thoroughly analysed. For instance, a classical result within this
research line states that a group 𝐺 has a central Sylow 𝑝-subgroup, for a given prime 𝑝, if and only if 𝑝
does not divide any number in 𝑐𝑠(𝐺). Indeed, non-divisibility properties have been studied since many
decades ago, as the next theorem due to N. Itô in 1953 (see the paper [5]): if 𝑝 and 𝑞 are two distinct prime
numbers that divide two distinct class sizes of a group 𝐺, but 𝑝𝑞 does not divide any number in 𝑐𝑠(𝐺), then
𝐺 has a normal 𝑝-complement and abelian Sylow 𝑝-subgroups.

A useful tool that is gaining an increasing interest for studying the arithmetical structure of the set 𝑐𝑠(𝐺) is
the (complement) prime graph. In general, if 𝑋 is a set of positive integers, then the prime graph Δ(𝑋) is
defined as the simple undirected graph whose vertex set 𝑉(𝑋) consists of the prime divisors of the numbers
in 𝑋, and whose edge set 𝐸(𝑋) contains {𝑝, 𝑞} ⊆ 𝑉(𝑋) whenever 𝑝𝑞 divides some element in 𝑋. Further,
the complement prime graph Δ(𝑋) is the graph with the same vertex set 𝑉(𝑋), and two primes 𝑝 and 𝑞 are
adjacent in Δ(𝑋) if and only if they are not adjacent in Δ(𝑋). In this paper, we consider the prime graph
Δ(𝐺) built on the set 𝑐𝑠(𝐺), with vertex and edge set (𝑉(𝐺),𝐸(𝐺)), respectively; and in particular, we will
present some current results in collaboration with S. Dolfi, E. Pacifici, and L. Sanus.

Two natural questions that arise in this context are the following ones:

• What can be said about the structure of 𝐺 if some properties of Δ(𝐺) are known?
• What graphs can occur as Δ(𝐺) for some finite group 𝐺?

2 . F e a t u r e s o f Δ(𝐺)Δ(𝐺)Δ(𝐺)
Both classical results stated in the first paragraph can be framed within the first question, since they have
the next transcription in terms of Δ(𝐺).

L e m m a 1 . Let 𝐺 be a group, and let 𝑝, 𝑞 ∈ 𝑉(𝐺) with 𝑝 ≠ 𝑞. Then we have:

( i ) 𝑝 ∉ 𝑉(𝐺) if and only if 𝑃 ⩽ ZZZ(𝐺), for some Sylow 𝑝-subgroup 𝑃 of 𝐺.
( i i ) If {𝑝, 𝑞} ∉ 𝐸(𝐺), then 𝐺 has a normal 𝑝-complement and abelian Sylow 𝑝-subgroups.

In the context of the second question above, those graphs that possess “few” edges cannot occur as Δ(𝐺)
for a group 𝐺. This is due to the following result of S. Dolfi, which we call the “Three-Vertex Theorem”.

T h e o r e m 2 . [2, Theorem A] Let 𝐺 be a group. Then for every choice of three vertices in Δ(𝐺), there exists
at least an edge that joins two of them.

Indeed, this result is an improvement of [1, Theorem 16], where Dolfi proved the soluble version of the
Three-Vertex Theorem. As a direct consequence, we obtain the next result, which actually was known to be
true even before the existence of the Three-Vertex Theorem (see the paper [1]).

C o r o l l a r y 3 . Let 𝐺 be a group. Then we have:

( i ) If Δ(𝐺) is connected, then its diameter is at most 3.
( i i ) If Δ(𝐺) is non-connected, then it is the union of two complete subgraphs.

In fact, a group 𝐺 has non-connected prime graph Δ(𝐺) if and only if 𝐺 = 𝐴𝐵 with 𝐴 and 𝐵 abelian Hall
subgroups of coprime order, and 𝐺/ZZZ(𝐺) is a Frobenius group with kernel 𝐴ZZZ(𝐺)/ZZZ(𝐺) (see [1, Theorem 4]).
Further, the set of prime divisors of |𝐴ZZZ(𝐺)/ZZZ(𝐺)| and the one of |𝐵ZZZ(𝐺)/ZZZ(𝐺)| are two cliques of Δ(𝐺), so
they form the two complete connected components of Δ(𝐺). In general, a subset of vertices of a graph Δ is
called a clique if their induced subgraph in Δ is complete.
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3 . T h e c o m p l e m e n t p r i m e g r a p h

Recall that the complement prime graph Δ(𝐺) has the same vertex set 𝑉(𝐺), and there is and edge between
two primes 𝑝 and 𝑞 whenever they are not adjacent in Δ(𝐺). Observe that the Three-Vertex Theorem can
be expressed in terms of the complement prime graph as follows: for every finite group 𝐺, the graph Δ(𝐺)
does not contain any cycle of length 3. This fact suggests the study of the (non-)existence of cycles within
Δ(𝐺) of length larger than 3.

E x a m p l e 4 . Let 𝑁 = 𝐶31 × 𝐶61 = 𝐶1891 and 𝐻 = 𝐶3 × 𝐶5 = 𝐶15. Then 𝐻 acts on 𝑁 fixed-point-freely,
and we can consider the semidirect product 𝐺 = 𝑁 ⋊ 𝐻, which is a Frobenius group. It follows that
𝑐𝑠(𝐺) = {1, 15, 1891} and that Δ(𝐺) is the union of two complete connected components, which are the
prime divisors of 𝑁 and 𝐻, respectively. So Δ(𝐺) is a cycle of length 4. ◀

F i g u r e 1 : an illustration of Δ(𝐺) and Δ(𝐺) where 𝐺 = 𝐶1891 ⋊ 𝐶15.

In view of the above example, the next natural step would be to study the case of a cycle of length 5 in
Δ(𝐺). Nevertheless, this is also impossible. Indeed, this fact is more general, as the main theorem of the
paper [3] shows.

T h e o r e m 5 . [3, Theorem A] Let 𝐺 be a group. Then the graph Δ(𝐺) does not contain any cycle of odd
length.

In other words, this means thatΔ(𝐺) is a bipartite graph, i.e., a graph where the vertex sex can be partitioned
into two disjoint subsets 𝐴 and 𝐵 such that every edge connects a vertex in 𝐴 to another one in 𝐵. As an
immediate consequence, we obtain the next result.

C o r o l l a r y 6 . [3, Corollary B] Let 𝐺 be a group. Then the vertex set of Δ(𝐺) can be partitioned into two
subsets of pairwise adjacent vertices.

We have previously commented that if Δ(𝐺) is disconnected for some group 𝐺, then 𝑉(𝐺) is the union of
two cliques. But from the above corollary, this property turns out to hold in full generality.

Therefore, at least half of the vertices of Δ(𝐺) are pairwise adjacent, for any group 𝐺. So denoting by 𝑤(𝐺)
the clique number (i.e., the maximum size of a clique) of Δ(𝐺), we obtain what follows.

C o r o l l a r y 7 . [3, Corollary C] Let 𝐺 be a group. Then, the inequality |𝑉(𝐺)| ≤ 2𝑤(𝐺) holds.

It is not difficult to see that this bound is best possible, as the group in Example 4 shows. We close this
section with another illustrating example.

E x a m p l e 8 . Let 𝐺 = 𝐴𝛤(113) = ((𝐶11 × 𝐶11 × 𝐶11) ⋊ 𝐶113−1) ⋊ 𝐶3 be an affine semilinear group. Then
𝑉(𝐺) = {2, 3, 5, 7, 11, 19}, and it follows that Δ(𝐺) is the union of the clique 𝑉(𝐺) ⧵ {3} and the edge {3, 11}
(see Figure 2). ◀

4 . C u t v e r t i c e s

The last example has the following interesting property: if we remove the vertex 11 from the graph and all
the edges adjacent to 11 from Δ(𝐺), then the resulting graph is disconnected. Let us define this “almost
non-connectedness” feature of Δ(𝐺) in general: 𝑟 ∈ 𝑉(𝐺) is called a cut vertex of Δ(𝐺) if the subgraph
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F i g u r e 2 : the prime graph Δ(𝐺) for 𝐺 = 𝐴𝛤(113).

induced by 𝑉(𝐺) ⧵ {𝑟} in Δ(𝐺) (i.e., the graph Δ(𝐺) − 𝑟 obtained by removing the vertex 𝑝 and all edges
incident to 𝑟 from Δ(𝐺)) has more connected components than Δ(𝐺).

E x a m p l e 9 . There is an easy way of obtaining groups 𝐺 such that Δ(𝐺) has a cut vertex 𝑟. It is enough to
consider 𝐺 = 𝑅 × (𝐴 ⋊ 𝐵) where 𝐴 ⋊ 𝐵 is a Frobenius group with 𝐴 and 𝐵 abelian, and 𝑅 is a non-abelian
𝑟-group such that 𝑟 does not divide the order of 𝐴 ⋊ 𝐵. ◀

The next result states, among other facts, that Δ(𝐺) can have at most two cut vertices.

T h e o r e m 1 0 . [4, Theorem A] Let 𝐺 be a group such that Δ(𝐺) has a cut vertex 𝑟. Then, the following
conclusions hold.

( i ) 𝐺 is soluble with Fitting height at most 3, and its Sylow 𝑝-subgroups are abelian for all primes 𝑝 ≠ 𝑟.
( i i ) Δ(𝐺) − 𝑟 is a graph with two connected components, that are both complete graphs.
( i i i ) If 𝑟 is a complete vertex of Δ(𝐺), then it is the unique complete vertex and the unique cut vertex

of Δ(𝐺). If 𝑟 is non-complete, then Δ(𝐺) is a graph of diameter 3, and it can have at most two cut
vertices; moreover, 𝐺 is metabelian with abelian Sylow subgroups.

E x a m p l e 1 1 . Let 𝑅 = 𝐶31, 𝐴 = 𝐶11 × 𝐶61, 𝐵0 = 𝐶2 × 𝐶3, and 𝐵1 = 𝐶5, and consider 𝐺 = (𝐴 × 𝑅) ⋊ (𝐵0 × 𝐵1),
where there is a Frobenius action of 𝐵0 × 𝐵1 on 𝑅, another Frobenius action of 𝐵1 on 𝐴, and 𝐵0 acts trivially
on 𝐴. It is not difficult to show that Δ(𝐺) is the union of the two cliques {11, 31, 61} and {2, 3, 5} together
with the edge {5, 31}, so 5 and 31 are cut vertices of Δ(𝐺). ◀

Moreover, Theorem 3.3 and Theorem C of [4] completely characterise the structure of 𝐺 (and the correspon-
ding one of Δ(𝐺)) in both the cases when Δ(𝐺) has either one or two cut vertices, respectively. In particular,
these results yield a classification of those groups 𝐺 such that Δ(𝐺) is acyclic, i.e., that it has no cycle as an
induced subgraph (see [4, Corollary 3.4]).

In addition, there is a necessary and sufficient condition for a graph that possesses a cut vertex to occur as
Δ(𝐺) for a suitable group 𝐺.

T h e o r e m 1 2 . [4, Theorem D] Let Δ be a graph having a cut vertex. Then there exists a finite group 𝐺 such
that Δ = Δ(𝐺) if and only if Δ is connected and the vertex set of Δ can be partitioned in two subsets of
pairwise adjacent vertices.
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Constructing normal integral bases of Hopf Galois extensions

1 . I n t r o d u c t i o n : H o p f G a l o i s e x t e n s i o n s

Galois theory establishes a connection between field theory and group theory: for extensions of fields 𝐿/𝐾
with the property that every polynomial 𝑓 ∈ 𝐾[𝑋]with a root in 𝐿 has deg(𝑓) roots in 𝐿 (the so called Galois
extensions), it is possible to read these extensions algebraically in terms of their Galois group𝐺 ≔ Gal(𝐿/𝐾),
the group of all 𝐾-automorphisms of 𝐿. This theory was introduced by French mathematician Évariste
Galois to characterize the solvability by radicals of polynomial equations, and it has been proved as an
essential tool in modern algebraic number theory.
The theory of Hopf Galois extensions establishes a similar link between the theory of fields and the
one of Hopf algebras. Let 𝐿/𝐾 be a finite extension of fields and and let 𝐺 be a group that acts on 𝐿 by
automorphisms. There is a natural group representation of 𝐺

𝜌𝐺∶ 𝐺 ⟶ Aut𝐾 (𝐿)
𝜎 ⟼ 𝑦 ↦ 𝜎(𝑦).

Now, we can extend this map by 𝐾-linearity to a map 𝜌𝐾[𝐺]∶ 𝐾[𝐺] → End𝐾 (𝐿) which is a linear represen-
tation of the 𝐾-group algebra 𝐾[𝐺]. But 𝐾[𝐺] is a 𝐾-Hopf algebra and this structure is compatible with its
action on 𝐿 (concretely, 𝐿 is a 𝐾[𝐺]-module algebra, see the book [4] for a definition).
Let 𝐿/𝐾 be a finite extension and assume that 𝐻 is a 𝐾-Hopf algebra that endows 𝐿 with left 𝐻-module
algebra structure. Similarly we have a linear representation

𝜌𝐻∶ 𝐻 ⟶ End𝐾 (𝐿)
ℎ ⟼ 𝑥 ↦ ℎ ⋅ 𝑥

of the 𝐾-Hopf algebra 𝐻. We can construct a canonical map (1, 𝜌𝐻)∶ 𝐿 ⊗𝐾 𝐻 → End𝐾 (𝐿) defined by
sending each 𝑥 ⊗ ℎ ∈ 𝐿 ⊗𝐾 𝐻 to the endomorphism 𝑦 ↦ 𝑥(ℎ ⋅ 𝑦).

D e f i n i t i o n 1 . Let 𝐿/𝐾 be a finite extension of fields. A Hopf Galois structure of 𝐿/𝐾 is a pair (𝐻, ⋅) where
𝐻 is a 𝐾-Hopf algebra and ⋅∶ 𝐻 ⊗𝐾 𝐿 → 𝐿 is a 𝐾-linear action of 𝐻 on 𝐿 which endows it with 𝐾-module
algebra structure and such that (1, 𝜌𝐻) is an isomorphism of 𝐾-vector spaces. A Hopf Galois extension is
an extension 𝐿/𝐾 that admits some Hopf Galois structure. If (𝐻, ⋅) is a Hopf Galois structure of 𝐿/𝐾, we will
also say that 𝐿/𝐾 is 𝐻-Galois. ◀

By construction, every Galois extension is Hopf Galois, because the 𝐾-group algebra 𝐾[𝐺] of its Galois
group together with the evaluation action is a Hopf Galois structure. However, the converse does not hold:
for instance, the extension ℚ(3√2)/ℚ is a Hopf Galois extension that is not Galois. This example was used
by Greither and Pareigis in their article [3] to nicely illustrate the notion of Hopf Galois extension.

2 . T h e t h e o r y o f H o p f G a l o i s m o d u l e s

If 𝐹 is a number (resp. 𝑝-adic) field, we will denote by 𝒪𝐹 its ring of integers, i.e, the elements of 𝐾 which
are roots of monic polynomials with coefficients in ℤ (resp. ℤ𝑝). From now on, we will deal only with
extensions of number or 𝑝-adic fields 𝐿/𝐾 such that 𝒪𝐾 is a principal ideal domain (actually, this is always
satisfied when the fields are 𝑝-adic). Under this hypothesis, it follows that 𝒪𝐿 is free as 𝒪𝐾-module, and
any basis of that module is called an integral basis of 𝐿.
One of the applications of Galois theory is the theory of Galois modules, which studies the structure of
𝒪𝐿 as module over its associated order 𝔄𝐿/𝐾 in 𝐾[𝐺], where 𝐺 = Gal(𝐿/𝐾). This is defined as the maximal
𝒪𝐾-order in 𝐾[𝐺] such that its evaluation action on 𝐿 leaves 𝒪𝐿 invariant. The notion of associated order
can be easily generalized to the setting of Hopf Galois theory.

D e f i n i t i o n 2 . Let 𝐿/𝐾 be an𝐻-Galois extension of fields as above. The associated order of𝒪𝐿 in𝐻 is defined
as

𝔄𝐻 = {ℎ ∈ 𝐻 | ℎ ⋅ 𝑥 ∈ 𝒪𝐿 ∀𝑥 ∈ 𝒪𝐿}. ◀

The associated order is indeed an 𝒪𝐾-order in 𝐻, and in particular it is free as 𝒪𝐾-module. Let 𝑉 = {𝑣𝑖}𝑛𝑖=1
be an 𝒪𝐾-basis of 𝔄𝐻. If in addition 𝒪𝐿 is 𝔄𝐻-free of rank one with generator 𝛽, then {𝑣𝑖 ⋅ 𝛽 | 1 ≤ 𝑖 ≤ 𝑛} is
an 𝒪𝐾-basis of 𝒪𝐿, called a normal integral basis. Thus, once computed a basis of 𝔄𝐻, the key point turns
to whether 𝒪𝐿 is free over 𝔄𝐻. We present a constructive method to answer both questions.
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3 . T h e r e d u c t i o n m e t h o d

Let 𝐿/𝐾 be an 𝐻-Galois extension of number or 𝑝-adic fields. The reduction method provides a way to
find effectively an 𝒪𝐾-basis of 𝒪𝐿 and determine whether 𝒪𝐿 is 𝔄𝐻-free. The idea behind the method is
the same as in representation theory: instead of working with the elements of the Hopf algebra, we use
the matrices representing them. We present the main definitions and results (see the paper [2] for more
details).

D e f i n i t i o n 3 . Let 𝑊 = {𝑤𝑖}𝑛𝑖=1 and 𝐵 = {𝛾𝑗}𝑛𝑗=1 be 𝐾-bases of 𝐻 and 𝐿 respectively. Given 1 ≤ 𝑗 ≤ 𝑛, we
denote

𝑀𝑗(𝐻, 𝐿) = (
| | ⋯ |

𝑤1 ⋅ 𝛾𝑗 𝑤2 ⋅ 𝛾𝑗 ⋯ 𝑤𝑛 ⋅ 𝛾𝑗
| | ⋯ |

) ∈ ℳ𝑛2×𝑛(𝐾),

that is, 𝑀𝑗(𝐻, 𝐿) is the matrix whose 𝑖-th column is the column vector of the coordinates of 𝑤𝑖 ⋅ 𝛾𝑗 with
respect to the basis 𝐵. Then, thematrix of the action is defined as

𝑀(𝐻, 𝐿) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑀1(𝐻, 𝐿)

⋯

𝑀𝑛(𝐻, 𝐿)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. ◀

The key step of the reduction method is to reduce𝑀(𝐻, 𝐿) to an invertible matrix by linear transformations,
but preserving the integral structure (i.e., multiplying by an unimodular matrix). This can be achieved
by considering the Hermite normal form of 𝑀(𝐻, 𝐿), whose definition is well known for matrices with
coefficients in ℤ and can be consulted in the book [1] for a general PID. However, 𝑀(𝐻, 𝐿) may have
coefficients out of the ring, but in any case in its field of fractions. What we do in practice is to drop out
of the matrix the least common multiple of the denominators and consider as Hermite normal form of
𝑀(𝐻, 𝐿) the fractional part times the Hermite normal form of the matrix with integral coefficients. In the
language of polynomials, the first part would be the content and the second one, the principal part.

T h e o r e m 4 . Assume that 𝐵 = {𝛾𝑗}𝑛𝑗=1 is an integral basis of 𝐿. Let 𝐷 be the Hermite normal form of the
matrix 𝑀(𝐻, 𝐿) and call 𝐷−1 = (𝑑𝑖𝑗)𝑛𝑖,𝑗=1. Then, the elements

𝑣𝑖 =
𝑛
∑
𝑙=1

𝑑𝑙𝑖𝑤𝑙

form an 𝒪𝐾-basis of 𝔄𝐻. Moreover, a given element 𝛽 = ∑𝑛
𝑗=1 𝛽𝑗𝛾𝑗 is a free generator of 𝒪𝐿 as 𝔄𝐻-module

if and only if the matrix

𝑀𝛽(𝐻, 𝐿) =
𝑛
∑
𝑗=1

𝛽𝑗𝑀𝑗(𝐻, 𝐿)𝐷−1

is unimodular.

4 . A n e x a m p l e o f a p p l i c a t i o n

We apply Theorem 4 to study the example of the extension 𝐿/ℚ with 𝐿 = ℚ(𝜔), where 𝜔 = 3√2. Let 𝑐 and 𝑠
be the ℚ-endomorphisms of 𝐿 defined by the relations

𝑐(1) = 1, 𝑐(𝜔) = −12𝜔, 𝑐(𝜔2) = −12𝜔
2,

𝑠(1) = 0, 𝑠(𝜔) = 1
2𝜔, 𝑠(𝜔2) = −12𝜔

2.

TEMat monogr., 2 (2021) e-ISSN: 2660-6003 49



Constructing normal integral bases of Hopf Galois extensions

In the aforementioned article [3], it is shown that 𝐿/ℚ has an unique Hopf Galois structure, given by the
Hopf algebra

𝐻 = ℚ(𝑐, 𝑠)/⟨3𝑠2 + 𝑐2 − Id𝐿, (2𝑐 + Id𝐿)𝑠, (2𝑐 + Id𝐿)(𝑐 − Id𝐿)⟩

together with the evaluation action on 𝐿. Taking {Id𝐿, 𝑐, 𝑠} as ℚ-basis of 𝐻 and {1,𝜔,𝜔2} as ℚ-basis of 𝐿, the
blocks of the matrix of the action𝑀(𝐻, 𝐿) are

𝑀1(𝐻, 𝐿) = (
1 1 0
0 0 0
0 0 0

) , 𝑀2(𝐻, 𝐿) = (
0 0 0
1 − 1

2

1

2
0 0 0

) , 𝑀3(𝐻, 𝐿) = (
0 0 0
0 0 0
1 − 1

2
− 1

2

) .

Joining these blocks as in Definition 3 gives the matrix of the action𝑀(𝐻, 𝐿). Its Hermite normal form and
inverse are

𝐷 = 1
2 (

2 −1 1
0 3 −1
0 0 2

) , 𝐷−1 =
⎛
⎜
⎜
⎝

1 1

3
− 1

3
0 2

3

1

3
0 0 1

⎞
⎟
⎟
⎠

.

Following Theorem 4, the associated order 𝔄𝐻 has ℤ-basis

𝑉 = {Id𝐿,
Id𝐿+2𝑐

3 ,
− Id𝐿+𝑐 + 3𝑠

3 } .

Let us check whether 𝒪𝐿 is 𝔄𝐻-free or not. For 𝛽 = 𝛽1 + 𝛽2𝜔 + 𝛽3𝜔2, we have

𝑀𝛽(𝐻, 𝐿) = (
𝛽1 𝛽1 0
𝛽2 0 0
𝛽3 0 −𝛽3

) ,

whose determinant is 𝛽1𝛽2𝛽3. Then, taking 𝛽 = 1+𝜔+𝜔2 ∈ 𝒪𝐿, the determinant is 1, and then𝑀𝛽(𝐻, 𝐿) is
unimodular. Thus, 𝒪𝐿 is 𝔄𝐻-free of rank one and 𝛽 is a generator. Consequently, 𝒪𝐿 has a normal integral
basis:

{ Id𝐿 (𝛽),
Id𝐿+2𝑐

3 (𝛽),
− Id𝐿+𝑐 + 3𝑠

3 (𝛽)}.
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Higher derivations with Lie structure of associative rings

1 . I n t r o d u c t i o n

One of the earliest results on Lie derivations of associative rings is dur to Martindale [10], who proved that
every Lie derivation on a primitive ring can be written as a sum of derivation and an additive mapping
of ring to its center that maps commutators into zero, i.e., Lie derivation has the standard form. In 1993,
Brešar [5] gave a characterization of Lie derivations of prime rings. This result together with other results
initiated the theory of functional identities on rings. Actually, study behaviour of a derivation on the whole
ring with many of the results achieved by extending the other ones proven previously. For a full account
on the theory of functional identities and zero Lie product we refer the reader to the paper of Brešar [6].
Lie derivations, as well as other Lie maps, have been active research subjects for a long time (see, e.g., [1],
Benkovič [3] and Brešar [6]). Also, Cheung [8] gave a characterization of linear Lie derivations on triangular
algebras. Qi and Hou [11] discussed additive 𝜉-Lie derivations on nest algebras. The most interesting result
on additive Lie derivations of prime rings was obtained by Brešar [6].

Throughout the article, 𝑅will represent an a commutative ringwith identity 1 ≠ 0. The center of𝑅 is denoted
by 𝑍(𝑅). The symbols [𝑥, 𝑦] stand for the commutator 𝑥𝑦 − 𝑦𝑥, and 𝑥 ∘ 𝑦 stands for the anticommutator
𝑥𝑦 + 𝑦𝑥, for any 𝑥, 𝑦 ∈ 𝑅. A ring 𝑅 is called a prime if 𝑥𝑅𝑦 = 0 implies either 𝑥 = 0 or 𝑦 = 0. Suppose 𝐿 is
an additive subgroup of 𝑅, 𝐿 is said to be a Lie ideal of 𝑅 if for every 𝑢 ∈ 𝐿, 𝑟 ∈ 𝑅 then the commutator
[𝑢, 𝑟] = 𝑢𝑟 − 𝑟𝑢 ∈ 𝐿. Any ordinary, two-sided ideal of 𝑅 is automatically a Lie ideal of 𝑅. Let 𝑛 > 1 be an
integer; then, a ring 𝑅 is said to be 𝑛-torsion free, in case 𝑛𝑥 = 0 implies that 𝑥 = 0 for any 𝑥 ∈ 𝑅.

The idea of a weakly semiprime ideal is due to Badawi [2]. He introduced that the ideal 𝐿 is a weakly
semiprime ideal of 𝑅 such that 𝑅 is a commutative ring with identity 1 ≠ 0 and 𝐿 is a proper ideal of 𝑅.
If 𝑎 ∈ 𝑅 and 0 ≠ 𝑎2 ∈ 𝐿 then 𝑎 ∈ 𝐿. While the concept of a weak zero-divisor of a ring 𝑅 introduced by
Burgess, Lashgari, and Mojiri [7], where the authors defined an element 𝑎 ∈ 𝑅 is called a weak zero-divisor.
If there is 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑎𝑠 = 0 and 𝑟𝑠 ≠ 0. A derivation 𝑑 is an additive mapping 𝑑∶ 𝑅 → 𝑅 satisfies the
Leibniz’s formula 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑅. Moreover, 𝐷 is said to be a higher derivation of
𝑈 into 𝑅 if for every 𝑛 ∈ ℕ, we conclude that 𝑑𝑛(𝑥𝑦) = ∑𝑖+𝑗=𝑛 𝑑𝑖(𝑥)𝑑𝑗(𝑦) for all 𝑥, 𝑦 ∈ 𝐿 and 𝐷 = (𝑑𝑖 ≠ 0)
for all 𝑖 ∈ ℕ is the family of additive mappings of 𝑅 such that 𝑑0 = 𝑖𝑑𝑅 andℕ is set of a positive integers,
where 𝐿 is a Lie ideal of 𝑅.

By the above facts, it is fascinating to study weakly semiprime ideals and weak zero-divisors on a Lie ideal
of a prime ring 𝑅 via a higher derivation 𝐷 = (𝑑𝑖 ≠ 0)𝑖∈ℕ. This is our main motivation for this paper. The
following lemmas are also going to be applied:

L e m m a 1 (Bergen, Herstein, and Kerr [4], Lemma 4). Suppose 𝑅 is a prime ring with characteristic not
two and 𝑎, 𝑏 ∈ 𝑅. If 𝐿 is a non-central Lie ideal of 𝑅 such that 𝑎𝑈𝑏 = 0, then either 𝑎 = 0 or 𝑏 = 0.

L e m m a 2 (Herstein [9], Lemma 1.8). Let 𝑅 be a semiprime ring, and 𝑎 ∈ 𝑅 be a centralizer of all
commutators [𝑥, 𝑦], 𝑥, 𝑦 ∈ 𝑅. Then, 𝑎 ∈ 𝑍(𝑅).

2 . T h e m a i n r e s u l t s

T h e o r e m 3 . Let 𝑅 be a prime ring with the centre 𝑍(𝑅) and 𝐿 be a Lie ideal of 𝑅. Suppose that 𝐷 = (𝑑𝑖 ≠
0)𝑖∈ℕ is a higher derivation of 𝑈 into 𝑅. If 𝑑 satisfy one of the following relations

( i ) [𝑎, 𝑑𝑖(𝑢)] ∈ 𝑍(𝑅) for all 𝑢 ∈ 𝐿, 𝑎 ∈ 𝑅, then 𝐿 is a weakly semiprime ideal.
( i i ) [𝑑𝑖(𝐿), 𝑑𝑖(𝐿)] ⊆ 𝑍(𝑅), then either 𝐿 is a weakly semiprime ideal of 𝑅 or 𝑑𝑛(𝐿) is a weak zero-divisor

of 𝑅.
( i i i ) [𝑎, 𝑑𝑖(𝑢)] ∈ 𝑍(𝑅) and 𝑑𝑖(𝑍(𝑅)) ≠ 0 for all 𝑢 ∈ 𝐿, 𝑎 ∈ 𝑅, then [𝑎, [𝐿,𝑅]] ⊆ 𝑍(𝑅).

Based on Theorem 3, we can easily prove the following theorem.
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T h e o r e m 4 . Let 𝑅 be a prime ring with the centre 𝑍(𝑅) and 𝐿 be a Lie ideal of 𝑅. Suppose that 𝐷 = (𝑑𝑖 ≠
0)𝑖∈ℕ is a higher derivation of 𝑈 into 𝑅. If 𝑑 satisfy one of the following relations

( i ) [𝑑𝑖(𝐿), 𝑑𝑖(𝐿)] ⊆ 𝑍(𝑅) and 𝑑𝑖(𝑍(𝑅)) ≠ 0, then 𝑅 has a weakly semiprime ideal.
( i i ) 𝑑2𝑖 (𝐿) ⊆ 𝑍(𝑅), 𝑑𝑖(𝑍(𝑅)) ≠ 0 and 𝑑𝑖𝑑𝑗(𝐿) ⊆ 𝑍(𝑅), 𝑖, 𝑗 ∈ ℕ, then either 𝑑𝑛(𝐿) is a weak zero-divisor of

𝑅 or 𝑅 has a weakly semiprime ideal, where 𝑅 is 2-torsion free.
( i i i ) 𝑎𝑑𝑖(𝐿) ⊆ 𝑍(𝑅) and 𝑑𝑖(𝑍(𝑅)) ≠ 0, then either 𝑎 is a weak zero-divisor of 𝑅 or 𝑅 has a weakly semiprime

ideal, where 𝑎 ∈ 𝑅.

In the following theorem, 𝑅 not to be a commutative ring with identity 1 ≠ 0.

T h e o r e m 5 . For any fixed integers 𝑛, 𝑞 > 1, let 𝑅 be prime ring with the centre 𝑍(𝑅) and 𝐷 be a derivation
on 𝑅. If 𝐷 satisfy one of the following relations

( i ) 𝐷𝑛(𝑥𝑜𝑦) ∓ [𝑥, 𝑦] ∈ 𝑍(𝑅);
( i i ) 𝐷𝑛(𝑥 ∘ 𝑦) ± 𝐷𝑞(𝑥 ∘ 𝑦) ∓ [𝑥, 𝑦] ∈ 𝑍(𝑅) and 𝑅 is 2-torsion free;
( i i i ) 𝐷𝑛([𝑥, 𝑦]) ± 𝐷𝑞([𝑥, 𝑦]) ∓ (𝑥 ∘ 𝑦) ∈ 𝑍(𝑅) and 𝑅 is 2-torsion free

for all 𝑥, 𝑦 ∈ 𝑅, then 𝑅 has a weak zero-divisors.
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A b s t r a c t : Motivated by Scholze and Fargues’s geometrization of the Local Langlands
Correspondence using perfectoid diamonds and Clausen and Scholze’s work on the
K-theory of adic spaces using condensed mathematics, we introduce the Efimov
K-theory of diamonds. We propose a large stable (∞, 1)-category of diamonds𝒟⋄,
a diamond spectra and chromatic tower, and a localization sequence for diamond
spectra. Commensurate with the localization sequence, we detail three potential
applications of the Efimov K-theory of𝒟⋄: to quantum gravity and reconstructing
the holographic principle using diamonds and Scholze’s six operations in the étale
cohomology of diamonds; to post-quantum diamond cryptography in the form
of programming AI with Efimov K-theory of𝒟⋄; and to nonlocality in perfectoid
quantum physics.

R e s u m e n : Motivados por la geometrización de Scholze y Fargues de la Correspon-
dencia Local de Langlands usando diamantes perfectoides y el trabajo de Clausen
y Scholze con la K-teoría de espacios ádicos usando matemáticas condensadas,
nosotros introducimos la K-teoría de diamantes de Efimov. Proponemos una (∞, 1)-
categoría de diamantes𝒟⋄; un espectro de diamantes y una torre cromática, y una
secuencia de localización del espectro de un diamante. Acorde con esta secuencia
de localización, detallamos tres potenciales aplicaciones de la K-teoría de𝒟⋄ de
Efimov: a gravedad cuántica y la reconstrucción del principio holográfico usando
diamantes y las seis operaciones de Scholze en la cohomología étale de diamantes;
a criptografía de diamante postcuántica, en forma de programación de IA con
K-teoría de𝒟⋄ de Efimov, y a no localidad en física perfectoide cuántica.

K e y w o r d s : perfectoid spaces, Efimov K-theory, diamonds, Fargues-Fontaine
curve, geometric Langlands, (∞, 1)-topoi.
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Efimov K-theory of diamonds

1 . I n t r o d u c t i o n

K-theory is defined on the category of small stable∞-categories which are idempotent, complete, and
where morphisms are exact functors. A certain category of large compactly generated stable∞-categories
is equivalent to this small category. In Efimov K-theory the idea is to weaken to ‘dualizable’ the condition
of being compactly generated so that K-theory is still defined. A category 𝒞 being dualizable implies that
𝒞 fits into a localization sequence 𝒞 → 𝒮 → 𝒳 with 𝒮 and 𝒳 compactly generated. The Efimov K-theory
should be the fiber of the K-theory in the localization sequence. As Clausen and Scholze propose [6]:

P r o p o s i t i o n 1 . Let Nuc𝑅 be a full subcategory of solid modules [1]. Nuc𝑅 is a presentable stable∞-category
closed under all colimits and tensor products. If 𝑅 is a Huber ring, then Nuc𝑅 is dualizable, making its
K-theory well-defined. Nuc𝑅 embeds into Mod𝑅. Let 𝒳 be a Noetherina formal scheme and 𝑋 the torsion
perfect complexes of modules over 𝑅. Then,

T h e o r e m 2 . (𝑅,𝑅+) → Nuc𝑅 satisfies descent over 𝑆𝑝𝑎(𝑅) and so does its Efimov K-theory. There exists a
localization sequence 𝐾(𝑋) → 𝐾Efimov(𝒳) → 𝐾Efimov(𝒳rig) [2].

We introduce the Efimov K-theory of diamonds.

2 . M a i n c o n j e c t u r e s

C o n j e c t u r e 3 . There exists a large, stable, presentable (∞, 1)-category of diamonds 𝒟⋄ with spatial descent
datum. 𝒟⋄ is dualizable. Therefore, the Efimov K-theory is well defined.

C o n j e c t u r e 4 . Let 𝑆 be a perfectoid space, 𝒟⋄ a stable dualizable presentable category, and 𝑅 a sheaf
of 𝐸1-ring spectra on 𝑆. Let 𝒯 be a stable compactly generated (∞, 1)-category and 𝐹∶ CatidemSt → 𝒯 a
localizing invariant that preserves filtered colimits. Then, 𝐹cont(Shv(�𝑛,𝒟⋄)) ≃ 𝛺𝑛𝐹cont(𝒟⋄).

C o n j e c t u r e 5 . Let 𝒟⋄ be the complex of 𝑣-stacks of locally spatial diamonds. Let 𝒴(𝑅,𝑅+),𝐸 = Spa(𝑅,𝑅+)
𝑥Spa𝐹𝑞 Spa𝐹𝑞[[𝑡]] be the relative Fargues-Fontaine curve. Let (𝒴⋄

𝑆,𝐸) be the diamond relative Fargues-
Fontaine curve. There exists a localization sequence 𝐾(𝒟⋄) → 𝐾Efimov(𝒴⋄

𝑆,𝐸) → 𝐾Efimov(𝒴(𝑅,𝑅+),𝐸).

C o n j e c t u r e 6 . 𝒟⋄ admits a topological localization, in the sense of Grothendieck-Rezk-Lurie (∞, 1)-topoi.

C o n j e c t u r e 7 . There exists a diamond chromatic tower 𝒟⋄ → … → 𝐿𝑛𝒟⋄ → 𝐿𝑛−1𝒟⋄ → … → 𝐿0𝒟⋄ for
𝐿𝑛 a topological localization for 𝐾𝒟⋄ the K-theory spectrum that represents the étale cohomology of
diamonds.

C o n j e c t u r e 8 . The (∞, 1)-category of perfectoid diamonds is an (∞, 1)-topos.

F i g u r e 1 : Efimov K-theory and Diamond Chromatic Tower.
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3 . E f i m o v K - t h e o r y o f d i a m o n d s

Our terminology and exposition of Efimov K-theory follows Hoyois [4]

∞-categories are called categories. Let 𝒫r denote the category of presentable categories and colimit-
preserving functors. Let 𝒫rdual ⊂ 𝒫r denote the subcategory of dualizable objects and right-adjointable
morphisms (with respect to the symmetric monoidal and 2-categorical structures of 𝒫𝑟). Let 𝒫𝑟cg ⊂ 𝒫𝑟 be
the subcategory of compactly generated categories and compact functors. Compact functors are functors
whose right adjoints preserve filtered colimits. Let 𝒫𝑟⋆St denote the corresponding full subcategories
consisting of stable categories.

D e f i n i t i o n 9 . A functor 𝐹∶ 𝒫𝑟dualSt → 𝒯 is called a localizing invariant if it preserves final objects and sends
localization sequences to fiber sequences. ◀

D e f i n i t i o n 1 0 . Let 𝐶 ∈ 𝒫𝑟 be stable and dualizable. The continuous K-theory of 𝒞 is the space Kcont(𝒞) = 𝛺
K(Calk(𝐶)𝜔). ◀

L e m m a 1 1 . If 𝒞 is compactly generated, then Kcont(𝒞) = 𝐾(𝒞𝑤). Proof. The localization sequence is Ind of
the sequence 𝒞𝑤 ↪ 𝒞 → Calk(𝒞)𝑤. Since K(𝒞) = 0, the result follows from the localization theorem.

D e f i n i t i o n 1 2 . A functor 𝐹∶ 𝒫𝑟dualSt → 𝒯 is called a localizing invariant if it preserves final objects and sends
localization sequences to fiber sequences. ◀

T h e o r e m 1 3 (Efimov). Let 𝒯 be a category. The functor Fun(𝒫rdualSt ,𝒯)⟶ Fun(CatidemSt ,𝒯), 𝐹 ↦ 𝐹 ∘ Ind,
restricts to an isomorphism between the full subcategories of localizing invariants, with inverse 𝐹 ↦ 𝐹cont.
In particular, if 𝒞 ∈ 𝒫rcgSt , then 𝐹cont(𝒞) = 𝐹(𝐶𝜔). Proof. See [4, Theorem 10].

T h e o r e m 1 4 (Efimov*). Let 𝑋 be a locally compact Hausdorff topological space, 𝒞 a stable dualizable
presentable category, and 𝑅 a sheaf of E1-ring spectra on 𝑋. Suppose that Shv(𝑋) is hypercomplete (i.e., 𝑋
is a topological manifold). Let 𝒯 be a stable compactly generated category and 𝐹∶ CatidemSt → 𝒯 a localizing
invariant that preserves filtered colimits. Then, 𝐹cont(Mod𝑅(Shv(𝑋,𝒞) ≃ 𝛤𝑐(𝑋,𝐹cont(Mod𝑅(𝒞))). Specifically,
𝐹cont(Shv(ℝ𝑛,𝒞)) ≃ 𝛺𝑛𝐹cont(𝒞). Proof. See [4, Theorem 15].

R e m a r k 1 5 . The main goal is to develop aWaldhausen S-construction to obtain the K-theory spectrum
𝐾𝒟⋄ on the (∞, 1)-category of diamonds𝒟⋄. In parallel, to construct a topology on the (∞, 1)-category of
diamonds, wemust first construct the (∞, 1)-site on the (∞, 1)-category of diamonds. Recall, the definition
of an (∞, 1)-site. ◀

D e f i n i t i o n 1 6 . The (∞, 1)-site on an (∞, 1)-category 𝒞 is the data encoding an (∞, 1)-category of (∞, 1)-
sheaves Sh(𝒞) ↪ PSh(𝒞) inside the (∞, 1)-category of (∞, 1)-presheaves on 𝒞 [5]. ◀

R e m a r k 1 7 . 𝒟⋄ admits a topological localization. Recall equivalence classes of topological localizations are
in bijection with Grothendieck topologies on (∞, 1)-categories 𝐶. Topological localizations are appropos
because in passing to the full reflective sub-(∞, 1)-category, objects and morphisms have reflections in
the category, just as geometric points have reflections in the profinitely many copies of Spa(𝒞). ◀

R e m a r k 1 8 . Recall, the category of sheaves on a (small) site is a Grothendieck topos. Lurie discusses the
structure needed for our construction. Recall the following [5]. ◀

D e f i n i t i o n 1 9 . An (∞, 1)-category of (∞, 1)-sheaves is a reflective sub-(∞, 1)-category Sh(𝐶)
𝐿
←
↪ PSh(𝐶) of

an (∞, 1)-category of (∞, 1)-presheaves such that the following equivalent conditions hold:

( i ) 𝐿 is a topological localization.
( i i ) There is the structure of an (∞, 1)-site on 𝐶 such that the objects of 𝑆ℎ(𝐶) are precisely those (∞, 1)-

presheaves 𝐴 that are local objects with respect to the covering monomorphisms 𝑝∶ 𝑈 → 𝑗(𝑐) in
PSh(𝐶) in that 𝐴(𝑐) ≃ PSh(𝑗(𝑐),𝐴)

PSh(𝑝,𝐴)
−−−−−−→ PSh(𝑈,𝐴) is an (∞, 1)-equivalence in∞Grpd.

( i i i ) The (∞, 1)-equivalence is the descent condition and the presheaves satisfying it are the (∞, 1)-
sheaves. ◀
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Efimov K-theory of diamonds

4 . D i a m o n d s

The construction of diamonds imitates that of algebraic spaces in taking the quotient of a scheme by an
étale equivalence relation. Our terminology and exposition follows [6].

D e f i n i t i o n 2 0 . Let Perfd be the category of perfectoid spaces and Perf be the subcategory of perfectoid
spaces of characteristic 𝑝. A diamond is a pro-étale sheaf𝒟 on Perf which can be written as the quotient
𝑋/𝑅 of a perfectoid space 𝑋 by a pro-’etale equivalence relation 𝑅 ⊂ 𝑋 × 𝑋. ◀

The diamond quotient lives in a category of sheaves on the site of perfectoid spaces with pro-étale covers.

Examples of diamonds are the following:

Spd𝑄𝑝 = Spa(𝑄cycl
𝑝 )/𝑍×𝑝 . Spd𝑄𝑝 is the coequalizer of 𝑍×𝑝 × Spa(𝑄cycl

𝑝 )♭ ⇉ Spa(𝑄cycl
𝑝 )♭. Spd𝑄𝑝 attaches to any

perfectoid space 𝑆 of characteristic 𝑝 the set of all untilts 𝑆# over 𝑄𝑝. The moduli space of shtukas for
(𝒢, 𝑏, {𝜇1, ...,𝜇𝑚)} fibered over Spa𝑄𝑝 × Spa𝑄𝑝... ×𝑚 Spa𝑄𝑝; the diamond relative Fargues-Fontaine Curve:
𝒴⋄
𝑆,𝐸 = 𝑆 × (Spa𝒪𝐸)⋄; any ⋄ product: Spd𝑄𝑝 ×⋄ Spd𝑄𝑝.

D e f i n i t i o n 2 1 . Let 𝐶 be an algebraically closed affinoid field and𝒟 a diamond. A geometric point Spa(𝐶) →
𝒟 is “visible” by pulling it back through a quasi-pro-étale cover 𝑋 → 𝒟, resulting in profinitely many copies
of Spa(𝐶). The geometric point Spa(𝐶) → 𝒟 is a mathematical minerological impurity. ◀

F i g u r e 2 : Diamond Spd𝑄𝑝 = Spd(𝑄𝑐𝑦𝑐𝑙
𝑝 )/𝑍𝑥𝑝 with geometric point Spa(𝐶) → 𝒟.

R e m a r k 2 2 . For a detailed discussion of the author’s applications of the six operations and diamonds to
quantum gravity, post-quantum diamond cryptography, and nonlocality of perfectoid quantum physics,
see [3]. Recall, a perfectoid space is an adic space covered by affinoid adic spaces of the form Spa(𝑅,𝑅+)
where 𝑅 is a perfectoid ring. Any completion of an arithmetically profinite extension is perfectoid. A nice
source of APF extensions is 𝑝-divisible formal group laws [6]. ◀
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Why use topological and analytical methods in aggregation of fuzzy preferences?

1 . I n t r o d u c t i o n

Arrow’s Impossibility Theorem [1] states that there is no function fusing individual preferences into a social
one satisfying certain properties of “common sense”. On the contrary, in some of the fuzzy extensions of
the Arrovian model, possibility arises [5, 6].

In previous works [7], we developed a technique which has been able to prove new impossibility results in
the fuzzy approach. Here, we will explain the grounds of this technique and in which models we can apply
it.

This technique is based on controlling the aggregation of fuzzy preferences through some aggregation
functions of dichotomic preferences. For each fuzzy aggregation function, we get a family of dichotomic
aggregation functions. Studying this family, we obtain information about the initial aggregation function.
We will discuss why the fuzzy Arrovian models in which we can apply this technique are, in some sense,
“less fuzzy”. Moreover, we will expose why we should use topological and analytical methods in the fuzzy
models out of the scope of our technique.

2 . C l a s s i c A r r o v i a n m o d e l a n d t h e t h e o r e m o f i m p o s s i b i l i t y

Let 𝑋 be the set including all alternatives involved in a decision. They can be ordered by using binary
relations satisfying certain properties. Particularly, in the Arrovian model, these binary relations are total
preorders (reflexive, transitive and complete binary relations). Moreover, to give a total preorder on 𝑋 is
equivalent to give a ranking with ties on 𝑋.

Every binary relation ≿ factorizes into the relations ≻ and ∼ defined as: 𝑥 ≻ 𝑦 ⇔ 𝑥 ≿ 𝑦 ∧ ¬(𝑦 ≿ 𝑥) and
𝑥 ∼ 𝑦 ⇔ 𝑥 ≿ 𝑦 ∧ 𝑦 ≿ 𝑥. These binary relations are the strict preference (or asymmetric part) and the
indifference (or symmetric part) of ≿. If 𝑥 ≿ 𝑦 we say that 𝑥 is at least as good as 𝑦, if 𝑥 ≻ 𝑦 that 𝑥 is better
than 𝑦, and if 𝑥 ∼ 𝑦 that 𝑥 and 𝑦 are equally preferred.

Arrow [1] proved that, given a finite set of agents 𝑁 = {1,… , 𝑛}, each one expressing their preferences over
a set of alternatives 𝑋 with total preorders, there is no “fair” rule which aggregates all individual preferences
obtaining a social one. Formally, if the set of all total preorders on 𝑋 is denoted by 𝒪𝑋:

T h e o r e m 1 (Arrow’s Impossibility Theorem). There is no function 𝑓∶ 𝒪𝑋
𝑛 → 𝒪𝑋 on a set of alternatives

with |𝑋| ≥ 3 satisfying, for every 𝑥, 𝑦 ∈ 𝑋 and profiles ≿,≿′∈ 𝒪𝑋
𝑛, the following conditions:

( i ) Paretian: ∀𝑖 ∈ 𝑁 𝑥 ≻𝑖 𝑦 ⇒ 𝑥 ≻𝑓(≿) 𝑦.
( i i ) Independence of irrelevant alternatives (IIA):

[∀𝑖 ∈ 𝑁 ≿𝑖⌉{𝑥,𝑦} = ≿′
𝑖⌉{𝑥,𝑦}] ⇒ 𝑓(≿)⌉{𝑥,𝑦} = 𝑓(≿′)⌉{𝑥,𝑦}.

( i i i ) Non dictatoriship: ∄ 𝑘 ∈ 𝑁 [𝑥 ≻𝑘 𝑦 ⇒ 𝑥 ≻𝑓(≿) 𝑦].

Given this result, many researchers looked for alternative ways to aggregate preferences. We will focus on
using fuzzy sets to find new aggregation methods.

3 . E x t e n d i n g t h e A r r o v i a n m o d e l t o t h e f u z z y s e t t i n g

Studying the Arrovian model in the fuzzy framework consists in generalizing the objects and the properties
from the previous section, and checking if the aggregation of preferences is possible in the new framework.
All these properties can be generalized in different manners. So, a huge number of fuzzy Arrovian models
is obtained.

In the fuzzy setting, a preference is a fuzzy binary relation𝑅∶ 𝑋×𝑋 → [0, 1]. There aremany generalizations
of the crisp strict preference≻ (of≿) to the fuzzy strict preference 𝑃𝑅 (of 𝑅). For every fuzzy Arrovian model,
we have to set a method of factorization to obtain 𝑃𝑅.
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The properties of preferences ≿ can be generalized to the fuzzy setting in different ways. For instance,
the transitivity can be extended saying that 𝑅 is 𝑇-transitive (with 𝑇 a t-norm) if, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑅(𝑥, 𝑧) ≥
𝑇(𝑅(𝑥, 𝑦),𝑅(𝑦, 𝑧)). However, it also may be generalized to the weak transitivity defined as 𝑅(𝑥, 𝑦) ≥ 𝑅(𝑦, 𝑥)∧
𝑅(𝑦, 𝑧) ≥ 𝑅(𝑧, 𝑦) ⇒ 𝑅(𝑥, 𝑧) ≥ 𝑅(𝑧, 𝑥). The completeness can be generalized to being 𝑆-connected (with 𝑆 a
t-conorm) as ∀𝑥, 𝑦 ∈ 𝑋 𝑆(𝑅(𝑥, 𝑦),𝑅(𝑦, 𝑥)) = 1.

Let ℱ𝒫 be a set of fuzzy preferences on 𝑋. An aggregation fuzzy rule is a function 𝑓∶ ℱ𝒫𝑛 → ℱ𝒫. Arrow
axioms can also be generalized in various ways. For instance, the Paretian property may be generalized
to the weakly (resp. strongly) Paretian property as ∀𝑥, 𝑦 ∈ 𝑋 𝑃𝑅𝑖(𝑥, 𝑦) > 0 ⇒ 𝑃𝑓(R)(𝑥, 𝑦) > 0 (resp.
𝑃𝑓(R)(𝑥, 𝑦) ≥ min𝑖∈𝑁 𝑃𝑅𝑖(𝑥, 𝑦)). The dictatorship may be extended to the weak (resp. strong) dictatorship
as ∃𝑘 ∈ 𝑁 𝑃𝑅𝑘(𝑥, 𝑦) > 0 ⇒ 𝑃𝑓(R)(𝑥, 𝑦) > 0 (resp. ∀𝑡 ∈ [0, 1] 𝑃𝑅𝑘(𝑥, 𝑦) > 𝑡 ⇒ 𝑃𝑓(R)(𝑥, 𝑦) > 𝑡. And the IIA
may be generalized to ∀𝑥, 𝑦 ∈ 𝑋 [∀𝑖 ∈ 𝑁 𝑅𝑖 ≈{𝑥,𝑦} 𝑅′𝑖 ⇒ 𝑓(R) ≈{𝑥,𝑦} 𝑓(R′)], where ≈{𝑥,𝑦} can be defined
as, 𝑅 ≈1

{𝑥,𝑦} 𝑅
′ ⇔ 𝑅⌉{𝑥,𝑦} = 𝑅′⌉{𝑥,𝑦}, 𝑅 ≈2

{𝑥,𝑦} 𝑅
′ ⇔ supp(𝑅⌉{𝑥,𝑦}) = supp(𝑅′⌉{𝑥,𝑦}) or 𝑅 ≈3

{𝑥,𝑦} 𝑅
′ ⇔ 𝑅 ≈2

{𝑥,𝑦}
𝑅′ ∧ [∀𝑧, 𝑧′ ∈ {𝑥, 𝑦}2 𝑅(𝑧) > 𝑅(𝑧′) ⇔ 𝑅′(𝑧) > 𝑅(𝑧′)], among others (see [8]).

4 . S t u d y i n g f u z z y a g g r e g a t i o n u s i n g c r i s p p r e f e r e n c e s

In this section, we draft a strategy to study fuzzy aggregation functions using the Arrovian theorem and
other combinatorial techniques from the crisp model.

Consider a set of fuzzy preferences ℱ𝒫 were all its preferences are reflexive and satisfy one type of fuzzy
transitivity and one type of fuzzy connectedness. Then, we define a projection 𝑝 from ℱ𝒫 to a set of crisp
preferencesℬ on 𝑋. These projections are interpreted as collapsing the fuzzy preferences into its qualitative
factor (a crisp binary relation). Some examples of projections are:

( i ) If 𝑅 is a weak transitive and 𝑆-connected preferences, ≿1
𝑅 defined as 𝑥 ≿1

𝑅 𝑦 ⇔ 𝑅(𝑥, 𝑦) ≥ 𝑅(𝑦, 𝑥) is a
total preorder.

( i i ) If 𝑅 is a 𝑇-transitive and max-connected preference, ≿2
𝑅 defined as 𝑥 ≿2

𝑅 𝑦 ⇔ 𝑅(𝑥, 𝑦) = 1 is a total
preorder.

( i i i ) If 𝑅 is a min-transitive and 𝑆-complete preference, ≿3
𝑅 defined as 𝑥 ≿3

𝑅 𝑦 ⇔ 𝑅(𝑥, 𝑦) ≥ 𝑅(𝑦, 𝑥) is a
quasi-transitive binary relation.

The second step is finding the same but applied to aggregation functions. Here, given a fuzzy aggregation
function 𝑓 and 𝑛 embeddings 𝜄𝑖∶ ℬ → ℱ𝒫, we define 𝑓𝜾 ≔ 𝑝 ∘ 𝑓 ∘ (𝜄𝑖 × ⋯ × 𝜄𝑛). We have to choose
the right embeddings in order for 𝑓𝜾 to be an Arrovian aggregation function. Then, each 𝑓𝜾 is dictatorial.
However, they may have different dictators. When all of them have the same dictator, and the image of all
embeddings covers ℱ𝒫, we can ensure that 𝑓 is dictatorial.

Let 𝒫 be the set of weak transitive and 𝑆-connected fuzzy preferences on 𝑋. Using the strategy above, we
proved in [7] the following theorem:

T h e o r e m 2 . Let 𝑓∶ 𝒫𝑛 → 𝒫 be a fuzzy aggregation function satisfying IIA defined by {≈3
{𝑥,𝑦}}𝑥,𝑦∈𝑋 and

weakly Paretian. Then, 𝑓 is dictatorial.

The theorem above is an example illustrating that we can reduce the study of a fuzzy model to the study
of a family of crisp functions from the Arrovian model (and we obtain an impossibility result), then the
fuzziness of the model is an illusion.

In the next section, we will see the relation of some aggregation functions with the projections exposed in
the beginning of the present section.

5 . A g g r e g a t i o n f u n c t i o n s u s i n g o r d i n a l e x p r e s s i o n s

These illusory fuzziness arises when we study the fuzzy Arrovian aggregation functions in the literature. We
can consider some of these expressions. In [5] there is an aggregation function defined as 𝑓(R)(𝑥, 𝑦) = 1 if
∀𝑖 ∈ 𝑁 𝑅𝑖(𝑥, 𝑦) > 𝑅𝑖(𝑦, 𝑥), and 𝑓(R)(𝑥, 𝑦) = 0.5 otherwise. In [6] we find an aggregation function defined as
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𝑓(R)(𝑥, 𝑦) = 1

𝑛
∑𝑖∈𝑁 𝑅𝑖(𝑥, 𝑦). Finally, in [4] we find 𝑓(R)(𝑥, 𝑦) = median{min𝑖 {𝑅𝑖(𝑥, 𝑦)}, ℎ,max𝑖 {𝑅𝑖(𝑥, 𝑦)}},

where 𝑇(ℎ, ℎ) = 0 for any ℎ ∈ (0, 1).

Notice that in the first and the third functions, the same expression we used in ≿1
𝑅 and ≿3

𝑅 is employed,
and the second is the well-known arithmetic mean. These three examples represent the present situation
in the existing literature. All functions are built using the reasoning based on crisp binary relations or
testing pre-existing well-known algebraic expressions as means.

If we look for functions capturing the vagueness, we should think out of the box of crisp binary relations.
Moreover, testing the functions with an algebraic expression we know does not seem a suitable method.
For these reasons, we stand up for the methods explained in the next section.

6 . C o n c l u s i o n s a n d f u t u r e r e s e a r c h

In order to get more satisfactory results and classify the fuzzy Arrovian models, we cannot rely on functions
built as algebraic expressions or close to binary relations. We need a richer framework able to express the
vagueness, and it cannot be constrained by human dichotomic thinking.

We propose using topological or analytical tools to build this general framework. Using the fact that the
degrees of a preference are in [0, 1], we can interpret a preference as a point in the cube [0, 1]𝑋2, the spaces
of preferences as topological subspaces of [0, 1]𝑋2, and the aggregation functions as continuous functions
(see [2] for an extended discussion). Using this framework, we expect to find suitable aggregation functions
with no need to write them explicitly. For example, using differential equations.

It is important to remark that our approach is different from the topological models proposed by
Chichilnisky [3]. We depart from a model with no topological structure, whereas Chichilnisky built
her models using a topological background.

Considering our conclusions, we are working on finding a general framework to create suitable binary
relation form fuzzy preferences and use them to study fuzzy aggregation functions. Furthermore, we
will continue the study initiated in [2] about how fuzzy Arrovian models can be translated to differential
equations.
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Model theory and metric approximate subgroups

1 . T h e L i e m o d e l t h e o r e m

Approximate subgroups are basic combinatorial structures modeling objects similar to subgroups up to a
constant error. Although first definitions where given in the abelian setting by Freiman in 1973 and Ruzsa
in 1994, the current definition was definitely established by Tao [4].

N o t a t i o n 1 . Here, for subsets of a group 𝑋,𝑌 ⊆ 𝐺, we write 𝑋𝑌 ≔ {𝑥𝑦 ∶ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} and 𝑋2 ≔ 𝑋𝑋. ◀

D e f i n i t i o n 2 . A 𝑘-approximate subgroup of a group 𝐺 is a symmetric subset 𝑋 ⊆ 𝐺 containing the identity
such that 𝑋2 ⊆ 𝛥𝑋 for some 𝛥 ⊆ 𝐺 with |𝛥| < 𝑘.

We say that two subsets 𝑋,𝑌 ⊆ 𝐺 are 𝑘-commensurable if there is 𝛥 ⊆ 𝐺 such that 𝑋 ⊆ 𝛥𝑌 and 𝑌 ⊆ 𝛥𝑋
with |𝛥| ≤ 𝑘. ◀

E x a m p l e 3 (geometric progressions). Let 𝐺 be abelian and 𝑢1,… , 𝑢𝑚 ∈ 𝐺. The set of words 𝑤( ̄𝑢) in 𝐺 with
at most 𝑁𝑖 occurrences of 𝑢𝑖 is a 2𝑚-approximate subgroup. ◀

E x a m p l e 4 (nilprogressions). Let 𝐺 be nilpotent of nilpotent length 𝑠 and 𝑢1,… , 𝑢𝑚 ∈ 𝐺. The set of words
𝑤( ̄𝑢) with at most 𝑁𝑖 occurrences of 𝑢𝑖 is an 𝑘(𝑠,𝑚)-approximate subgroup. ◀

Using model theory, Hrushovski [2] found a connexion between approximate subgroups and Lie groups.
This result, known as the Lie model theorem, was the starting point used to finally give a complete
classification of finite approximate subgroups by Breuillard, Green and Tao.

To explain Hrushovski’s result, we need to introduce the model theoretic notion of ultraproduct. The idea
is to construct models by taking “limits”. Formally, we consider a sequence (𝔐𝑚)𝑚∈ℕ of structures (e.g.,
groups, graphs, fields, linear orders) and an non-atomic measure u∶ 𝒫(ℕ) → {0, 1}. The ultraproduct
�̂� = ∏𝔐𝑚/u is the set of sequences 𝑥 ∈ ∏𝔐𝑚 modulo the equivalence relation 𝑥 = 𝑥′ almost surely.

A fundamental theorem by Łoś says that the ultraproduct satisfies all first-order properties which are
almost surely satisfied by the factors. More generally, Łoś’s theorem says us that, for any first-order formula
𝜑(𝑥) in �̂� (possibly with parameters), the definable subset 𝐴 = 𝜑(�̂�) ≔ {𝑎 ∶ 𝑎 satisfies 𝜑 in �̂�} of �̂� can
be written as the ultraproduct 𝐴 = ∏𝐴𝑚/u where 𝐴𝑚 = 𝜑(𝔐𝑚). The topology generated by taking as
clopen subsets the definable subsets is called the logic topology.

E x a m p l e 5 (non-standard analysis). When𝔐𝑚 = ℝ, we get a model of the hyperreal numbers ℝ̂. ◀

Morally, the Liemodel theorem says that every finite approximate subgroup is “in the limit” commensurable
to a compact neighbourhood of the identity of some Lie group.

T h e o r e m 6 (Hrushovski’s Lie model theorem). Let 𝐺 be an ultraproduct of groups and 𝑋 ⊆ 𝐺 an ultra-
product of respective finite 𝑘-approximate subgroups. Then, there exists a Lie model of 𝑋, i.e., a surjective
group homomorphism 𝜋∶ 𝐻 ≤ 𝐺 → 𝐿 where

( i ) 𝐿 is a connected Lie group,
( i i ) 𝑋8 ∩ 𝐻 is an approximate subgroup, generates 𝐻 and is commensurable to 𝑋,
( i i i ) 𝐾 ≔ ker𝜋 ⊆ 𝑋4, and
( i v ) 𝜋 is continuous and closed from the logic topology (with enough parameters).

Using this result, Breuillard, Green, and Tao [1] concluded that every finite approximate subgroup is
commensurable to a nilprogression modulo some normal subgroup.

T h e o r e m 7 (Breuillard-Green-Tao Classification Theorem). In the Lie model theorem, 𝐿 is nilpotent and 𝐾
could be made definable taking enough structure. Hence, we get the following result:

Let 𝐺 be a group and 𝑋 a finite 𝑘-approximate subgroup. Then, there are 𝐻 ≤ 𝐺 and 𝐾 ⊴ 𝐻 such that

( i ) 𝐻 ∩ 𝑋8 is 𝐶(𝑘)-commensurable to 𝑋 and generates 𝐻,
( i i ) 𝐾 ⊆ 𝑋4, and
( i i i ) 𝐻/𝐾 is a nilpotent group of 𝑠(𝑘) nilpotent length.
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2 . T h e m e t r i c L i e m o d e l t h e o r e m

Approximate subgroups could be further generalized to the context of metric groups. By ametric group we
understand a group 𝐺 together with a metric 𝑑 invariant under translations.

N o t a t i o n 8 . Write�𝑟(𝑋) = {𝑦 ∶ there is 𝑥 ∈ 𝑋 𝑑(𝑥, 𝑦) < 𝑟}. Note that�𝑟(𝑋) = 𝑋�𝑟(1) = �𝑟(1)𝑋. ◀

R e m a r k 9 . We assume invariance under two-side translations to simplify the statements. In fact, it is
possible to assume only that 𝑑 is invariant under left (alternatively right) translations and some local
Lipschitz condition for the right (alternatively left) translations. ◀

D e f i n i t i o n 1 0 . A 𝛿-metric 𝑘-approximate subgroup 𝑋 ⊆ 𝐺 is a symmetric subset 1 ∈ 𝑋−1 = 𝑋 such that
𝑋2 ⊆ 𝛥�𝛿(𝑋) with |𝛥| ≤ 𝑘.

We say that two subsets 𝑋,𝑌 ⊆ 𝐺 are 𝛿-metrically 𝑘-commensurable if there is 𝛥 ⊆ 𝐺 such that 𝑋 ⊆ 𝛥�𝛿(𝑌)
and 𝑌 ⊆ 𝛥�𝛿(𝑋) with |𝛥| ≤ 𝑘. ◀

We do no longer assume finiteness, instead we assume that using themetric we can find nice discretizations.
An 𝑟-entropy discretization of a set 𝑋 is an 𝑟-separated finite subset 𝑍 ⊆ 𝑋 of maximal size. Write 𝑁ent

𝑟 (𝑋) =
sup{|𝑍| ∶ 𝑍 ⊆ 𝑋 𝑟-separated}. If there are arbitrary large 𝑟-separated finite sets, write 𝑁ent

𝑟 (𝑋) = ∞.

R e m a r k 1 1 . 𝑁ent is subadditive and decreasing on 𝑟. ◀

Our aim is to generalize Hrushovski’s Lie model theorem to the case of metric approximate subgroups. In
our case, the ultraproduct of metric groups is then a non-standard metric group, i.e., a group 𝐺 together
with a function ̂𝑑 ∶ 𝐺 × 𝐺 → ℝ̂ into the hyperreal numbers that satisfies the usual properties of a metric.

For a sequence 𝑟 = (𝑟𝑛)𝑛∈ℕ of non-standard positive numbers in ℝ̂ with 2𝑟𝑛+1 < 𝑟𝑛, we define the
𝑟-infinitesimal thickening of 𝑋 by

𝑜𝑟(𝑋) ≔
∞

⋂
𝑛=0

�𝑟𝑛(𝑋) = {𝑔 ∈ 𝐺 ∶ ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝑋 𝑑(𝑔, 𝑥) < 𝑟𝑛}.

It follows that 𝑜𝑟(1𝐺) ⊴ 𝐺. Also, 𝑜𝑟(𝑋) = 𝑋𝑜𝑟(1𝐺) = 𝑜𝑟(1𝐺)𝑋.

Now, we quotient out by 𝑜𝑟(1) and check that the original arguments done by Hrushovski with 𝑋 could
be adapted to 𝑋/𝑜𝑟(1). This requires to generalize various model theoretic techniques to the context of
piecewise hyperdefinable sets as it was done in [3].

T h e o r e m 1 2 (metric Lie model [2]). Let (𝐺𝑚,𝑋𝑚, 𝑟𝑚) be a sequence such that

1 . 𝐺𝑚 is a metric group,
2 . 𝑋𝑚 is a symmetric subset containing the identity,
3 . 𝑟𝑚 = (𝑟𝑚1 ,… , 𝑟𝑚𝑚 ) satisfies 𝑟𝑚𝑖 ≥ 2𝑟𝑚𝑖+1 and

𝑁ent
𝑟𝑚𝑖 /2

(𝑋9
𝑚) ≤ 𝐶 ⋅ 𝑁ent

9𝑟𝑚𝑖 /2
(𝑋𝑚) ∈ ℝ for each 𝑖.

Let 𝐺 = ∏𝑚∈ℕ 𝐺𝑚/u, 𝑋 = ∏𝑚∈ℕ 𝑋𝑚/u and 𝑟 = 𝑟𝑚/u be ultraproducts. Then, there is a Lie model of 𝑜𝑟(𝑋),
i.e., a surjective group homomorphism 𝜋∶ 𝐻 ≤ 𝐺 → 𝐿 where

( i ) 𝐿 is a connected Lie group,
( i i ) 𝐻 ∩ 𝑜𝑟(𝑋12) is a 𝐶-approximate subgroup, generates 𝐻 and is commensurable to 𝑜𝑟(𝑋),
( i i i ) 𝐾 = ker𝜋 ⊆ 𝑜𝑟(𝑋8) and 𝑜𝑟(1𝐺) ≤ 𝐾,
( i v ) 𝜋 is continuous and closed from the logic topology (with enough parameters).

Hence, as a corollary of the metric Lie model theorem we get the following result for metric approximate
subgroups.
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C o r o l l a r y 1 3 . Fix constants 𝑘 ∈ ℝ>0, 𝐶 ∈ ℝ>1, 𝛿 ∈ ℝ>0 and 𝑁,𝑝, 𝑞 ∈ ℕ. Take 𝛼 ≥ 1442. There are
𝑒 ≔ 𝑒(𝑘,𝐶) and 𝑚 ≔ 𝑚(𝑘,𝐶,𝑁,𝑝) such that the following holds.

Let 𝐺 be a metric group and 𝑋 a 𝛿-metric 𝑘-approximate subgroup such that

𝑁ent
𝛿 (𝑋) ≤ 𝐶𝑚𝑁ent

𝛼𝑚𝛿(𝑋) ∈ ℝ>0.

Then, there is a sequence 𝑋𝑁 ⊆ ⋯ ⊆ 𝑋1 ⊆ 𝑋8 satisfying the following properties:

( i ) 𝑋2 and 𝑋1 are 2−𝑝𝛼𝑚 𝛿-metrically 𝑒-commensurable.
( i i ) 𝑋𝑛+1𝑋𝑛+1 ⊆ �2−𝑝𝛼𝑚𝛿(𝑋𝑛).
( i i i ) 𝑋𝑛 is covered by 𝑒 right cosets of �2−𝑝𝛼𝑚𝛿(𝑋𝑛+1).

( i v ) 𝑋𝑋1
𝑛+1 ⊆ �2−𝑝𝛼𝑚𝛿(𝑋𝑛).

( v ) [𝑋𝑛1,𝑋𝑛2] ⊆ �2−𝑝𝛼𝑚𝛿(𝑋𝑛) whenever 𝑛 < 𝑛1 + 𝑛1.
( v i ) {𝑥 ∈ 𝑋1 ∶ 𝑥2, 𝑥4 ∈ 𝑋1 and 𝑥8 ∈ 𝑋𝑛} ⊆ 𝑋𝑛+1.
( v i i ) If 𝑥, 𝑦 ∈ 𝑋1 with 𝑥2 = 𝑦2, then 𝑦−1𝑥 ∈ �2−𝑝𝛼𝑚𝛿(𝑋𝑁).

R e f e r e n c e s

[1] BREUILLARD, Emmanuel; GREEN, Ben, and TAO, Terence. “The structure of approximate groups”. In:
Publications mathématiques de l’IHÉS 116.1 (2012), pp. 115–221. https://doi.org/10.1007/s10240-
012-0043-9.

[2] HRUSHOVSKI, Ehud. “Stable group theory and approximate subgroups”. In: Journal of the American
Mathematical Society 25.1 (2012), pp. 189–243. https://doi.org/10.1090/S0894-0347-2011-00708-
X.

[3] RODRIGUEZ-FANLO, Arturo. “On piecewise hyperdefinable groups”. In: arXiv e-prints (2020). arXiv:
2011.11669 [math.LO].

[4] TAO, Terence. “Product set estimates for non-commutative groups”. In: Combinatorica 28.5 (2008),
pp. 547–594. https://doi.org/10.1007/s00493-008-2271-7.

66 https://temat.es/monograficos

https://doi.org/10.1007/s10240-012-0043-9
https://doi.org/10.1007/s10240-012-0043-9
https://doi.org/10.1090/S0894-0347-2011-00708-X
https://doi.org/10.1090/S0894-0347-2011-00708-X
https://arxiv.org/abs/2011.11669
https://doi.org/10.1007/s00493-008-2271-7
https://temat.es/monograficos


3rd BYMAT Conference (2020)

P r i n c i p l e s o f l e a s t a c t i o n i n g e o m e t r i c m e c h a n i c s

� M a n u e l L a i n z V a l c á z a r

ICMAT-CSIC
manuel.lainz@icmat.es

A b s t r a c t : A path 𝑐 is said to be a solution of Hamilton’s least action principle if
it is a critical point of the action functional. Here, the action is the integral of a
Lagrangian function 𝐿 along 𝑐. This principle describes many physical theories,
and has applications in other fields (optimal control, Riemannian geometry). Its
solutions have a nice geometric characterization: they are integral curves of a
Hamiltonian vector field on a symplectic manifold.

We introduce a generalization of this principle: the so-called Herglotz’s principle.
Here the Lagrangian not only depends on the positions and velocities, but also
on the action itself. Hence, the action is no longer the integral of the Lagrangian,
but it is the solution of a non-autonomous ODE. Herglotz’s principle allows us
to model new problems, such as some dissipative systems in mechanics (where
energy is lost), thermodynamics, and some modified optimal control systems.
This principle is also related to Hamiltonian systems, but switching symplectic
by contact geometry. We will compare both principles, their applicability and the
geometric properties of their solutions.

R e s u m e n : Un camino 𝑐 es una solución del principio de mínima acción de Ha-
milton si es un punto crítico del funcional de acción. En este caso, la acción es
la integral de una función lagrangiana 𝐿 a lo largo de 𝑐. Este principio describe
numerosas teorías físicas y tiene aplicaciones en otros campos (control óptimo,
geometría riemmaniana). Sus soluciones tienen una interesante caracterización
geométrica: son las curvas integrales de un campo Hamiltoniano en una variedad
simpléctica.

Proponemos una generalización the este principio: el principio de Herglotz. Ahora,
el lagrangiano depende de la propia acción, además de las posiciones y velocida-
des. Aquí, la acción ya no es la intregral del lagrangiano, sino la solución a una
EDO no autónoma. El principio de Herglotz nos permite modelizar nuevos proble-
mas, como algunos sistemas disipativos en mecánica (con pérdidas de energía),
termodinámica y algunos problemas de contol óptimo. Este principio también
está relacionado con los sistemas Hamiltonianos, pero cambiando la geometría
simpléctica por geometría de contacto. Compararemos ambos principios, sus
aplicaciones y las propiedades geométricas de sus soluciones.

K e y w o r d s : variational principles, Herglotz principle, contact Hamiltonian
systems, Lagrangian mechanics.
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Principles of least action in geometric mechanics

1 . P r i n c i p l e s o f l e a s t a c t i o n

In the 17th century, Fermat formulated the laws of geometric optics in the following way: “light travels
between two given points along the path of shortest time”. This is known as the principle of least time
or Fermat’s principle. Knowing the velocity of light at every point of space, one can use this principle to
compute the trajectories of the light rays, obtaining the laws of refraction and reflection.

Many principles such as this one were introduced in mechanics, by Maupertuis, Euler, Lagrange and
Hamilton. Although they have different physical interpretation, all these principles (including Fermat’s) fit
on the same mathematical framework. Given a Lagrangian function 𝐿∶ 𝑇𝑄 ×ℝ→ ℝ1, let 𝛺 be the space2

of curves 𝑐∶ [0,𝑇] → 𝑄 with fixed endpoints (say, 𝑐(0) = 𝑞0, 𝑐(𝑇) = 𝑞1). We define the action 𝒜∶ 𝛺 → ℝ

of any curve 𝑐 as

𝒜(𝑐) = ∫
𝑡1

𝑡0
𝐿(𝑐(𝑡), ̇𝑐(𝑡)) d𝑡.

The principle of least action states that a path 𝑐 will be followed by the system if and only if 𝑐 is a critical
point of 𝒜 among all paths in 𝛺. The solutions of this principle are precisely the paths that satisfy the
Euler-Lagrange equations:

d
d𝑡 (

𝜕𝐿
𝜕 ̇𝑞𝑖

(𝑐(𝑡), ̇𝑐(𝑡))) −
𝜕𝐿
𝜕𝑞𝑖

(𝑐(𝑡), ̇𝑐(𝑡)) = 0.

Picking as a Lagrangian the inverse of the velocity of light in the media, we retrieve Fermat’s principle. If
we instead pick as the Lagrangian the kinetic minus the potential energy, 𝐿 = 𝑇 − 𝑉, we obtain Hamilton’s
principle for conservative mechanical systems (where energy remains constant), whose solutions satisfy
Newton’s Second Law3.

1 . 1 . W h y v a r i a t i o n a l p r i n c i p l e s ?

There are many mathematical and physical4 reasons to study variational principles. In physics, it has been
found that the least action principle (sometimes with extensions) can model a wide range of phenomena,
including field theory and general relativity. Furthermore, developments on this principle lead to quantum
field theory (through Feynman path integral). Outside of physics, least action principles appear in control
theory (optimal control problems) and characterize geodesics in Riemannian and Finsler geometry. If
we are working with a second order ODE that is the Euler-Lagrange equation of some Lagrangian also
provides access to useful mathematical tools.

• The problem is framed in “generalized coordinates”, i.e., the Euler-Lagrange equation is the same
on every coordinate system5. This does not hold with Newton’s equation, where new terms appear
when we work in non-cartesian coordinates or in non-inertial frames.

• Presence of symplectic geometry [1, 3]. A (regular) Lagrangian provides a symplectic form 𝜔𝐿 =
d𝑞𝑖 ∧ d(𝜕𝐿/𝜕 ̇𝑞𝑖) which is preserved by the evolution of the system. Knowledge on the topology and
geometry of symplectic manifolds provides a better understanding on the dynamics of the system.

• It allows to prove Noether theorems relating symmetries and conserved quantities.
• It can be used to construct variational integrators [12], that preserve the geometry of the system and

have better long term behavior than methods for more general ODEs, such as Runge-Kutta.

1Here, 𝑇𝑄 is the tangent bundle of the configuration manifold 𝑇𝑄, i.e., the space of positions and velocities, with coordinates
(𝑞𝑖, ̇𝑞𝑖).

2This space is an infine-dimensional manifold locally modeled on a space of functions [0, 1] → ℝ𝑛. We recommend the interested
reader [1] and the references therein.

3In cartesian coordinates 𝑥𝑖, if 𝐿 = 1
2
𝑚∑𝑖 (�̇�

𝑖)
2
−𝑉(𝑞𝑖), then the equation of motion is𝑚�̈�𝑖 = − 𝜕𝑉

𝜕𝑥𝑖
= 𝐹𝑖, where 𝐹𝑖 is the force.

4Some natural philosophers, such as Maupertuis, were interested in these principles on metaphysical grounds, since they express
that nature “acts by the simplest means”[13]. These arguments would now probably be considered unscientific.

5Now, within the framework of geometric mechanics, modern differential geometric language is used and the dynamics can be
described without the use of coordinates.
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2 . H e r g l o t ’ s v a r i a t i o n a l p r i n c i p l e

There are, however, many interesting systems that cannot be modeled with Hamilton’s principle. For
example, all mechanical systems that do not preserve the energy, such as the damped harmonic oscillator:

( 1 ) ̈𝑞2 + 𝑞 = −𝛾 ̇𝑞.

A simple extension is to allow that the Lagrangian depends explicitly on time, however this is not enough
on many situations. In 1930, Herglotz [11] proposed a more general formulation, the so-called Herglotz’s
variational principle. Here the Lagrangian not only depends on the positions and velocities, but also on
the action itself. Hence, the action is no longer the integral of the Lagrangian, but it is the solution of a
non-autonomous ODE. This will allow us to model a wider class of systems.

2 . 1 . H e r g l o t z ’ s p r i n c i p l e a n d H e r g l o t z ’ s e q u a t i o n s

Let 𝐿∶ 𝑇𝑄 × ℝ → ℝ be the Lagrangian function, where the last coordinate will be denoted by 𝑧6. In
order to formalize the idea of an “action dependent Lagrangian”, we will define the action through a
non-autonomous ODE, instead of an integral. First we fix the initial action 𝑧0 ∈ ℝ, and we define the
Herglotz action 𝒜∶ 𝛺 → ℝ as follows. Given 𝑐 ∈ 𝛺, we solve the Cauchy problem ̇𝑧𝑐 = 𝐿(𝑐, ̇𝑐, 𝑧𝑐) with
initial condition 𝑧𝑐(0) = 𝑧0. Now we define the Herglotz action7 𝒜 as

𝒜(𝑐) = 𝑧𝑐(𝑇) − 𝑧0 = ∫
𝑇

0
𝐿(𝑐(𝑡), ̇𝑐(𝑡), 𝑧𝑐(𝑡)) d𝑡.

In this case, 𝑐 is a critical point of 𝒜 ∶ 𝛺 → ℝ if and only if (𝑐, ̇𝑐, 𝑧𝑐) satisfies Herglotz’s equations [6]:

d
d𝑡 (

𝜕𝐿
𝜕 ̇𝑞𝑖

) −
𝜕𝐿
𝜕𝑞𝑖

= 𝜕𝐿
𝜕 ̇𝑞𝑖

𝜕𝐿
𝜕𝑧 .

We note that the energy 𝐸𝐿 = 𝐿 − ̇𝑞𝑖 𝜕𝐿
𝜕 ̇𝑞𝑖

is dissipated along the solutions 𝜒 of Herglotz equations at a rate

𝜕𝐿/𝜕𝑧. Indeed, if we pick 𝐿 = 1

2
( ̇𝑞)2−𝑞−𝛾𝑧, the Herglotz equation is the equation of motion of the damped

harmonic oscillator (1), and we have d𝐸𝐿/ d𝑡 = −𝛾𝐸𝐿.

3 . F u r t h e r t o p i c s

In the recent years a considerable amount of new results related to the Herglotz principle and Lagrangian
contact mechanics have been published. We list some of the topics on which there is active research.

• Contact geometry is to Herglotz’s principle [7] as symplectic geometry is to Hamilton’s principle. A
contact form 𝜂𝐿 = d𝑧 − 𝜕𝐿/𝜕 ̇𝑞𝑖d𝑞𝑖 is preserved by the flow of the system.

• Noether theorems [8] also exist in this context. However, symmetries do not correspond to conserved,
but to dissipated quantities, that is, quantities that decay at the same rate as the energy.

• Variational integrators can be constructed through the Herglotz principle [15, 16].
• Herglotz’s principle and some related variational principles can be applied to the description of
thermodynamic processes [14] and mechanical systems with dissipation [2], among others.

6We can also use Hamilton’s principle for explicitly time dependent Lagrangians 𝐿∶ 𝑇𝑄 × ℝ → ℝ, where we think of the ℝ

coordinate as “time” 𝑡. The corresponding Euler-Lagrange equations have the same form as in Hamilton’s principle. These should not
be confused with contact Hamiltonian systems and Herglotz’s variational principle, where the extra coordinate represents the “action”.

7We remark that this action coincides with the Euler-Lagrange action when 𝐿 does not depend on 𝑧. It is also important to note
that the action functional does not only depend on the Lagrangian, like in Hamilton’s principle, but also on the initial action 𝑧0.
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• Higher order systems can be considered [4]. Lagrangians depend not only on positions and velocities,
but also on higher order derivatives.

• Constraints can be added to the motion of these systems. They can be either vakonomic, that is,
implemented on the variations, or nonholonomic [5], on the infinitesimal variations. The first ones
are useful for optimal control theory [9], while the second ones appear on mechanical systems.

• We can also study the inverse problem. Given a second order ODE, does there exist a Lagrangian
such that the ODE is its Euler-Lagrange/Herglotz equation?

• Contact Lagrangian mechanics can be extended to noncorservative field theories [10].
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A b s t r a c t : Given a compact set 𝐾 ⊂ ℝ𝑛 of positive volume, and fixing a hyper-
plane 𝐻 passing through its centroid, we find a sharp lower bound for the ratio
vol(𝐾−)/ vol(𝐾), depending on the concavity nature of the function that gives the
volumes of cross-sections (parallel to 𝐻) of 𝐾, where 𝐾− denotes the intersection
of 𝐾 with a halfspace bounded by 𝐻. When 𝐾 is convex, this inequality recovers a
classical result by Grünbaum. To this respect, we also show that the log-concave
case is the limit concavity assumption for such a generalization of Grünbaum’s
inequality.

R e s u m e n : Dado un conjunto compacto 𝐾 ⊂ ℝ𝑛 y un hiperplano𝐻 pasando por su
centroide, encontramos una cota inferior óptima para el cociente vol(𝐾−)/ vol(𝐾),
dependiendo de la concavidad de la función que nos da el volumen de las secciones
(paralelas a𝐻) de 𝐾, donde 𝐾− denota la intersección de 𝐾 con el semiespacio deli-
mitado por𝐻. Cuando𝐾 es convexo, esta desigualdad recupera un resultado clásico
de Grünbaum. Además, veremos que el caso log-cóncavo es la mínima concavidad
exigible para este tipo de generalización de la desigualdad de Grünbaum.

K e y w o r d s : centroid, convex body, Grünbaum, inequality.
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On Grünbaum type inequalities

1 . I n t r o d u c t i o n

Let 𝐾 ⊂ ℝ𝑛 be a compact set with positive volume vol(𝐾) (i.e., with positive 𝑛-dimensional Lebesgue
measure). The centroid of 𝐾 is the affine-covariant point

g(𝐾) ≔ 1
vol(𝐾) ∫𝐾

𝑥 d𝑥.

Furthermore, if we write [⋅]1 for the first coordinate of a vector with respect to the basis, by Fubini’s theorem,
we get

( 1 ) [g(𝐾)]1 =
1

vol(𝐾) ∫
𝑏

𝑎
𝑡𝑓(𝑡) d𝑡.

The classical Grünbaum inequality, originally proven in [2], states that if 𝐾 ⊂ ℝ𝑛 is a convex body with
centroid at the origin, then

( 2 )
vol(𝐾−)
vol(𝐾) ≥ (

𝑛
𝑛 + 1)

𝑛
,

where 𝐾− = 𝐾 ∩ {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑥, 𝑢⟩ ≤ 0} and 𝐾+ = 𝐾 ∩ {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑥, 𝑢⟩ ≥ 0} represent the parts of 𝐾 which
are split by the hyperplane 𝐻 = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑥, 𝑢⟩ = 0}, for any given 𝑢 ∈ �𝑛−1. Equality holds, for a fixed
𝑢 ∈ �𝑛−1, if and only if 𝐾 is a cone in the direction 𝑢, i.e., the convex hull of {𝑥} ∪ (𝐾 ∩ (𝑦 + 𝐻)), for some
𝑥, 𝑦 ∈ ℝ𝑛.

The underlying key fact in the original proof of (2) (see [2]) is the following classical result (see, e.g., [1,
Section 1.2.1] and also [4, Theorem 12.2.1]).

T h e o r e m 1 (Brunn’s concavity principle). Let 𝐾 ⊂ ℝ𝑛 be a non-empty compact and convex set and let 𝐻 be
a hyperplane. Then, the function 𝑓∶ 𝐻⊥ → ℝ≥0 given by 𝑓(𝑥) = vol𝑛−1(𝐾 ∩ (𝑥+𝐻)) is (1/(𝑛−1))-concave.

In other words, for any given hyperplane 𝐻, the cross-sections volume function 𝑓 to the power 1/(𝑛 − 1) is
concave on its support, which is equivalent (due to the convexity of 𝐾) to the well-known Brunn-Minkowski
inequality.

Although this property cannot be in general enhanced, one can easily find compact convex sets for which
𝑓 satisfies a stronger concavity, for a suitable hyperplane 𝐻. Thus, on the one hand, it is natural to wonder
about a possible enhanced version of Grünbaum’s inequality (2) for the family of those compact convex
sets 𝐾 such that (there exists a hyperplane 𝐻 for which) 𝑓 is 𝑝-concave, i.e., 𝑓 to the power 𝑝 is concave,
with 1/(𝑛 − 1) < 𝑝. On the other hand, one could expect to extend this inequality to compact sets 𝐾, not
necessarily convex, for which 𝑓 is 𝑝-concave (for some hyperplane 𝐻), with 𝑝 < 1/(𝑛 − 1).

Observing that the equality case in Grünbaum’s inequality (2) is characterized by cones, that is, those
sets for which 𝑓 is (1/(𝑛 − 1))-affine (i.e., such that 𝑓1/(𝑛−1) is an affine function), the following sets of
revolution, associated to 𝑝-affine functions, arise as natural candidates to be the extremal sets, in some
sense, of these inequalities.

D e f i n i t i o n 2 . Let 𝑝 ∈ ℝ and let 𝑐, 𝛾, 𝛿 > 0 be fixed. Then:

( i ) If 𝑝 ≠ 0, let 𝑔𝑝∶ 𝐼 → ℝ≥0 be the non-negative function given by 𝑔𝑝(𝑡) = 𝑐(𝑡 + 𝛾)1/𝑝, where 𝐼 = [−𝛾, 𝛿]
if 𝑝 > 0 and 𝐼 = (−𝛾, 𝛿] if 𝑝 < 0.

( i i ) If 𝑝 = 0, let 𝑔0∶ (−∞, 𝛿] → ℝ≥0 be the non-negative function defined by 𝑔0(𝑡) = 𝑐e𝛾𝑡.

Let 𝑢 ∈ �𝑛−1 be fixed. By 𝐶𝑝 we denote the set of revolution whose section by the hyperplane {𝑥 ∈ ℝ𝑛 ∶

⟨𝑥, 𝑢⟩ = 𝑡} is an (𝑛 − 1)-dimensional ball of radius (𝑔𝑝(𝑡)/𝜅𝑛−1)
1/(𝑛−1) with axis parallel to 𝑢. (We warn

the reader that, in the following, we will use the word “radius” to refer to such a generating function
(𝑔𝑝(𝑡)/𝜅𝑛−1)

1/(𝑛−1) of the set 𝐶𝑝, for short.) ◀

In this short paper we discuss the above-mentioned problem and show that it has a positive answer in the
full range of 𝑝 ∈ [0,∞] (in the following, 𝜎𝐻⊥ denotes the Schwarz symmetrization with respect to 𝐻⊥).
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2 . M a i n r e s u l t s

As mentioned in the introduction, the sets 𝐶𝑝 associated to (cross-sections volume) functions that are
𝑝-affine (see Definition 2) seem to be possible extremal sets of such expected inequalities. So, we start by
showing the precise value of the ratio vol(⋅−)/ vol(⋅) for the sets 𝐶𝑝.

L e m m a 3 ([3]). Let 𝑝 ∈ (−∞,−1) ∪ [0,∞) and let 𝐻 be a hyperplane with unit normal vector 𝑢 ∈ �𝑛−1.
Let 𝑔𝑝 and 𝐷𝑝, with axis parallel to 𝑢, be as in Definition 2, for any fixed 𝑐, 𝛾, 𝛿 > 0. If 𝐶𝑝 has centroid at
the origin, then

( 3 )

vol(𝐶 −
𝑝 )

vol(𝐶𝑝)
= (

𝑝 + 1
2𝑝 + 1)

(𝑝+1)/𝑝

where, if 𝑝 = 0, the above identity must be understood as

( 4 )

vol(𝐶 −
0 )

vol(𝐶0)
= lim

𝑝→0+
(
𝑝 + 1
2𝑝 + 1)

(𝑝+1)/𝑝
= e−1.

Before showing the general case, we have that if the cross-sections volume function 𝑓 associated to a
compact set 𝐾 is increasing in the direction of the normal vector of 𝐻, then the minimum of the ratios
vol(𝐾−)/ vol(𝐾) and vol(𝐾+)/ vol(𝐾) is attained at vol(𝐾−)/ vol(𝐾), independently of the concavity nature
of 𝑓.

P r o p o s i t i o n 4 ([3]). Let 𝐾 ⊂ ℝ𝑛 be a compact set with non-empty interior and with centroid at the origin.
Let 𝐻 be a hyperplane, with unit normal vector 𝑢 ∈ �𝑛−1, such that the function 𝑓∶ 𝐻⊥ → ℝ≥0 given by
𝑓(𝑥) = vol𝑛−1 (𝐾 ∩ (𝑥 + 𝐻)) is quasi-concave with 𝑓(𝑏𝑢) = max𝑥∈𝐻⊥ 𝑓(𝑥), where [𝑎𝑢, 𝑏𝑢] = 𝐾|𝐻⊥. Then,

vol(𝐾+)
vol(𝐾) ≥ 1

2 .

Our main result reads as follows:

T h e o r e m 5 ([3]). Let 𝐾 ⊂ ℝ𝑛 be a compact set with non-empty interior and with centroid at the origin. Let
𝐻 be a hyperplane such that the function 𝑓∶ 𝐻⊥ → ℝ≥0 given by 𝑓(𝑥) = vol𝑛−1 (𝐾 ∩ (𝑥 +𝐻)) is 𝑝-concave,
for some 𝑝 ∈ [0,∞). If 𝑝 > 0, then

( 5 )
vol(𝐾−)
vol(𝐾) ≥ (

𝑝 + 1
2𝑝 + 1)

(𝑝+1)/𝑝

with equality if and only if 𝜎𝐻⊥(𝐾) = 𝐶𝑝. If 𝑝 = 0, then

( 6 )
vol(𝐾−)
vol(𝐾) ≥ e−1.

The inequality is sharp, that is, the quotient vol(𝐾−)/ vol(𝐾) comes arbitrarily close to e−1.

Note that the “limit case” 𝑝 = ∞ in Theorem 5 is also trivially fulfilled. Indeed, if 𝑓 is∞-concave, then 𝑓 is
constant on [𝑎, 𝑏], and thus 0 = [g(𝐾)]1 = 𝑏 + 𝑎 (see (1)), which yields that 𝑎 = −𝑏 and, hence,

vol(𝐾−)
vol(𝐾) = 1

2 = lim
𝑝→∞

(
𝑝 + 1
2𝑝 + 1)

(𝑝+1)/𝑝
.

Finally, we show that Theorem 5 cannot be extended to the range of 𝑝 ∈ (−∞,−1). In fact, we have a more
general result:

P r o p o s i t i o n 6 ([3]). Let 𝑝 ∈ (−∞,−1). There exists no positive constant 𝛽𝑝 such that

min {vol(𝐾
−)

vol(𝐾) ,
vol(𝐾+)
vol(𝐾) } ≥ 𝛽𝑝

for all compact sets 𝐾 ⊂ ℝ𝑛 with non-empty interior and with centroid at the origin, for which there exists
𝐻 such that 𝑓(𝑥) = vol𝑛−1 (𝐾 ∩ (𝑥 + 𝐻)), 𝑥 ∈ 𝐻⊥, is 𝑝-concave.
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We conclude this work by discussing that the statement of Theorem 5 cannot be extended to the range
of 𝑝 ∈ (−1/2, 0) either. Therefore, this fact (jointly with the case in which 𝑝 ∈ (−∞,−1), collected in
Proposition 6) gives that [0,∞] is the largest subset of the real line (with respect to set inclusion) for which
𝐶𝑝 provides us with the infimum value for the ratio vol(⋅−)/vol(⋅), among all compact sets with (centroid at
the origin and) 𝑝-concave cross-sections volume function.

N o t e 7 . The results presented in this contribution were originally proven in [3]. ◀
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A b s t r a c t : When we study the topological consequences of the curvature, one of
the most successful tools is the Gromov-Hausdorff distance. It allows us to study
the convergence of manifolds under some metric constrictions. In this paper, we
will focus on the convergence with totally bounded sectional curvature. We will
explain some of the most important results in the area (Cheeger-Gromov, Fukaya,
Naber & Tian). We will use a result due to S. Roos explaining the collapse with
totally bounded curvature with codimension 1, to show our current work: we are
trying to generalize it to every codimension using the Uryson k-widths instead of
the injectivity radius.
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variedades con curvatura seccional totalmente acotada. Explicaremos algunos de
los resultados más significativos (Cheeger-Gromov, Fukaya, Naber y Tian). A raíz de
un resultado de S. Roos sobre el colapso con codimensión 1 y curvatura totalmente
acotada, mostraremos nuestra línea de trabajo actual en pos de generalizar dicho
resultado para cualquier codimensión y usando los Uryson k-widths en vez del
radio de inyectividad.
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Convergence of manifolds with totally bounded curvature

Themain purpose of this study is to understand the geometry of the limit space 𝑋, in the Gromov-Hausdorff
sense, of a sequence of 𝑛-Riemannian manifolds {𝑀𝑛

𝑖 } with |sec𝑀𝑖| ≤ 1 and diam(𝑀𝑖) ≤ 𝐷, for all 𝑖 ∈ ℕ.
This has certain implications in some areas where the sequence is formed by Kähler or Einstein manifolds.

We are trying to generalize, for every dimension, a result due to S. Roos. We will be using the Hausdorff
dimension on the limit space because, on the majority of the situations, it will be a metric space.

T h e o r e m 1 ([13]). Let {(𝑀𝑛
𝑖 , 𝑔𝑖)} be a sequence of 𝑛-Riemannian manifolds such that diam(𝑀𝑖) ≤ 𝐷 and

|sec𝑀𝑖| ≤ 1, for all 𝑖. We have that 𝑀𝑖
𝐺𝐻
−−→ 𝑋, where 𝑋 is a metric space. Then, these two are equivalent:

• dim𝐻 𝑋 ≥ (𝑛 − 1).
• For every 𝑟 > 0, there exist 𝐶(𝑛, 𝑟,𝑋) > 0 such that

𝐶 ≤ vol(𝐵𝑀𝑖
𝑟 (𝑥))

inj𝑀𝑖
(𝑥)

, for every 𝑥 ∈ 𝑀𝑖 and 𝑖 ∈ ℕ.

We are interested in generalizing this theorem to every dimension on the limit 𝑋. In this situation we will
work with the Uryson k-widths instead of the injectivity radius. This approach allows us to obtain Roos’s
result as a corollary. We will also obtain results of Gromov [10] and Perelman [12] as corollaries.

For that purpose we are working with a commuting diagram developed by Fukaya [6, 7],

𝐹𝑀𝑖
𝜂𝑖 //

𝜋𝑖
��

𝑋

𝜋
��

𝑀𝑖
𝜂𝑖 // 𝑋

which relates a sequence of 𝑛-Riemannianmanifolds {(𝑀𝑖, 𝑔𝑖)}with totally bounded curvature and bounded
diameter, its Gromov-Hausdorff limit 𝑋, the frame bundles 𝐹𝑀𝑖 of each manifold of the sequence and
the 𝐶1,𝛼 limit 𝑋 of those frame bundles. We will like to relate the widths of the fibres of these maps to the
widths of the manifolds and, with that, generalize Roos’s result.

1 . G r o m o v - H a u s d o r f f D i s t a n c e

The Gromov-Hausdorff distance allows us to define a convergence for sequences of metric spaces. In
general, the limit space does not need to conserve any regularity properties if the items of the sequence
are manifolds. There can appear topological and metric singularities.

Gromov extended the notion of Hausdorff distance involving two different metric spaces. It is known as
Gromov-Hausdorff distance:

D e f i n i t i o n 2 . Let 𝑋,𝑌 be metric spaces. We define the Gromov-Hausdorff distance between 𝑋 and 𝑌 as

d𝐺𝐻(𝑋,𝑌) = inf
𝑍
{d𝐻(𝑓(𝑋), 𝑔(𝑌)},

where the infimum is taken between all the isometric embeddings 𝑓∶ 𝑋 → 𝑍 and 𝑔∶ 𝑌 → 𝑍 in the same
ambient metric space 𝑍. ◀

To be precise, d𝐺𝐻 is a distance in the set of compact metric spaces after identifying isometric pairs.

2 . C o l l a p s e o f R i e m a n n i a n m a n i f o l d s w i t h |sec𝑀𝑖
| ≤ 1

We are going to show some of the most relevant results of the convergence of Riemannian manifolds with
totally bounded curvature. We will use the Hausdorff dimension in the limit space and the usual one on
the manifolds of the sequence.

The first case is when the limit space has the same dimension as the manifolds of the sequence. Cheeger
showed that we can extract a subsequence of manifolds which converges to a manifold:
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T h e o r e m 3 ([2, 3]). Let {(𝑀𝑛
𝑖 , 𝑔𝑖)} be a sequence of compact Riemannian manifolds such that |sec𝑀𝑖| ≤ 1,

diam(𝑀𝑖) ≤ 𝐷 and vol(𝑀𝑖) > 𝑣, for all 𝑖. Then, there exists a subsequence {𝑀𝑗} ⊂ {𝑀𝑖} such that 𝑀𝑗
𝐺𝐻
−−→ 𝑁,

where 𝑁 is a 𝐶1,𝛼 Riemannian manifold with 0 < 𝛼 < 1.

Now, our aim is working with limit spaces with less dimension than the manifolds of the sequence.

D e f i n i t i o n 4 (collapse). Let {𝑀𝑛
𝑖 } be a sequence of Riemannian manifolds such that𝑀𝑖

𝐺𝐻
−−→ 𝑋, where 𝑋 is

a metric space. We say that there exists collapse if dim𝐻 𝑋 < dim𝑀𝑖 = 𝑛. ◀

One of the most important results on the field is the almost flat theorem of Gromov.

D e f i n i t i o n 5 . An infranil manifold 𝑁/𝛤, is a quotient manifold where 𝑁 is a simply connect nilpotent Lie
group and 𝛤 is a discrete cocompact subgroup of Aut(𝑁) ⋉ 𝑁. ◀

D e f i n i t i o n 6 (almost flat manifold). We say that𝑀𝑛 is an almost flat Riemannian manifold if there exists a
set of metrics 𝑔𝜖 such that |sec𝑀𝜖| ≤ 1, diam(𝑀𝜖) ≤ 𝜖, for all 𝜖 > 0.

For example, every flat manifold is almost flat. ◀

T h e o r e m 7 ([8]). A Riemannian manifold 𝑀𝑛 is almost flat if and only if it is infranil. In other words, if
𝑀𝜖

𝐺𝐻
−−→ {𝑝𝑡}, we have that 𝑀𝜖 is diffeomorphic to one which is infranil.

Later on, Cheeger and Gromov worked on F-structures [4]. They defined them as actions of torus sheaves
on normal coverings of the manifolds on the sequence. This action gives orbits on the manifolds which
are going to collapse to points. They proved that if a manifold admits such structure, we can construct a
family of metrics 𝑔𝛿 such that the manifold collapses when 𝛿 → 0 while the curvature is totally bounded.
In [5], they constructed the converse of the above result.

At present, the most up-to-date results are due to Naber and Tian [11]. In that paper, they try to understand
all the geometry besides Fukaya’s diagram. They built two fibre bundles 𝑉𝑇,𝑉𝑎𝑑 → 𝑋 which show the
unwrapped limit geometry above the limit space 𝑋.

3 . k - d i m e n s i o n a l U r y s o n w i d t h

We begin with the definition of the k-width:

D e f i n i t i o n 8 (Uryson k-width [12]). The k-dimensional Uryson width 𝑤𝑘(𝑋) of a metric space 𝑋 is defined
as the exact lower bound of those 𝛿 > 0 for which there exists a k-dimensional space 𝑃 and a continuous
map 𝑓∶ 𝑋 → 𝑃 all of whose inverse images have diameters at most 𝛿. ◀

R e m a r k 9 . Let𝑀𝑛 be an 𝑛-Riemannian manifold. Then,

• 𝑤0(𝑀) = diam(𝑀).
• 𝑤𝑖(𝑀) = 0, for all 𝑖 ≥ 𝑛. ◀

Using these metric invariants, Gromov and later Perelman proved some inequalities involving the volume
of a Riemannian manifold and the product of all k-widths:

T h e o r e m 1 0 ([10, 12]). Let 𝑀 be an almost flat 𝑛-Riemannian manifold. Then, there exists 𝑐 > 0 such that

( 1 ) 𝑐−1 ⋅ vol(𝑀) ≤
𝑛−1
∏
𝑖=0

𝑤𝑖(𝑀) ≤ 𝑐 ⋅ vol(𝑀).

Let 𝑀 be a closed 𝑛-Riemannian manifold nonnegatively curved. Then, there exists 𝑐 > 0 such that (1)
holds.

Due to this result, we can conjecture the following taking into account that the fibres of our collapse are
infranil manifolds:
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C o n j e c t u r e 1 1 . Let {(𝑀𝑛
𝑖 , 𝑔𝑖)} be a sequence of 𝑛-Riemannian manifolds such that diam(𝑀𝑖) ≤ 𝐷 and

|sec𝑀𝑖| ≤ 1, for all 𝑖. We have that 𝑀𝑖
𝐺𝐻
−−→ 𝑋, where 𝑋 is a metric space. Then, these two are equivalent:

• dim𝐻 𝑋 ≥ (𝑛 − 𝑘).
• For every 𝑟 > 0, there exists 𝐶(𝑛, 𝑟,𝑋) > 0 such that

𝐶 ≤ vol(𝐵𝑀𝑖
𝑟 (𝑥))

𝛱𝑘−1
𝑗=0 𝑤𝑛−𝑘+𝑗(𝑀𝑖)

, for every 𝑥 ∈ 𝑀𝑖 and 𝑖 ∈ ℕ.

R e m a r k 1 2 . If 𝑘 = 1,
𝑤𝑛−1(𝑀𝑖) = 𝑤0(𝐹

𝑝
𝑖 ) = diam(𝐹𝑝𝑖 ) = 2 inj(𝑀𝑖),

where 𝐹𝑝𝑖 is de fibre in the Fukaya’s map 𝑓∶ 𝑀𝑖 → 𝑋. Therefore, our conjecture implies Theorem 1. ◀

R e m a r k 1 3 . Suppose𝑀𝑖
𝐺𝐻
−−→ {𝑝𝑡}with totally bounded curvature (Theorem 7). Then, our conjecture implies

Theorem 10, because it is our desired result with that kind of collapse. ◀
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A b s t r a c t : For given graphs 𝐺 and 𝐹, the Turán number ex(𝐺,𝐹) is defined to be
the maximum number of edges in an 𝐹-free subgraph of 𝐺. Foucaud, Krivelevich
and Perarnau and later independently Briggs and Cox introduced a dual version of
this problem wherein for a given number 𝑘, one maximizes the number of edges
in a host graph 𝐺 for which ex(𝐺,𝐻) < 𝑘.

Addressing a problem of Briggs and Cox, we determine the asymptotic value of the
inverse Turán number of the paths of length 4 and 5 and provide an improved lower
bound for all paths of even length. Moreover, we obtain bounds on the inverse
Turán number of even cycles giving improved bounds on the leading coefficient
in the case of 𝐶4. Finally, we give multiple conjectures concerning the asymptotic
value of the inverseTurán number of𝐶4 and 𝑃ℓ, suggesting that in the latter problem
the asymptotic behavior depends heavily on the parity of ℓ.

R e s u m e n : Para dos grafos 𝐺 y 𝐹, el número de Turán ex(𝐺,𝐹) se define como el
número máximo de aristas en un subfrafo 𝐹-libre de 𝐺. Foucaud, Krivelevich y
Perarnau, e independientemente Briggs y Cox, introdujeron una versión dual de
este problema en la que, dado un número 𝑘, se maximiza el número de aristas en
un grafo 𝐺 tal que ex(𝐺,𝐹) < 𝑘.

Abordando un problema de Briggs y Cox, determinamos el valor asintótico del
número de Turán inverso de los caminos de longitud 4 y 5, y proporcionamos una
cota inferior mejorada para todos los caminos de longitud par. Además, obtenemos
cotas para el número de Turán inverso de los ciclos pares, dando cotas mejoradas
para el término dominante en el caso de 𝐶4. Por último, planteamos múltiples
conjeturas sobre el número de Turán inverso de 𝐶4 y 𝑃ℓ, sugiriendo que en el
segundo caso el comportamiento asintótico depende fuertemente de la paridad
de ℓ.

K e y w o r d s : Turán number, extremal combinatorics, paths, cycles.

M S C 2 0 1 0 : 05C35, 05D99.

A c k n o w l e d g e m e n t s : We thank Chris Cox for discussions on the topic of this paper. The research of first, second
and forth authors was supported by the National Research, Development and Innovation Office NKFIH, grants
K116769, K117879 and K126853. The research of the second author was partially supported by the Shota
Rustaveli National Science Foundation of Georgia SRNSFG, grant number FR-18-2499. The research of the
third author was supported by the Institute for Basic Science (IBS-R029-C1).

R e f e r e n c e : GYőRI, Ervin; SALIA, Nika; TOMPKINS, Casey, and ZAMORA, Oscar. “Inverse Turán numbers”. In:
TEMat monográficos, 2 (2021): Proceedings of the 3rd BYMAT Conference, pp. 79-82. ISSN: 2660-6003. URL:
https://temat.es/monograficos/article/view/vol2-p79.

cb This work is distributed under a Creative Commons Attribution 4.0 International licence
https://creativecommons.org/licenses/by/4.0/

mailto:gyori.ervin@renyi.mta.hu
mailto:salia.nika@renyi.hu
mailto:ctompkins496@gmail.com
mailto:oscarz93@yahoo.es
https://temat.es/monograficos/article/view/vol2-p79
https://creativecommons.org/licenses/by/4.0/


Inverse Turán numbers

1 . I n t r o d u c t i o n

This is an extended abstract of manuscript [12].
Turán’s theorem [14] asserts that the maximum number of edges in a subgraph of the complete graph 𝐾𝑛
on 𝑛 vertices with no subgraph isomorphic to the complete graph on 𝑟 vertices is attained by the complete
𝑟-partite graph with parts of size ⌊𝑛/𝑟⌋ and ⌈𝑛/𝑟⌉. This graph is referred to as the Turán graph and is denoted
by 𝑇(𝑛, 𝑟).
Since Turán’s seminal result, the problem of maximizing the number of edges in an 𝑛-vertex graph not
containing a fixed graph 𝐹 as a subgraph has been investigated for a variety of graphs 𝐹. A graph 𝐺
containing no member of ℱ as a subgraph is said to be ℱ-free, and for ℱ = {𝐹} we say that such a graph is
𝐹-free. The Turán number ex(𝑛,ℱ) is defined to be the maximum number of edges in an ℱ-free subgraph
of 𝐾𝑛. The classical Turán problem was settled asymptotically for all finite families of graphsℱ of chromatic
number at least three by Erdős, Stone and Simonovits [7, 8]. However, for most bipartite graphs 𝐹, the
Turán problem remains open.
More generally for a given host graph 𝐺, the Turán number ex(𝐺,ℱ) is defined to be the maximum number
of edges in an ℱ-free subgraph of 𝐺 (so ex(𝑛,ℱ) = ex(𝐾𝑛,ℱ)). Common alternative host graphs include
the complete bipartite graph 𝐾𝑚,𝑛 (the so-called Zarankiewicz problem), the hypercube 𝑄𝑛 [4], a random
graph [10], as well as the class of 𝑛-vertex planar graphs [3].
In this paper, we will be concerned with a dual version of Turán’s extremal function introduced by Foucaud,
Krivelevich, and Perarnau [9] and later (in a different but equivalent form which we will use) by Briggs and
Cox [1]. The number of vertices and edges in a graph 𝐺 are denoted by 𝑣(𝐺) and 𝑒(𝐺), respectively. The
inverse Turán number is defined as follows.

D e f i n i t i o n 1 . For a given family of graphs ℱ, ex−1 (𝑘,ℱ) = sup{𝑒(𝐺) ∶ 𝐺 is a graph with ex(𝐺,ℱ) < 𝑘}. For
ℱ = {𝐹}, we write ex−1 (𝑘, {𝐹}) = ex−1 (𝑘,𝐹). ◀

Note that ex−1 (𝑘,ℱ)may be infinite. However, Briggs and Cox [1] observed that ex−1 (𝑘,𝐹) is finite whenever
𝐹 is not a matching or a star. An equivalent formulation of the problem is that we must find the maximum
number of edges in a graph 𝐺 such that any subgraph of 𝐺 with 𝑘 edges contains a copy of some 𝐹 ∈ ℱ.
Observe that if 𝐹1 is a subgraph of 𝐹2, then ex−1 (𝑘,𝐹1) ≥ ex−1 (𝑘,𝐹2). Throughout this paper, when discussing
inverse Turán numbers, the asymptotic notation 𝑂 and 𝛺 indicates that 𝑘 tends to infinity, and constants
involving other parameters may be hidden.
Briggs and Cox [1] gave upper and lower bounds on the inverse Turán number of 𝐶4 of the form 𝛺(𝑘4/3)
and 𝑂(𝑘3/2), respectively. Unknown to Briggs and Cox at the time, this problem was considered earlier in a
different form by Foucaud, Krivelevich, and Perarnau [9] where a bound was proved that was sharp up to a
logarithmic factor. Even more, according to Perarnau and Reed [13] the problem was already proposed by
Bollobás and Erdős at a workshop in 1966 (see [6] for a related problem about union-free families from
1970). More generally a recursive bound on the inverse Turán number of ex−1 (𝑘, {𝐶4,𝐶6,… ,𝐶2𝑡}) was also
obtained in [9], which is also tight up to a logarithmic factor.
For graphs 𝐹 with chromatic number at least 3, Foucaud, Krivelevich, and Perarnau [9] and Briggs and
Cox [1] determined the inverse Turán number asymptotically. Moreover, Briggs and Cox [1] determined
the inverse Turán number of the complete graph precisely as well as the union of a path of length 1 and
a path of length 2. They also settled the case of paths of length 3 and proposed a conjecture about the
inverse Turán number of a path of length 4.
In Section 2, we will investigate the inverse Turán problem for paths, resolving a conjecture of Briggs and
Cox asymptotically and providing a new lower bound for paths of any even length. In Section 3 we will
determine the order of magnitude of the inverse Turán number of any complete bipartite graph resolving
another conjecture of Briggs and Cox about the order of magnitude of ex−1 (𝑘,𝐶4). We note however, that
this conjecture already follows directly from an unpublished preprint of Conlon, Fox, and Sudakov [2]
which preceded the paper of Briggs and Cox [1], but we provide a proof in the formulation introduced by
Briggs and Cox for completeness. In the case of 𝐶4, we give improved bounds on the leading coefficient
and conjecture that the lower bound is optimal. Additionally, we give some estimates on the inverse Turán
number of an arbitrary even cycle. Finally in Section 4, we present some conjectures and directions for
future work.
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2 . I n v e r s e T u r á n n u m b e r s o f p a t h s

In this section, we investigate the inverse Turán problem for paths. We begin by recalling a well-known
result of Erdős and Gallai.

T h e o r e m 2 (Erdős, Gallai [5]). For all 𝑛 ≥ 𝑡, ex(𝑛, 𝑃𝑡) ≤ (𝑡 − 1)𝑛/2, and equality holds if and only if 𝑡 divides
𝑛 and 𝐺 is the disjoint union of cliques of size 𝑡.

T h e o r e m 3 (Briggs, Cox [1]). For all 𝑡 ≥ 3,

ex−1 (𝑘, 𝑃𝑡) ≥ (
⌊ 2𝑘
𝑡−1

⌋ − 1
2

).

The bound in Theorem 3 comes from taking a complete graph of the appropriate size and applying
Theorem 2. In the case of 𝑡 = 3, Briggs and Cox [1] proved that a complete graph gives the optimal bound
for ex−1 (𝑘, 𝑃3). Briggs and Cox also noted that for 𝑃4 one can do better by considering a complete bipartite
base graph and using a result of Gyárfás, Rousseau, and Schelp [11] on the extremal number of 𝑃𝑡 in such
graphs. However, starting with a clique is superior to a complete bipartite graph for 𝑃𝑡, 𝑡 ≠ 4. We will
improve the lower bound on ex−1 (𝑘, 𝑃2𝑡) in general by considering balanced complete multipartite graphs.
Note that, since the inverse Turán number is non-decreasing when considering supergraphs, it follows
that the inverse Turán number of any path of length at least 3 is 𝛩(𝑘2).

P r o p o s i t i o n 4 . Among the Turán graphs 𝑇(𝑛, 𝑟) with ex(𝑇(𝑛, 𝑟), 𝑃2𝑡) < 𝑘, the one with the maximum
number of edges is obtained by 𝑟 = 𝑡 and 𝑛 = ⌊𝑘−1

𝑡−1
⌋ + 𝑂(𝑘). In particular, for 𝑡 ≥ 2,

ex−1 (𝑘, 𝑃2𝑡) ≥ 𝑒 (𝑇 (⌊
𝑘 − 1
𝑡 − 1 ⌋ , 𝑡)) =

(𝑘 − 1)2

2𝑡(𝑡 − 1) + 𝑂(𝑘).

T h e o r e m 5 . We have ex−1 (𝑘, 𝑃4) = 𝑘2/4 + 𝑂(𝑘3/2).

T h e o r e m 6 . We have ex−1 (𝑘, 𝑃5) = 𝑘2/8 + 𝑂(𝑘).

3 . I n v e r s e T u r á n n u m b e r o f c o m p l e t e b i p a r t i t e g r a p h s a n d e v e n c y c l e s

While the classical Turán number ex(𝑛,𝐾𝑠,𝑡) is not known, Conlon, Fox, and Sudakov [2] determined the
asymptotics of ex−1 (𝑘,𝐾𝑠,𝑡).

T h e o r e m 7 . Let 𝑠, 𝑡 be integers with 1 < 𝑠 ≤ 𝑡. Then, ex−1 (𝑘,𝐾𝑠,𝑡) = 𝛩(𝑘1+1/𝑠).

In the case of 𝐶4, we give a more precise calculation to prove upper and lower bounds within a factor

of 3√3
2√2

< 2.

T h e o r e m 8 . ⌊√2𝑘/3⌋ ⌊2𝑘/3 − 1⌋ ≤ ex−1 (𝑘,𝐶4) ≤ 𝑘3/2 + 𝑜(𝑘3/2).

In the following theorem we offer some bounds for the inverse Turán number of even cycles.

T h e o r e m 9 . Let 𝑡 ≥ 2. Then,

ex−1 (𝑘,𝐶2𝑡) =
⎧
⎨
⎩

𝑂 (𝑘2−
2

3𝑡−3 ) if 𝑡 is odd,

𝑂(𝑘2−
2

3𝑡−2 ) if 𝑡 is even,

and

ex−1 (𝑘,𝐶2𝑡) =
⎧

⎨
⎩

𝛺(𝑘2−
2

𝑡+1 ) if 𝑡 is odd,

𝛺(𝑘2−
2

𝑡+2 ) if 𝑡 is even.
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4 . R e m a r k s a n d o p e n q u e s t i o n s

We pose two conjectures about the inverse Turán number of the path depending on the parity of its length.
In agreement with the intuition of Briggs and Cox [1], we believe that the inverse Turán number of a path
with odd length is attained by a clique. On the other hand, we believe that a balanced multi-partite graph
of 𝑡 parts is optimal for forcing a path of length 2𝑡.

C o n j e c t u r e 1 0 . The inverse Turán number of a path of length 2𝑡+1 is attained asymptotically by a complete

graph. Therefore, for every 𝑡, ex−1 (𝑘, 𝑃2𝑡+1) = (⌊
𝑘
𝑡
⌋

2
) + 𝑜(𝑘2).

C o n j e c t u r e 1 1 . The inverse Turán number of a path of length 2𝑡 is attained asymptotically by a balanced,
complete 𝑡-partite graph. Therefore, for every 𝑡, ex−1 (𝑘, 𝑃2𝑡) =

𝑘2

2(𝑡−1)2
(1 − 1

𝑡
) + 𝑜 (𝑘2) .

We have given upper and lower bounds for the value of ex−1 (𝑘,𝐶4), and we conjecture that the lower bound
is asymptotically sharp.

C o n j e c t u r e 1 2 . We have ex−1 (𝑘,𝐶4) =
2√2𝑘3/2

3√3
+ 𝑜(𝑘3/2).
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A b s t r a c t : The Ring Learning with Errors (RLWE) problem has been widely used
for the construction of new quantum-resistant cryptographic primitives. Most of
the existing RLWE-based schemes make use of power-of-two cyclotomic rings due
to their good performance and simplicity. This talk explores the replacement of
power-of-two cyclotomic rings by multiquadratics. We show that for polynomials
with 𝑛 coefficients, the cost of the polynomial operations can be reduced from
𝒪(𝑛 log 𝑛)multiplications to 𝒪(𝑛)multiplications and 𝒪(𝑛 log 𝑛) additions. Finally,
we discuss the benefits that these rings can bring about when implementing the
OLE (Oblivious Linear Function Evaluation) primitive, which is a basic block used
in many Secure Multiparty Computation (MPC) protocols.

R e s u m e n : El problema Ring Learning with Errors (RLWE) ha sido utilizado am-
pliamente para la construcción de nuevas primitivas criptográficas resistentes a
ataques por parte de un ordenador cuántico. La mayoría de los esquemas existen-
tes basados en RLWE hacen uso de anillos ciclotómicos de orden potencia de dos,
debido a su buen comportamiento y sencillez. Esta charla explora el reemplazo de
los anillos ciclotómicos potencia de dos por anillos multicuadráticos. Se muestra
que, para polinomios con 𝑛 coeficientes, el coste de las operaciones polinomia-
les puede ser reducido de 𝒪(𝑛 log 𝑛)multiplicaciones a 𝒪(𝑛)multiplicaciones y
𝒪(𝑛 log 𝑛) sumas. Finalmente, se discuten los beneficios que estos anillos intro-
ducen al implementar la primitiva OLE (Oblivious Linear Function Evaluation),
que es un bloque básico utilizado en muchos protocolos de Secure Multiparty
Computation (MPC).
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Multiquadratic rings and oblivious linear function evaluation

1 . I n t r o d u c t i o n

This extended abstract corresponds to a talk given in the BYMAT 2020 conference, and covers some of the
results previously introduced in [3] and [4]. Due to space constraints, our main aim here is to provide a
high-level overview of the most important aspects highlighted in the presentation. We refer the reader
to [3, 4] for further technical details.

N o t a t i o n . We first introduce the notation used in this work. Vectors and matrices are represented by
boldface lowercase and uppercase letters. Polynomials are denoted with regular lowercase letters, omitting
the polynomial variable (i.e., 𝑎 instead of 𝑎(𝑧)) when there is no ambiguity. We follow a recursive definition
for multivariate quotient rings: 𝑅𝑞[𝑧] = ℤ𝑞[𝑧]/𝑓(𝑧) denotes the polynomial quotient ring in the variable
𝑧modulo 𝑓(𝑧) with coefficients belonging to ℤ𝑞. In general, 𝑅𝑞[𝑥1,… , 𝑥𝑙] (resp. 𝑅[𝑥1,… , 𝑥𝑙]) represents
the multivariate quotient polynomial ring with coefficients in ℤ𝑞 (resp. ℤ) and reduced modulo 𝑓𝑖(𝑥𝑖)
for 1 ≤ 𝑖 ≤ 𝑙. The polynomial 𝑎 can also be denoted by a column vector 𝒂 whose components are the
corresponding polynomial coefficients. Finally, the Hadamard (resp. Kronecker) product of two matrices
is 𝑨 ∘ 𝑩 (resp. 𝑨⊗ 𝑩), and [𝑙] denotes the set {1, 2,… , 𝑙}. ◀

1 . 1 . P r e l i m i n a r i e s : R i n g L e a r n i n g w i t h E r r r o s

The security of modern homomorphic encryption (HE) schemes [1] relies on the hardness of the Ring
Learning with Errors (RLWE) problem [6], where power-of-two cyclotomic rings as 𝑅𝑞 = ℤ𝑞[𝑧]/(1+ 𝑧𝑛) are
usually considered. An informal definition of RLWE is included in Figure 1, where we can see how the
hardness relies on the computational indistinguishability between (𝑎𝑖, 𝑏𝑖) and (𝑎𝑖, 𝑢𝑖), where 𝜒[𝑧] generates
polynomials in 𝑅𝑞, whose coefficients are independent and follow a Gaussian distribution.

F i g u r e 1 : Sketch of the RLWE problem.

The use of RLWE provides two important advantages for the construction of encryption schemes:

• RLWE is believed to be difficult to solve by quantum computers.
• Polynomial arithmetic can be done very efficiently with Number Theoretic Transforms (NTTs) [5].

1 . 2 . N T T r e p r e s e n t a t i o n

Instead of directly working with the coefficient representation, current HE libraries [1] accelerate computa-
tion by making use of a double CRT (Chinese Remainder Theorem) and NTT representation (see Figure 2).
In particular, by considering power-of-two cyclotomics, a negacyclic NTT is used which introduces an
overhead of 𝒪(𝑛 log 𝑛)multiplications. Consequently, motivated by this overhead, in [3, 4] we explored the
substitution in RLWE of the conventional power-of-two cyclotomics by multiquadratic rings (see Figure 1).
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F i g u r e 2 : Toy example of the CRT-NTT representation.

2 . M u l t i q u a d r a t i c R i n g s a n d f a s t e r a r i t h m e t i c

Multiquadratic quotient rings as 𝑅𝑞[𝑥1,… , 𝑥𝑙] = ℤ𝑞[𝑥1,… , 𝑥𝑙]/(𝑑1+𝑥21,… , 𝑑𝑙+𝑥2𝑙 ) can satisfy a convolution
property with a variant of theWalsh-Hadamard transform that we call 𝜶-generalizedWHT in [3, 4]. 𝑾𝑙 and
𝑾−1
𝑙 denote, respectively, the direct and inverse transform matrices associated to 𝑅𝑞[𝑥1,… , 𝑥𝑙].

Figure 3 includes the matrix expressions for both transforms of length 𝑛 = 2𝑙, where, in order to the ring
𝑅𝑞 factors into linear terms [5], 𝑑𝑗 = −𝛼−1𝑗 mod 𝑞 and the square-roots of 𝛼𝑗 must exist in 𝑅𝑞 for all 𝑗.

F i g u r e 3 : GeneralizedWalsh-Hadamard Transform.

This transform can be very efficiently computed by decomposing it into two different matrices:

• A diagonal matrix which can be computed with a cost of 𝑛 products.
• AWalsh-Hadamard matrix 𝑯𝑙 which can be computed with a cost of only 𝒪 (𝑛 log 𝑛) additions.

Hence, comparing to the more conventional negacyclic NTT used in the RLWE problem, the use of
multiquadratic rings reduces the multiplicative cost of polynomial multiplications by a factor of log2 𝑛.

3 . O L E a p p l i c a t i o n s

The OLE (Oblivious Linear function Evaluation) primitive is a very important building block in many
MPC (Secure Multiparty Computation) protocols [2], and consequently, any achieved improvement on its
efficiency brings about important benefits on a wide variety of applications.
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An informal description of the OLE primitive can be seen in Figure 4 (we refer to [2, 4] for a formal
definition). It considers a set 𝒫 = {𝒫R ,𝒫S } with two different parties:

• The receiver 𝒫R , which holds an input 𝑥 and learns the output 𝑓(𝑥) = 𝑎𝑥 + 𝑏, but nothing more
about 𝑎 and 𝑏 than can be inferred from both 𝑥 and 𝑓(𝑥).

• The sender 𝒫S , which holds inputs 𝑎 and 𝑏, and learns nothing regarding 𝑥.

F i g u r e 4 : OLE primitive.

3 . 1 . A H E - b a s e d O L E

The OLE primitive from Figure 4 can be implemented with additively homomorphic encryption (AHE):

• 𝒫R sends E (𝑥) to 𝒫S . Note that E (⋅) represents the encryption functionality.
• 𝒫S homomorphically calculates 𝑎 ⋅ E (𝑥) + 𝑏 = E (𝑎𝑥 + 𝑏).
• 𝒫R receives E (𝑎𝑥 + 𝑏) and decrypts it to obtain 𝑓(𝑥).

We instantiated in [4] an AHE scheme based on the RLWE problem with both multiquadratic and power-
of-two cyclotomic rings. A very brief summary of the obtained results with 128 bits of security is:

• Multiquadratic-based OLE is at least two times faster than its power-of-two cyclotomic counterpart.
• Multiquadratic-based OLE has higher storage needs (requires around 1.7 times more bits).
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A b s t r a c t : We use a variational approach to study existence and regularity of solu-
tions for a Neumann 𝑝-Laplacian problem with a reaction term on metric spaces
equipped with a doubling measure and supporting a Poincaré inequality. Trace
theorems for functions with bounded variation are applied in the definition of
the variational functional and minimizers are shown to satisfy De Giorgi type
conditions.

R e s u m e n : Utilizamos un enfoque variacional para estudiar la existencia y regula-
ridad de soluciones para un problema de Neumann 𝑝-Laplaciano con un término
de reacción en espacios métricos dotados de una medida de duplicación y que per-
miten una desigualdad de Poincaré. Se aplican teoremas de traza para funciones
con variación acotada en la definición del funcional variacional y se demuestra
que los minimizadores satisfacen condiciones de tipo De Giorgi.

K e y w o r d s : 𝑝-Laplacian operator, measure metric spaces, minimal 𝑝-weak upper
gradient, minimizer.
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Neumann 𝑝-Laplacian problems with a reaction term on metric spaces

1 . I n t r o d u c t i o n

We extend existence and regularity results for a Neumann boundary value problem valid on the Euclidean
setting and, more generally, in Riemannian manifolds (see Nastasi [8]) to the general setting of metric
spaces. Applying variational methods such as those based on De Giorgi classes [2], we study a Neumann
boundary value problem as in Lahti, Malý, and Shanmugalingam [5] and Malý and Shanmugalingam [6],
but the new feature is that we include a reaction term (see Nastasi [9]). Under appropriate conditions on
the reaction term, we prove existence and boundedness properties of solutions with a reaction term in a
metric space equipped with a doubling measure and supporting a Poincaré inequality and thus extending
the corresponding results in Kinnunen and Shanmugalingam [3] and Malý and Shanmugalingam [6].

2 . M a t h e m a t i c a l b a c k g r o u n d

Let (𝑋, 𝑑,𝜇) be a metric measure space, where 𝜇 is a Borel regular measure. Let 𝐵(𝑥, 𝜌) ⊂ 𝑋 be a ball with
center 𝑥 ∈ 𝑋 and radius 𝜌 > 0.

D e f i n i t i o n 1 ([1, Section 3.1]). A measure 𝜇 on 𝑋 is said to be doubling if there exists a constant 𝐾, called
the doubling constant, such that 0 < 𝜇(𝐵(𝑥, 2𝜌)) ≤ 𝐾𝜇(𝐵(𝑥, 𝜌)) < +∞ for all 𝑥 ∈ 𝑋 and 𝜌 > 0. ◀

The following notion of upper gradient has been introduced in order to satisfy the lack of a differentiable
structure.

D e f i n i t i o n 2 ([1, Definition 1.13]). A non negative Borel measurable function 𝑔 is said to be an upper
gradient of function 𝑢∶ 𝑋 → [−∞,+∞] if, for all compact rectifiable arc lenght parametrized paths 𝛾
connecting 𝑥 and 𝑦, we have

( 1 ) |𝑢(𝑥) − 𝑢(𝑦)| ≤ ∫
𝛾
𝑔 d𝑠

whenever 𝑢(𝑥) and 𝑢(𝑦) are both finite and ∫𝛾 𝑔 d𝑠 = +∞ otherwise. ◀

We note that, if 𝑔 is an upper gradient of function 𝑢 and 𝜙 is a non negative Borel measurable function,
then 𝑔 + 𝜙 is still an upper gradient of 𝑢. In order to overcome this aspect, we use the following notions
that will lead to the definition of the minimal 𝑝-weak upper gradient of 𝑢.

D e f i n i t i o n 3 ([1, Definition 1.33]). Let 𝑝 ∈ [1,+∞[. Let 𝛤 be a family of paths in 𝑋. We say that inf𝜙 ∫𝑋 𝜙
𝑝 d𝜇

is the 𝑝-modulus of 𝛤, where the infimum is taken among all non negative Borel measurable functions 𝜙
satisfying ∫𝛾 𝜙 d𝑠 ≥ 1, for all rectifiable paths 𝛾 ∈ 𝛤. ◀

D e f i n i t i o n 4 ([1, Definition 1.32]). If (1) is satisfied for 𝑝-almost all paths 𝛾 in 𝑋, that is, the set of non
constant paths that do not satisfy (1) is of zero 𝑝-modulus, then 𝑔 is said a 𝑝-weak upper gradient of 𝑢. ◀

The family of weak upper gradients satisfy a result concerning the existence of a minimal element 𝑔ᵆ, that
is called the minimal 𝑝-weak upper gradient of 𝑢.

D e f i n i t i o n 5 ([1, Definition 4.1]). Let 𝑝 ∈ [1,+∞[. A metric measure space 𝑋 supports a (1,𝑝)-Poincaré
inequality if there exist 𝐾 > 0 and 𝜆 ≥ 1 such that

1
𝜇(𝐵(𝑥, 𝑟))

∫
𝐵(𝑥,𝑟)

|𝑢 − 𝑢𝐵(𝑥,𝑟)| d𝜇 ≤ 𝐾𝑟 (
1

𝜇(𝐵(𝑥, 𝜆𝑟))
∫
𝐵(𝑥,𝜆𝑟)

𝑔𝑝ᵆ d𝜇)

1
𝑝

for all balls 𝐵(𝑥, 𝑟) ⊂ 𝑋 and for all 𝑢 ∈ 𝐿1𝑙𝑜𝑐(𝑋), where 𝑢𝐵(𝑥,𝑟) =
1

𝜇(𝐵(𝑥,𝑟))
∫𝐵(𝑥,𝑟) 𝑢 d𝜇. ◀

Let 𝑋 be a completemetric space equipped with a doublingmeasure supporting a (1,𝑝)-Poincaré inequality.
We recall the concept of Newtonian space, which is based on the notion of minimal 𝑝-weak upper gradient.
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D e f i n i t i o n 6 . Let 𝑋 be a complete metric space equipped with a doubling measure supporting a (1,𝑝)-
Poincaré inequality, 𝑝 ∈ [1,+∞]. The Newtonian space 𝑁1,𝑝(𝑋) is defined by 𝑁1,𝑝(𝑋) = 𝑉1,𝑝(𝑋) ∩ 𝐿𝑝(𝑋),
where 𝑉1,𝑝(𝑋) = {𝑢 ∶ 𝑢 is measurable and 𝑔ᵆ ∈ 𝐿𝑝(𝑋)}.We consider 𝑁1,𝑝(𝑋) equipped with the norm

‖𝑢‖𝑁1,𝑝(𝑋) = ‖𝑔ᵆ‖𝐿𝑝(𝑋) + ‖𝑢‖𝐿𝑝(𝑋).

We denote with 𝑁1,𝑝
∗ (𝑋) = {𝑢 ∈ 𝑁1,𝑝(𝑋) ∶ ∫𝑋 𝑢 d𝑥 = 0}. ◀

The Newtonian space 𝑁1,𝑝(𝑋) defined above is a complete normed vector space, which generalizes the
Sobolev space𝑊 1,𝑝(𝛺) to a metric setting.

D e f i n i t i o n 7 (see [7]). A Borel set 𝐸 ⊂ 𝑋 is said to be of finite perimeter if there exists a sequence {𝑢𝑛}𝑛∈ℕ
in 𝑁1,1(𝑋) such that 𝑢𝑛 → 𝜒𝐸 in 𝐿1(𝑋) and lim inf𝑛→+∞ ∫𝑋 𝑔ᵆ𝑛 d𝜇 < ∞. The perimeter 𝑃𝐸(𝑋) of 𝐸 is the
infimum of the above limit among all sequences {𝑢𝑛} as above. For an open set 𝑈 ⊂ 𝑋, the perimeter of 𝐸
in 𝑈 is

𝑃𝐸(𝑈) = inf {lim inf
𝑛→+∞

∫
𝑋
𝑔ᵆ𝑛 d𝜇 ∶ {𝑢𝑛}𝑛∈ℕ ⊂ 𝑁1,1(𝑈), 𝑢𝑛 → 𝜒𝐸∩𝑈 in 𝐿1(𝑈)} . ◀

From now on, we consider a bounded domain (non empty, connected open set) 𝛺 in 𝑋 with 𝑋 ⧵ 𝛺 of
positive measure such that 𝛺 is of finite perimeter with perimeter measure 𝑃𝛺. Let 𝑓∶ 𝜕𝛺 → ℝ be a
bounded 𝑃𝛺-measurable function with ∫𝜕𝛺 𝑓 d𝑃𝛺 = 0. We make the following assumptions on 𝛺:

(𝐻1) There exists a constant 𝐾 ≥ 1 such that, for all 𝑦 ∈ 𝛺 and 0 < 𝜌 ≤ diam(𝛺), we have

𝜇(𝐵(𝑦, 𝜌) ∩ 𝛺) ≥ 1
𝐾𝜇(𝐵(𝑦, 𝜌)).

(𝐻2) (Ahlfors codimension 1 regularity of 𝑃𝛺) For all 𝑦 ∈ 𝜕𝛺 we have that

1
𝐾𝜌𝜇(𝐵(𝑦, 𝜌)) ≤ 𝑃𝛺(𝐵(𝑦, 𝜌)) ≤

𝐾
𝜌 𝜇(𝐵(𝑦, 𝜌)),

where 𝐾 and 𝜌 are as in (𝐻1).
(𝐻3) (𝛺, 𝑑|𝛺,𝜇|𝛺) admits a (1,𝑝)-Poincaré inequality with 𝜆 = 1, where 𝑝 ∈]1,+∞[.

D e f i n i t i o n 8 ([4, Definition 4.1]). Let 𝛺 ⊂ 𝑋 be an open set and let 𝑢 be a 𝜇-measurable function on 𝛺. A
function 𝑇𝑢∶ 𝜕𝛺 → ℝ is the trace of 𝑢 if forℋ-almost every 𝑦 ∈ 𝜕𝛺 we have

lim
𝜌→0+

1
𝜇(𝛺 ∩ 𝐵(𝑦, 𝜌))

∫
𝛺∩𝐵(𝑦,𝜌)

|𝑢 − 𝑇𝑢(𝑦)| d𝜇 = 0. ◀

For the existence theorem of the trace operator see Malý and Shanmugalingam [6] and references therein.

Given a Neumann boundary value problem with boundary data 𝑓 ≠ 0 and reaction term 𝐺, we associate
the following functional

𝐽(𝑢) = ∫
𝛺
𝑔𝑝ᵆ d𝜇 −∫

𝛺
𝐺(𝑢) d𝜇 +∫

𝜕𝛺
𝑇𝑢𝑓 d𝑃𝛺 for all 𝑢 ∈ 𝑁1,𝑝(𝛺).

D e f i n i t i o n 9 . A function 𝑢0 ∈ 𝑁1,𝑝
∗ (𝛺) is a 𝑝-harmonic solution to the Neumann boundary value problem

with boundary data 𝑓 ≠ 0 and reaction term 𝐺 if

𝐽(𝑢0) =∫
𝛺
𝑔𝑝ᵆ0 d𝜇 −∫

𝛺
𝐺(𝑢0) d𝜇 +∫

𝜕𝛺
𝑇𝑢0𝑓 d𝑃𝛺

≤∫
𝛺
𝑔𝑝𝑣 d𝜇 −∫

𝛺
𝐺(𝑣) d𝜇 +∫

𝜕𝛺
𝑇𝑣𝑓 d𝑃𝛺 = 𝐽(𝑣)

for every 𝑣 ∈ 𝑁1,𝑝
∗ (𝛺), where 𝑔ᵆ0, 𝑔𝑣 are the minimal 𝑝-weak upper gradients of 𝑢0 and 𝑣 in 𝛺, respectively,

and 𝑇𝑢0 and 𝑇𝑣 are the traces of 𝑢0 and 𝑣 on 𝜕𝛺, respectively. ◀
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Later on, in considering the trace 𝑇𝑢 of 𝑢 we will omit 𝑇 and just write 𝑢.
Here, we assume that 𝐺∶ 𝛺 → ℝ is defined as 𝐺(𝑢) = 𝑐 − |𝑢|𝛾 for all 𝑢 ∈ 𝑁1,𝑝(𝛺), for some 𝑐 > 0 and
1 < 𝛾 < 𝑝∗ = 𝑝𝑠

𝑠−𝑝
if 𝑝 < 𝑠 and 1 < 𝛾 < +∞ otherwise.

In the metric setting, we will look for a minimizer of 𝐽 in the Newtonian space 𝑁1,𝑝
∗ (𝛺).

3 . E x i s t e n c e o f a s o l u t i o n a n d a w e a k e r u n i q u e n e s s r e s u l t

The existence of a nontrivial solution to the Neumann boundary value problem with non zero boundary
data 𝑓 and reaction term 𝐺 is an immediate consequence of the following theorem which shows that 𝐽 has
a minimizer.

T h e o r e m 1 0 . 𝐽 has a minimizer in 𝑁1,𝑝
∗ (𝛺). If 𝑢1, 𝑢2 ∈ 𝑁1,𝑝

∗ (𝛺) are two minimizers of 𝐽, then 𝑔ᵆ1 = 𝑔ᵆ2
a.e. in 𝛺.

4 . B o u n d e d n e s s p r o p e r t y

We show that minimizers are locally bounded near the boundary under appropriate hypothesis on the
boundary data 𝑓. In order to do so, the following De Giorgi type inequality plays a key role.

L e m m a 1 1 . Let 𝑢 ∈ 𝑁1,𝑝
∗ (𝛺) be a minimizer of 𝐽 and 𝑓 ∈ 𝐿∞(𝜕𝛺). If 𝑦 ∈ 𝜕𝛺, 0 < 𝜌 < 𝑅 < diam(𝛺)

10
and

𝛼 ∈ ℝ, then there is 𝐾 ≥ 1 such that the following De Giorgi type inequality

∫
𝛺∩𝐵(𝑦,𝜌)

𝑔𝑝(ᵆ−𝛼)+ d𝜇 ≤
𝐾

(𝑅 − 𝜌)𝑝
∫
𝛺∩𝐵(𝑦,𝑅)

(𝑢 − 𝛼)𝑝+ d𝜇 + 𝐾∫
𝜕𝛺∩𝐵(𝑦,𝑅)

|𝑓|(𝑢 − 𝛼)𝑝+ d𝑃𝛺

is satisfied.

T h e o r e m 1 2 . Let 0 < 𝑅 < diam(𝛺)
4

and 𝛺𝑅 = {𝑦 ∈ 𝛺 ∶ 𝑑(𝑦, 𝜕𝛺) < 𝑅
2
}. If 𝑢 ∈ 𝑁1,𝑝

∗ (𝛺) is a minimizer of 𝐽
and 𝑓 ∈ 𝐿∞(𝜕𝛺), then 𝑢 ∈ 𝐿∞(𝛺𝑅) and 𝑇𝑢 ∈ 𝐿∞(𝜕𝛺𝑅).
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A b s t r a c t : An 𝐴∞-algebra 𝐴 is a module over a ring equipped with a family of
“multiplications”𝑚𝑖∶ 𝐴⊗𝑖 → 𝐴 satisfying the relation

∑
𝑟+𝑠+𝑡=𝑛

(−1)𝑟𝑠+𝑡𝑚𝑟+1+𝑡(1⊗𝑟 ⊗𝑚𝑠 ⊗ 1⊗𝑠) = 0

for all possible values of 𝑛. When 𝑚𝑖 = 0 for 𝑖 ≠ 2, this relation tells us that 𝐴 is an
ordinary associative algebra with multiplication 𝑚2.

We will present how this structure naturally arises in algebra and topology and
discuss some examples.

R e s u m e n : Un 𝐴∞-álgebra 𝐴 es un módulo sobre un anillo equipado con una
familia de “multiplicaciones”𝑚𝑖∶ 𝐴⊗𝑖 → 𝐴 satisfaciendo la relación

∑
𝑟+𝑠+𝑡=𝑛

(−1)𝑟𝑠+𝑡𝑚𝑟+1+𝑡(1⊗𝑟 ⊗𝑚𝑠 ⊗ 1⊗𝑠) = 0

para todos los posibles valores de 𝑛. Cuando𝑚𝑖 = 0 para todo 𝑖 ≠ 2, esta relación
nos dice que 𝐴 es un álgebra asociativa con multiplicación 𝑚2.

Presentaremos cómo esta estructura surge de forma natural en topología y en
álgebra, y veremos algunos ejemplos.

K e y w o r d s : Hochschild cohomology, 𝐴∞-structure, loop space, associahedra.
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Induced 𝐴∞-structures

1 . 𝐴∞- a l g e b r a s

In this section we will define 𝐴∞-algebras, explain their origin and how they generalize associative algebras,
and provide some examples.

D e f i n i t i o n 1 . An 𝐴∞-algebra 𝐴 is a graded module over a ring 𝑘 equipped with a family of multiplication
maps𝑚𝑖∶ 𝐴⊗𝑖 → 𝐴 of degree 2 − 𝑖 satisfying for all 𝑛 ≥ 1 the relation

◀( 1 ) ∑
𝑟+𝑠+𝑡=𝑛

(−1)𝑟𝑠+𝑡𝑚𝑟+1+𝑡(1⊗𝑟 ⊗𝑚𝑠 ⊗ 1⊗𝑠) = 0.

Let us look at some particular cases of the above relation to recover some well-known algebraic structures.

• The relation implies𝑚1𝑚1 = 0, meaning that an 𝐴∞-algebra is in particular a cochain complex with
differential 𝑚1. Thus, we can define 𝐴∞-algebras on the category of cochain complexes, and the
relations involving𝑚1 will be a consequence of 𝑚𝑖 being a map of complexes.

• The relation also implies the Leibniz rule

𝑚1𝑚2 = 𝑚2(𝑚1 ⊗ 1) + 𝑚2(1⊗𝑚1),

so 𝐴∞-also generalize differential graded algebras (also known as dg algebras).
• When𝑚𝑖 = 0 for 𝑖 ≠ 2 we obtain the associativity relation

𝑚2(𝑚2 ⊗ 1) = 𝑚2(1⊗𝑚2).

This means that associative algebras are particular instances of 𝐴∞-algebras.
• In general, for 𝑛 = 3 the relation becomes

𝑚2(𝑚2 ⊗ 1) − 𝑚2(1⊗𝑚2) = 𝑚1𝑚3 +𝑚3(𝑚1 ⊗ 1⊗ 1) + 𝑚3(1⊗𝑚1 ⊗ 1) + 𝑚3(1⊗ 1⊗𝑚1).

This relation implies that 𝑚2 is only associative up to a homotopy given by 𝑚3, i.e., 𝑚2 becomes
associative in cohomology with respect to𝑚1. In this situation we say that𝑚2 is homotopy associative.

If we look at the higher relations we will see a similar pattern in which each𝑚𝑖 is a homotopy that measures
the failure of other relations involving lower maps to hold. Therefore, the 𝐴∞ equation (1) is a homotopy
coherent extension of the fact that 𝑚2 is homotopy associative.

1 . 1 . O r i g i n o f 𝐴∞- a l g e b r a s

Even though the 𝐴∞ equation (1) seems quite arbitrary, it has some topological roots, so let us see where
𝐴∞-algebras come from.

Let (𝑋, ∗) be a pointed topological space and let 𝑆1 = [0, 1]/{0 ∼ 1} be the unit circle defined as a quotient
of the unit interval with 1 as a base point. Define the loop space of 𝑋 as the space of based loops

𝛺𝑋 = {𝛾∶ 𝑆1 → 𝑋 ∣ 𝛾(1) = ∗}.

In other words, this is the space of maps from the circle that respect base points. The space 𝛺𝑋 comes
equipped with a multiplication map ∗∶ 𝛺𝑋 × 𝛺𝑋 → 𝛺𝑋 given by concatenation of loops

The operation 𝛾1 ∗ 𝛾2 for 𝛾1, 𝛾2 ∈ 𝛺𝑋 can be interpreted as running through 𝛾1 twice as fast on the first half
of the circle and then running through 𝛾2 twice as fast on the second half. We can see that this operation is
not associative by looking at Figure 1.

On the top of the picture we see the concatenation (𝛾1 ∗ 𝛾2) ∗ 𝛾3, which is clearly different from 𝛾1 ∗ (𝛾2 ∗ 𝛾3)
below. However, the difference is just about the speed of each loop, so there is a homotopy between these
two resulting loops given by a reparametrization. On the right of the picture we see these concatenation
represented as trees. In this representation the homotopy is given by sliding one branch through the tree.
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(𝛾1 ∗ 𝛾2) ∗ 𝛾3

𝛾1 ∗ (𝛾2 ∗ 𝛾3)

𝛾3

𝛾1

𝛾1𝛾2

𝛾2 𝛾3

𝛾1 𝛾2 𝛾3

𝛾1 𝛾2 𝛾3

F i g u r e 1 : Two ways of concatenating three loops.

If we concatenate four loops we get Figure 2.

F i g u r e 2 : Five ways of concatenating four loops.

In this case we can see that there are two paths of homotopies from one extreme to the other. These paths
can be connected by a higher homotopy which allow us to fill the interior of the pentagon. Each point of
the filled pentagon corresponds to an intermediate slide of branches. This situation can be extended for
any amount of loops. The pictures that we get describe a family of polytopes called Stasheff associahedra,
since they were first defined by Stasheff in 1963 [6].

In this situation we say that the concatenation map is homotopy coherent, since the homotopies are
connected by higher homotopies. This shows that 𝛺𝑋 is an example of an 𝐴∞-space (see [6] for a precise
definition of 𝐴𝑛-space, an 𝐴∞-space is a space satisfying the 𝐴𝑛-space definition for all 𝑛.)

The connection between 𝐴∞-spaces and 𝐴∞-algebras is given by the following theorem.

T h e o r e m 2 . [4, Proposition 9.2.8]The cellular chains of an 𝐴∞-space have a structure of 𝐴∞-algebra.

2 . H o c h s c h i l d c o m p l e x o f a n 𝐴∞- a l g e b r a

We have seen how a topological 𝐴∞-structure induces an algebraic 𝐴∞-structure. Now, we are going to see
how to define further algebraic 𝐴∞-structures from an 𝐴∞-algebra.
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D e f i n i t i o n 3 . The Hochschild complex 𝐶∗(𝐴) of a 𝑘-module 𝐴 is given by the modules

𝐶𝑚(𝐴) = hom𝑘 (𝐴⊗𝑚,𝐴),

where 𝐶0(𝐴) = 𝐴. ◀

For an 𝐴∞-algebra 𝐴, we are going to endow 𝐶∗(𝐴) with a differential and higher 𝐴∞-maps. But for that
we need to define a new algebraic structure on this complex.

Given 𝑓, 𝑔1,… , 𝑔𝑛 ∈ 𝐶∗(𝐴), define the brace 𝑓{𝑔1,… , 𝑔𝑛} as

∑
𝑘0+⋯+𝑘𝑛=𝑁−𝑛

(−1)𝜂𝑓(1⊗𝑘0 ⊗ 𝑔1 ⊗ 1⊗𝑘1 ⊗⋯⊗ 1⊗𝑘𝑛−1 ⊗ 𝑔𝑛 ⊗ 1⊗𝑘𝑛),

where 𝑁 is the arity of 𝑓 and 𝜂 comes from iterated shifts as done in the Appendix of [5].

Let 𝐴 be an 𝐴∞-algebra and let 𝑚 = 𝑚1 +𝑚2 +⋯. Define maps𝑀𝑖∶ 𝐶∗(𝐴;𝐴)⊗𝑛 → 𝐶∗(𝐴;𝐴) by

𝑀1(𝑓) ≔ 𝑚{𝑓} − (−1)deg(𝑓)𝑓{𝑚},

𝑀𝑛(𝑓1,… ,𝑓𝑛) ≔ (−1)∑
𝑛
𝑖=1(𝑛−𝑖) deg(𝑓𝑖)𝑚{𝑓1,… ,𝑓𝑛}, 𝑛 > 1.

T h e o r e m 4 . The above defined maps 𝑀𝑖 define and 𝐴∞-algebra structure on the Hochschild complex
𝐶∗(𝐴) of an 𝐴∞-algebra 𝐴.

A proof of the theorem up to signs can be found in Getzler’s paper [3]. In particular, when𝐴 is an associative
algebra, we obtain the classical Hochschild complex with an induced associative multiplication [1].

The original 𝐴∞-structure given by𝑚 and the induced 𝐴∞-structure on 𝐶∗(𝐴) are related by the following
theorem.

T h e o r e m 5 . Themap 𝛷∶ 𝐴 → 𝐶∗(𝐴;𝐴) defined by

𝛷(𝑥) = ∑
𝑛≥0

𝑥{𝑥1,… , 𝑥𝑛}

is a map of 𝐴∞-algebras, i.e., it satisfies 𝛷(𝑀𝑛) = 𝑀𝑛(𝛷⊗𝑛) for all 𝑛.

The original statement of the theorem without proof can be found in the paper by Gerstenhaber and
Voronov [2].
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A b s t r a c t : A transversal of a partition is a set which contains exactly one element
from each member of the partition and nothing else. A colouring of a graph is a
partition of its vertex set into anticliques, that is, sets of pairwise nonadjacent ver-
tices. We study the following problem: Given a transversal 𝑇 of a proper colouring
𝒞 of some graph 𝐺, is there a partition ℌ of a subset of 𝑉(𝐺) into connected sets
such that 𝑇 is a transversal of ℌ and any two distinct sets of ℌ are adjacent?

It has been conjectured by Matthias Kriesell [9] that for any transversal 𝑇 of a
colouring 𝒞 of order 𝑘 of some graph 𝐺 such that any pair of colour classes induces
a connected subgraph, there exists such a partition ℌ with pairwise adjacent
sets. This would prove Hadwiger’s conjecture for the class of uniquely optimally
colourable graphs; however it is open for each 𝑘 ≥ 5.

This paper will provide an overview about the stated conjecture. It extracts asso-
ciated results from my PhD thesis and the related papers [2, 10, 11], summarises
their relevence to the stated problem, and discusses some unsuccessful attempts.

R e s u m e n : Una transversal de una partición es un conjunto que contiene exacta-
mente un elemento de cada miembro de la partición y nada más. Una coloración
de un grafo es una partición de sus vértices en conjuntos independientes, es decir,
conjuntos de vértices no adyacentes entre sí. Nosotros estudiamos el siguiente
problema: dada una transversal 𝑇 de una coloración 𝒞 de un grafo𝐺, ¿existe alguna
partición ℌ de un subconjunto de 𝑉(𝐺) en conjuntos conexos tal que 𝑇 sea una
transversal de ℌ y cualesquiera dos conjuntos distintos de ℌ sean adyacentes?

Matthias Kriesell [9] conjeturó que, para cualquier transversal 𝑇 de orden 𝑘 de una
𝑘-coloración 𝒞 de algún grafo 𝐺 tal que cualquier par de clases de colores inducen
un subgrafo conexo, existe tal partición ℌ con conjuntos adyacentes dos a dos.
Esto demostraría la conjetura de Hadwiger para la clase de grafos óptimamente
coloreables de forma única; sin embargo, el problema sigue abierto para todo
𝑘 ≥ 5.

Este artículo presenta una visión general sobre esta conjetura. Expone resultados
de mi tesis doctoral y los artículos relacionados [2, 10, 11], resume su relevancia
con el problema planteado y discute algunos intentos fallidos.
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Rooted structures in graphs

1 . H a d w i g e r ’ s c o n j e c t u r e

Hadwiger’s conjecture states that the order of a largest clique minor in a graph 𝐺 is at least its chromatic
number 𝜒(𝐺) [8]. It is known to be true for graphs with chromatic number at most 6, with 𝜒(𝐺) = 5
and 𝜒(𝐺) = 6 being merely equivalent to the Four-Colour-Theorem [14]. Even for subclasses of graphs,
Hadwiger’s conjecture seems to be challenging. Though it is solved for line graphs [13], only partial results
exist for claw-free graphs [7]. Paul Erdős [3] stated that it is “one of the deepest unsolved problems in
graph theory”, thus reinforcing the extreme nature and difficulty of this conjecture.

Instead of restricting to subclasses of graphs, one could also uniformly bound the order of the colour
classes. But even when forbidding anticliques of order 3, Hadwiger’s conjecture is widely open. This variant
is stated in a conjecture of Seymour (see [1]).

Matthias Kriesell suggested in [9] to bound the number of colourings and, in particular, consider uniquely
optimally colourable graphs. We will be interested in a rooted version of Hadwiger’s conjecture that
imposes additional assumptions on the colourings.

2 . K e m p e c o l o u r i n g s

All graphs in the present paper are assumed to be finite, undirected, and simple. For terminology not
defined here we refer to contemporary textbooks such as [4] or [6]. By 𝐾𝑆 we denote the complete graph
on a finite set 𝑆. A (minimal) transversal of a set ℭ of disjoint sets is a set 𝑇 containing exactly one member
of every 𝐴 ∈ ℭ and nothing else; we also say that ℭ is traversed by 𝑇. A colouring of a graph 𝐺 is a partition
𝒞 of its vertex set 𝑉(𝐺) into anticliques, that is, sets of pairwise non-adjacent vertices. The order of a
colouring 𝒞 is the number of anticliques in 𝒞 and an optimal colouring is a colouring of smallest order.
The chromatic number 𝜒(𝐺) is the order of an optimal colouring of 𝐺. A Kempe chain is a connected
component of 𝐺[𝐴 ∪ 𝐵] for some 𝐴 ≠ 𝐵 from 𝒞.

We call a graph 𝐺 uniquely 𝑘-colourable if 𝜒(𝐺) = 𝑘 and for any two optimal colourings 𝒞 and 𝒞′ of 𝐺, we
have 𝒞 = 𝒞′. Such graphs have the property that the union of any two distinct colour classes induces a
connected graph [5]. To see this, assume to the contrary that there is a graph 𝐺 with a unique optimal
colouring 𝒞 and there are 𝐴,𝐵 ∈ 𝒞, 𝐴 ≠ 𝐵, such that 𝐺[𝐴 ∪ 𝐵] has at least two components. Let 𝐻 be one
of the components and consider the colouring 𝒞′ with

𝒞′ = (𝒞 ⧵ {𝐴,𝐵}) ∪ {(𝐴 ⧵ 𝑉(𝐻)) ∪ (𝐵 ∩ 𝑉(𝐻))} ∪ {(𝐵 ⧵ 𝑉(𝐻)) ∪ (𝐴 ∩ 𝑉(𝐻))}.

Then 𝒞′ is another optimal colouring of 𝐺 and distinct from 𝒞, a contradiction.

However restricting to uniquely colourable graphs seems excessive provided that in most situations we
only make use of the above property that any two colour classes induce a connected graph. This leads us
to the following definition.

D e f i n i t i o n 1 . A colouring 𝒞 of a graph 𝐺 is a Kempe colouring if any two vertices from distinct colour
classes belong to the same Kempe chain or, in other words, the union of any two colour classes induces a
connected subgraph in 𝐺. ◀

If 𝐺 is graph and 𝒞 is a Kempe colouring of 𝐺 for which the vertices 𝑥1,… , 𝑥𝑘 are given different colours,
then it is easy to see that there exists a system of edge-disjoint 𝑥𝑖,𝑥𝑗-paths (𝑖 ≠ 𝑗 from {1,… , 𝑘}), a so-called
(weak) clique immersion of order 𝑘 at 𝑥1,… , 𝑥𝑘. The natural question to ask is whether there exists a clique
minor of the same order such that 𝑥1,… , 𝑥𝑘 are in different bags.

A graph 𝐻 is a minor of a graph 𝐺 if there exists a family 𝑐 = (𝑉𝑡)𝑡∈𝑉(𝐻) of pairwise disjoint subsets of
𝑉(𝐺), called bags, such that 𝑉𝑡 is nonempty and 𝐺[𝑉𝑡] is connected for all 𝑡 ∈ 𝑉(𝐻) and there is an edge
connecting 𝑉𝑡 and 𝑉𝑠 for all 𝑠𝑡 ∈ 𝐸(𝐻). Any such 𝑐 is called an 𝐻-certificate in 𝐺, and a rooted 𝐻-certificate if,
moreover, 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝑡 ∈ 𝑉𝑡 for all 𝑡 ∈ 𝑉(𝐻). If there exists a rooted 𝐻-certificate, then 𝐻 is a rooted
minor of 𝐺.

A positive answer to the question above was conjecture by Matthias Kriesell.
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C o n j e c t u r e 2 (Kriesell [9]). Let 𝐺 be a graph, 𝒞 be a Kempe colouring of size 𝑘 and 𝑇 a transversal of 𝒞,
then 𝐺 contains a 𝐾𝑘-minor rooted at 𝑇.

Using a result by Fabila-Monroy andWood [15], a confirmation of Conjecture 2 for 𝑘 ≤ 4 follows immediately.
In [11], it is proved for line graphs.

T h e o r e m 3 (Kriesell, Mohr [11]). For every transversal 𝑇 of every Kempe colouring of the line graph 𝐿(𝐺)
of any graph 𝐺 there exists a complete minor in 𝐿(𝐺) traversed by 𝑇.

It should be mentioned that a Kempe colouring can have significantly more colours than an optimal
colouring. However a positive answer to Conjecture 2 will prove Hadwiger’s conjecture for uniquely
colourable graphs.

3 . T w o - c o l o u r e d p a t h s

In the previous section, we have seen that for each transversal 𝑇 of any Kempe colouring of order 𝑘, there
exists a clique immersion of order 𝑘 at 𝑇. It is natural to ask whether the requirement of a Kempe colouring
can be weakened to only demanding that two distinct vertices 𝑥, 𝑦 of a transversal 𝑇 belong to the same
connected component of 𝐺[𝐴 ∪ 𝐵], where 𝐴,𝐵 ∈ 𝒞, 𝒞 is the colouring of the graph 𝐺, and 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

C o n j e c t u r e 4 . Let 𝐺 be a graph and 𝒞 be one of its 𝑘-colourings (𝑘 not necessary optimal). Furthermore,
let 𝑇 be an arbitrary transversal of 𝒞.

Assume that for each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑇 there is a Kempe chain containing both vertices 𝑥
and 𝑦. Then 𝐺 contains a 𝐾𝑘-minor rooted at 𝑇.

Conjecture 2 would follow if Conjecture 4 held for all graphs 𝐺, colourings 𝒞, and transversals 𝑇. However
Conjecture 4 turned out to be too restrictive to be true: There exists a graph with a 7-colouring that does
not contain a rooted 𝐾7-minor.

T h e o r e m 5 (Kriesell, Mohr [10]).

( i ) Let 𝐺 be a graph and 𝒞 be one of its 𝑘-colourings (𝑘 not necessary optimal). Furthermore, let 𝑇 be
an arbitrary transversal of 𝒞. Assume that for each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑇 there is a Kempe
chain containing both vertices 𝑥 and 𝑦.
If 𝑘 ≤ 4, or 𝑘 = 5 and 𝐺[𝑇] is connected, then 𝐺 contains a 𝐾𝑘-minor rooted at 𝑇.

( i i ) There is a graph with a 7-colouring 𝒞 and a transversal 𝑇 of 𝒞 such that each pair of distinct vertices
𝑥, 𝑦 ∈ 𝑇 belongs to the same Kempe chain, and this graph does not contain a 𝐾7-minor rooted at 𝑇.

We have seen that the setting of Conjecture 4 is insufficient to guarantee a rooted 𝐾7-minor (and any
𝐾𝑘-minor with 𝑘 ≥ 7). This troublesome graph 𝐾7 is known to be the smallest 6-connected graph and one
may ask whether it is possible to find a 6-connected minor instead.

To address this problem, we move away from colourings and ask the following question [12]:
Given an integer 𝑘, does there exist an integer ℓ(𝑘) such that for each graph 𝐺 and 𝑋 ⊆ 𝑉(𝐺) for which there
is no separator 𝑆 in 𝐺 with |𝑆| < ℓ(𝑘) separating vertices of 𝑋, 𝐺 has a 𝑘-connected minor (or topological
minor) that “contains 𝑋”?

This questions demands a local connectedness of the vertices from 𝑋. Clearly, ℓ(𝑘) must be at least 𝑘 since
𝑋 might be equal to 𝑉(𝐺). If each separator 𝑆 in a graph 𝐺 with |𝑆| < ℓ splits the graph into components
such that only one contains vertices from 𝑋 (|𝑋| ≥ ℓ + 1), we say that 𝑋 is ℓ-connected in 𝐺. Moreover,
the definition of a rooted minor given in Section 2 is not suitable in our setting since the 𝑘-connected
minor can have significantly more vertices than |𝑋|. We adapt the definition and say that a graph 𝐻 is an
𝑋-minor of a graph 𝐺 with 𝑋 ⊆ 𝑉(𝐺) if 𝑋 ⊆ 𝑉(𝐻) and there exists an 𝐻-certificate 𝑐 = (𝑉𝑡)𝑡∈𝑉(𝐻) in 𝐺 such
that 𝑡 ∈ 𝑉𝑡 for all 𝑡 ∈ 𝑋. Armed with this refined definition, we prove the following:
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T h e o r e m 6 (Böhme, Harant, Kriesell, Mohr, Schmidt [2]). Let 𝑘 ∈ {1, 2, 3, 4}, 𝐺 be a graph, and 𝑋 ⊆ 𝑉(𝐺)
be a 𝑘-connected set in 𝐺. Then:

( i ) 𝐺 has a 𝑘-connected 𝑋-minor.
( i i ) If 1 ≤ 𝑘 ≤ 3, then 𝐺 has a 𝑘-connected topological 𝑋-minor.

Moreover, the theorem is best possible in the sense that there exist graphs 𝐺1 and 𝐺2 with 𝑋1 ⊆ 𝑉(𝐺1)
and 𝑋2 ⊆ 𝑉(𝐺2) such that 𝑋1 (𝑋2) is 5-connected (4-connected) in 𝐺1 (𝐺2) and neither 𝐺1 nor 𝐺2 contain a
5-connected 𝑋1-minor and a 4-connected topological 𝑋2-minor, respectively.

In summary, Theorems 5 and 6 lead us to the following insights. First, to confirm Conjecture 2 and in turn
prove the rooted version of Hadwiger’s conjecture for uniquely colourable graphs, it is not possible to
restrict to clique immersions. It would seem that a certain connectedness property, which is provided by
Kempe colourings, is necessary. Second, lifting the problem away from the colouring doesn’t feel like a
promising approach either, since a high connectedness gives no guarantee on any highly connected minor.
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A b s t r a c t : A quadratic Lie algebra is a Lie algebra equipped with a non-degenerate
symmetric invariant bilinear form. Among all these algebras, we are going to focus
on the nilpotent ones whose nilpotency index is two and, particularly, on those
which are reduced. There exist different techniques to construct these algebras.
Double extension and 𝑇∗-extension are recursive methods that allow us to start
from smaller dimensions and grow up. Fixing an appropriate basis and using its
definition gives us another approach to these algebras. And finally, we have that
their classification is equivalent to the alternating trilinear forms one.

R e s u m e n : Un álgebra de Lie cuadrática es un álgebra de Lie dotada de una forma
bilineal invariante simétrica no degenerada. Entre todas las álgebras que cumplen
estas condiciones, vamos a centrarnos en aquellas que sean nilpotentes y cuyo
índice de nilpotencia sea 2, en particular, aquellas reducidas. Existen diferentes
técnicas para construir este tipo de álgebras. La doble extensión y 𝑇∗-extensión
son métodos clásicos recursivos que nos permiten obtenerlas partiendo de dimen-
siones pequeñas y aumentando progresivamente. Si fijamos una base apropiada y
usamos su definición, junto a alguna propiedades, conseguimos una nueva aproxi-
mación. Finalmente, tenemos que su clasificación es equivalente a la de formas
trilineales alternadas.
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Constructing quadratic 2-step nilpotent Lie algebras

1 . K e y w o r d s

Themain concepts we need in this paper are the following:

D e f i n i t i o n 1 (Lie algebra). A Lie algebra is a vector space𝔫with an alternating bilinear form [⋅, ⋅]∶ 𝔫×𝔫 → 𝔫
called Lie bracket that satisfies the Jacobi identity: [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0. ◀

D e f i n i t i o n 2 (t-step nilpotent). We say a Lie algebra 𝔫 is 𝑡-step nilpotent when 𝔫𝑡+1 = [𝔫𝑡,𝔫] = 0, but
𝔫𝑡 ≠ 0, and where 𝔫1 = 𝔫, [𝐴,𝐵] ≔ span⟨[𝑎, 𝑏] ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵⟩. ◀

D e f i n i t i o n 3 (quadratic). A quadratic Lie algebra 𝔫 is a Lie algebra equipped with a non-degenerate
symmetric invariant bilinear form 𝑓∶ 𝔫 × 𝔫 → �, which means that 𝑓([𝑥, 𝑦], 𝑧) + 𝑓(𝑦, [𝑥, 𝑧]) = 0 for every
𝑥, 𝑦, 𝑧 ∈ 𝔫. ◀

D e f i n i t i o n 4 (reduced). An algebra 𝔫 is said to be reduced in case 𝑍(𝔫) ⊆ 𝔫2. ◀

And, as stated in [9, Theorem 6.2]:

T h e o r e m 5 . Any non-reduced and non-abelian quadratic Lie algebra (𝔫,𝜑) decomposes as an orthogonal
direct sum of proper ideals, 𝔫 = 𝔫1 ⊕ 𝑎, where 𝜑 = 𝜑1 ⟂ 𝜑2 and (𝔫1,𝜑1) is a quadratic reduced Lie algebra
and (𝑎,𝜑2) is a quadratic abelian algebra.

Finally, we will note as 𝔫𝑑,𝑡 the free 𝑡-step Lie algebra on 𝑑 generators (see [1] for a formal definition).

2 . C o n s t r u c t i o n s

There exist several ways to construct quadratic Lie algebras or equivalent structures. In this section we
give an overview of some of them, with focus on the 2-step case.

Unless we specify the contrary, we will work over a generic field � and (𝐴,𝑓) will be a generic finite-
dimensional Lie algebra, while 𝐴∗ will denote its dual space. Moreover, ad∗ will represent the coadjoint
representation (i.e., ad∗ (𝑎)(𝛼)(𝑎′) = −𝛼([𝑎, 𝑎′]) for 𝑎, 𝑎′ ∈ 𝐴 and 𝛼 ∈ 𝐴∗).

2 . 1 . D o u b l e e x t e n s i o n

The first way is the classic double extension method (see [7] or [3]). To begin with the extension we need,
apart from (𝐴,𝑓) over a field � of characteristic zero, another finite-dimensional Lie algebra 𝐵 in the
same field and a Lie homomorphism 𝜙∶ 𝐵 → Der𝑓 (𝐴) where Der𝑓 (𝐴) is the space of all 𝑓-antisymmetric
derivations of A (i.e., 𝑓(𝑑(𝑎), 𝑎′)+𝑓(𝑎, 𝑑(𝑎′)) = 0 for 𝑑 ∈ Der𝑓 (𝐴) and 𝑎, 𝑎′ ∈ 𝐴). Let us define 𝑤∶ 𝐴×𝐴 →
𝐵∗ as (𝑎, 𝑎′) ↦ (𝑏 ↦ 𝑓(𝜙(𝑏)(𝑎), 𝑎′)) for 𝑏 ∈ 𝐵 and 𝑎, 𝑎′ ∈ 𝐴. If we take the vector space 𝐴𝐵 ≔ 𝐵 ⊕ 𝐴⊕ 𝐵∗,
define the following multiplication:

[𝑏 + 𝑎 + 𝛽, 𝑏′ + 𝑎′ + 𝛽′] ≔ [𝑏, 𝑏′] + 𝜙(𝑏)(𝑎′) − 𝜙(𝑏′)(𝑎) + [𝑎, 𝑎′] + 𝑤(𝑎, 𝑎′) + ad∗ (𝑏)(𝛽′) − ad∗ (𝑏′)(𝛽),

and the following symmetric bilinear form 𝑓𝐵 on 𝐴𝐵:

𝑓𝐵(𝑏 + 𝑎 + 𝛽, 𝑏′ + 𝑎′ + 𝛽′) ≔ 𝛽(𝑏′) + 𝛽(𝑏) + 𝑓(𝑎, 𝑎′),

for 𝑏, 𝑏′ ∈ 𝐵, 𝑎, 𝑎′ ∈ 𝐴, 𝛽, 𝛽′ ∈ 𝐵∗. Then, the pair (𝐴𝐵,𝑓𝐵) is a metrised Lie algebra over� and is called the
double extension of 𝐴 by 𝜙 and 𝐵.

And, as we can deduce from [7, Théorème III]:

C o r o l l a r y 6 . In characteristic zero, every quadratic solvable Lie algebra can be obtained from an abelian
Lie algebra extended by successive direct sums and double extensions by one-dimensional algebras.

In [4, Section 5] we can find examples of indecomposable quadratic 𝑡-step nilpotent Lie algebras (arbitary 𝑡).
The examples include the complete classification up to dimension 7 [4, 5.1. Proposition].
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2 . 2 . 𝑇∗
- e x t e n s i o n

The 𝑇∗-extension is a one-step method which was introduced in [3]. In contrast to double extension, it
can be applied not only to Lie algebras, but to arbitrary nonassociative algebras.
For a Lie algebra 𝐵, we consider an arbitrary 𝑤∶ 𝐵 × 𝐵 → 𝐵∗ bilinear map and define the following
multiplication on the vector space 𝑇∗

𝑤𝐵 ≔ 𝐵 ⊕ 𝐵∗ for 𝑏, 𝑏′ ∈ 𝐵 and 𝛽, 𝛽′ ∈ 𝐵∗:

[𝑏 + 𝛽, 𝑏′ + 𝛽′] ≔ [𝑏, 𝑏′] + 𝑤(𝑏, 𝑏′) + ad∗ (𝑏)(𝛽′) − ad∗ (𝑏′)(𝛽).

Moreover, we consider the symmetric bilinear form 𝑞𝐵 in 𝐵 ⊕ 𝐵∗ defined as follows:

𝑞𝐵(𝑏 + 𝛽, 𝑏′ + 𝛽′) ≔ 𝛽(𝑏′) + 𝛽′(𝑏).

And, as seen in [3, Lemma 3.1] we know if 𝐵, 𝐵∗, 𝑤 and 𝑞𝐵 are as above, then the pair (𝐵 ⊕ 𝐵∗, 𝑞𝐵) is a
metrised algebra if and only if 𝑤 is cyclic (i.e., 𝑤(𝑎, 𝑏)(𝑐) = 𝑤(𝑐, 𝑎)(𝑏) = 𝑤(𝑏, 𝑐)(𝑎) for all 𝑎, 𝑏, 𝑐 ∈ 𝐵).
Finally, we have the following theorem (see [3, Theorem 3.2]), which is really convenient as every quadratic
2-step Lie algebra fulfils every condition.

T h e o r e m 7 . Let (𝐴,𝑓) be a metrised algebra of finite dimension 𝑛 over a field � of characteristic not
equal to two. Then, (𝐴,𝑓) will be isometric to a 𝑇∗-extension (𝑇∗

𝑤𝐵, 𝑞𝐵) if and only if 𝑛 is even and 𝐴
contains an isotropic ideal 𝐼 (i.e., 𝐼 ⊂ 𝐼⟂) of dimension 𝑛/2. In this case: 𝐵 ≅ 𝐴/𝐼. Note that any isotropic
𝑛/2-dimensional subspace 𝐼 of 𝐴 is an ideal of 𝐴 if and only if it is abelian, i.e., 𝐼2 = 0.

2 . 3 . C o m p u t a t i o n a l a p p r o a c h u s i n g H a l l B a s i s

Having a well-defined basis is the first requirement to be able to define algorithmically a construction
method. For this purpose, we can use the Hall Basis defined in [6].
The Hall Basis of 𝔫𝑑,2 is {𝑥𝑖 ∶ 𝑖 = 𝑑,… , 1} ∪ {[𝑥𝑖, 𝑥𝑗] ∶ 𝑖 = 1,… , 𝑑; 𝑗 = 𝑖 + 1,… , 𝑑}. As we can see, the main
advantage of this basis is that the Lie products of every element are already defined, taking into account
that every element [𝑥𝑖, 𝑥𝑗] belongs to the centre as this is a 2-step free nilpotent Lie algebra. And, as stated
in [5], any 2-step nilpotent Lie algebra 𝔫 of type 𝑑 is a homomorphic image of 𝔫𝑑,2 as 𝔫 ≅ 𝔫𝑑,2/𝐼, with 𝐼 an
ideal of 𝔫𝑑,2 such that 𝐼 ⊊ 𝔫2𝑑,2.
So we only need to know how the bilinear form works. For this part we can generate a generic symmetric
matrix of dimension 𝑑(𝑑+1)

2
× 𝑑(𝑑+1)

2
. After that, we just have to reduce the variables in the entries of

the matrix by imposing the bilinear form is invariant. The whole process is detailed in [1], where lots of
examples are displayed.
Finally, we have to find the kernel of the bilinear form to do the quotient by it, as the bilinear form is
non-degenerate. And, every quadratic 2-step nilpotent Lie algebra can be obtained this way as we can see
in [1, Proposition 4.1]. This proposition says:

P r o p o s i t i o n 8 . Let (𝔫,𝐵) be a quadratic 2-step nilpotent Lie algebra of type 𝑑 and 𝜑∶ 𝔫𝑑,2/𝐼 → 𝔫 be
an isomorphism of Lie algebras. If we take the map 𝐵∶ 𝔫𝑑,2/𝐼 × 𝔫𝑑,2/𝐼 → � defined as 𝐵(𝑥 + 𝐼, 𝑦 + 𝐼) =
𝐵(𝜑(𝑥 + 𝐼),𝜑(𝑦 + 𝐼)), then 𝜑 is an isometry from (𝔫𝑑,2/𝐼,𝐵) onto (𝔫,𝐵).

It is worthwhile to mention that the kernel of this bilinear form is always of dimension 𝑑(𝑑+1)
2

− 2𝑑 = 𝑑(𝑑−3)
2

for quadratic 2-step Lie algebras. Indeed, using this property shared by all these algebras, we know that
their dimension is always 2𝑑 and we can simplify the process, as we can see in [2].

2 . 4 . T r i v e c t o r s

In [8, 3.5 Théorème and 3.6 Corollaire] the relation between quadratic 2-step nilpotent Lie algebras and
trivectors appears. They are the following ones:

T h e o r e m 9 . There exists a natural bijection between isomorphism classes of reduced quadratic 2-step
nilpotent Lie algebras and dimension 2𝑛 and the equivalence classes of trilinear forms of rank 𝑛.

C o r o l l a r y 1 0 . In an algebraically closed field or ℝ, there exists a finite number of isomorphic classes of
reduced quadratic 2-step nilpotent Lie algebras if its dimension is less than 17.
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3 . C o n c l u s i o n s

The first clear conclusion we obtain is that having this variety of methods gives us a lot of possibilities. We
have several approaches and we can choose the one that fits better for our case.

If we focus on the classic methods (double and 𝑇∗ extensions), which have been extensively studied, both
allow us to incrementally construct all these algebras. The main difference is that:

• Double extension is a more general method but involves several steps.
• 𝑇∗-extension is a simpler method, as it is just one step, but it is only valid for some particular Lie
algebras. Although it can be used for more general algebras than the Lie ones.

Nevertheless, for the algebras we are interested in, nilpotent 2-step, both methods are perfectly valid for
reaching all of them.

On the other hand, the computational approach using Hall Basis is a newer method which can be quite
convenient for constructing a lot of examples or checking if some algebra belongs to the class of Lie
algebras we are interested in. Moreover, this method can be easily extended to an arbitrary nilpotency
index without trouble, and even more, for 2-step Lie algebras we can improve the efficiency using special
features of this particular case.

Finally, the fact that trivectors are equivalent allows us to obtain a classification of these algebras, as
trivectors have been already classified. Therefore, we can know how many quadratic 2-step Lie algebras
are there up to isometrically isomorphisms using less than 9 generators. This data is show in Table 1.

Dimension 6 8 10 12 14 16 ≥ 18
Number 1 0 1 2 5 13 ∞

T a b l e 1 : Non-isometric reduced quadratic 2-step Lie algebras in ℂ (source [10]).
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A b s t r a c t : We prove that in every set of 𝑛 red and 𝑛 blue points in the plane there
are a red and a blue point such that every circle having them in its boundary
encloses at least 𝑛(1 − 1/√2) − 𝑜(𝑛) other points of the set. This is a bichromatic
version of a problem introduced by Neumann-Lara and Urrutia. In addition, we
show that every set 𝑆 of 𝑛 points contains two points such that every circle passing
through them encloses atmost ⌊ 2𝑛−1

3
⌋ other points of 𝑆. The results are proved using

properties of order-𝑘 Voronoi diagrams, in the spirit of the work of Edelsbrunner,
Hasan, Seidel and Shen on this problem.

R e s u m e n : Demostramos que en cualquier conjunto de 𝑛 puntos rojos y 𝑛 puntos
azules en el plano existen un punto rojo y un punto azul tales que cualquier cir-
cunferencia que pase por ellos contiene en su interior al menos 𝑛(1 − 1/√2) − 𝑜(𝑛)
puntos del conjunto. Esta es una versión bicromática de un problema propues-
to por Neumann-Lara y Urrutia. También probamos que todo conjunto 𝑆 de 𝑛
puntos en el plano contiene dos puntos tales que cualquier circunferencia que
pase por ellos contiene como mucho ⌊ 2𝑛−1

3
⌋ otros puntos de 𝑆. Las demostraciones

usan propiedades de los diagramas de Voronoi de orden 𝑘, al estilo del trabajo de
Edelsbrunner, Hasan, Seidel y Shen en este problema.

K e y w o r d s : point set, circle containment, Voronoi diagram.

M S C 2 0 1 0 : 52C99.

A c k n o w l e d g e m e n t s : Mercè Claverol was supported by projects MTM2015-63791-R, PID2019-104129GB-I00, and
Gen. Cat. DGR 2017SGR1640. Clemens Huemer was supported by projects MTM2015-63791-R, PID2019-
104129GB-I00, and Gen. Cat. DGR 2017SGR1336. Alejandra Martínez-Moraian was funded by the predoctoral
contract PRE2018-085668 of the Spanish Ministry of Science, Innovation and Universities, associated to the
MINECO Project TIN2016-80622-P, and is suported by project PID2019-104129GB-I00.

This project has received funding from the EuropeanUnion’sHorizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 734922.

R e f e r e n c e : CLAVEROL, Mercè; HUEMER, Clemens, and MARTÍNEZ-MORAIAN, Alejandra. “On circles enclosing
many points”. In: TEMat monográficos, 2 (2021): Proceedings of the 3rd BYMAT Conference, pp. 103-105. ISSN:
2660-6003. URL: https://temat.es/monograficos/article/view/vol2-p103.

cb This work is distributed under a Creative Commons Attribution 4.0 International licence
https://creativecommons.org/licenses/by/4.0/

mailto:merce.claverol@upc.edu
mailto:clemens.huemer@upc.edu
mailto:alejandra.martinezm@uah.es
https://temat.es/monograficos/article/view/vol2-p103
https://creativecommons.org/licenses/by/4.0/


On circles enclosing many points

1 . I n t r o d u c t i o n

Let ℓ(𝑛) be the largest number such that every set 𝑆 of 𝑛 points in general position in the plane has
the following property: There exist 𝑝, 𝑞 ∈ 𝑆 such that every circle passing through 𝑝 and 𝑞 contains
at least ℓ(𝑛) other points of 𝑆. Neumann-Lara and Urrutia [7] introduced this problem and obtained
the bound ℓ(𝑛) ≥ ⌈𝑛−2

60
⌉. This bound was not tight and hence it was improved in a series of papers

[1, 4, 5]. The best known bound up-to-date was obtained by Edelsbrunner et al. [3], who proved that
ℓ(𝑛) ≥ 𝑛( 1

2
− 1

√12
) + 𝑂(1) ≈ 𝑛

4.7
. Later, Ramos and Viaña [9] obtained an independent proof of this lower

bound and further proved the following result:

T h e o r e m 1 ([9]). Every set 𝑆 of 𝑛 points in general position in the plane contains two points such that each
circle passing through them encloses at least 𝑘 and at most 𝑛−𝑘− 2 points of 𝑆, for 𝑘 = ( 1

2
− 1

√12
)𝑛− 𝑜(𝑛).

We present an alternative proof of Theorem 1 making use of properties of order-𝑘 Voronoi diagrams.
The techniques that we use in our proof allow us to obtain two new results: An upper bound condition,
Theorem 2, and a bichromatic result, Theorem 3, stated below. The chromatic problem was introduced by
Prodromou [8] with 𝑑 dimensions and ⌊𝑑+3

2
⌋ colors. In the particular case 𝑑 = 2, it is proved that every

set of 𝑛 red points and𝑚 blue points contains a red point and a blue point such that every circle passing
through them encloses 𝑛+𝑚

36
other points of the set. Our result improves this bound.

This is an extended abstract of manuscript [2].

2 . C i r c l e s a n d V o r o n o i d i a g r a m s

An order-𝑘 Voronoi diagram of a point set 𝑆 is a subdivision of the plane into regions such that all the
points in the same region have the same 𝑘 closest points of 𝑆. The borders between regions are segments
of the perpendicular bisectors between pairs of points in 𝑆. This is a key concept in our proof of Theorem 1
because the segments of the order-𝑘 Voronoi diagram of 𝑆 are precisely the centers of the circles through
two points of 𝑆 that enclose exactly 𝑘 − 1 other points of 𝑆 [6]. We say that a segment of the perpendicular
bisector 𝑏𝑝𝑞 of 𝑝 and 𝑞 has weight 𝑘 if all the circles through 𝑝 and 𝑞 with center in such segment enclose 𝑘
other points of 𝑆. Thus, the segments of the order-𝑘 Voronoi diagram have weight 𝑘 − 1, see Figure 1.

3 . N e w r e s u l t s

Following the ideas in the previous section, we study an upper bound version of the circle containment
problem. Let 𝑢(𝑛) be the smallest number such that every set 𝑆 of 𝑛 points in general position in the plane
has the following property: There exist 𝑝, 𝑞 ∈ 𝑆 such that every circle passing through 𝑝 and 𝑞 contains at
most 𝑢(𝑛) other points of 𝑆. In Theorem 2 we prove that 𝑢(𝑛) ≤ ⌊ 2𝑛−1

3
⌋.

T h e o r e m 2 . Let 𝑆 be a set of 𝑛 ≥ 3 points in general position in the plane. Then, 𝑆 contains two points
such that every circle passing through them encloses at most ⌊ 2𝑛−1

3
⌋ points of 𝑆.

Adapting the proof of Theorem 1 to only consider circles passing through a red point and a blue point, we
obtain the following result.

T h e o r e m 3 . Every set 𝑆 of 𝑛 red points and 𝑚 = ⌊𝑐𝑛⌋, for 𝑐 ∈ (0, 1], blue points in general position in the
plane contains a red point 𝑝 and a blue point 𝑞 such that any circle passing through them encloses at

least 𝑛+𝑚−√𝑛2+𝑚2

2
− 𝑜(𝑛 + 𝑚) points of 𝑆.

For 𝑛 = 𝑚, Theorem 3 gives the bound 𝑛(1 − 1
√2
) − 𝑜(𝑛) ≈ 𝑛

3.4
.
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F i g u r e 1 : Relation between the order-𝑘 Voronoi diagram and the circle containment problem. (a) The
segments of weight 2 are edges of the order-3 Voronoi diagram; (b) The segments of weight 3 are edges of
the order-4 Voronoi diagram.
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A b s t r a c t : We study spectral data for pairs (𝐸,𝜑), where 𝐸 → 𝑋 is a vector bundle
over a smooth projective variety and 𝜑∶ 𝐸 → 𝐸 ⊗𝑉 is an endomorphism “twisted”
by another vector bundle 𝑉 → 𝑋, satisfying a commuting condition 𝜑 ∧ 𝜑 = 0.
When 𝑉 = 𝛺1

𝑋 these pairs are known as Higgs bundles, which are intimately related
to linear representations of the fundamental group of 𝑋.

Studying spectral data for this kind of objects consists on describing the fibres
of a certain Hitchin map. In order to do this, we review the construction of the
universal spectral cover and the spectral correspondence given in a recent paper by
Chen and Ngô [2].

R e s u m e n : Realizamos un estudio de los datos espectrales de pares (𝐸,𝜑), donde
𝐸 → 𝑋 es un fibrado vectorial sobre una variedad proyectiva lisa y 𝜑∶ 𝐸 → 𝐸 ⊗ 𝑉
es un endomorfismo “torcido” por otro fibrado vectorial 𝑉 → 𝑋, satisfaciendo una
condición de conmutación 𝜑∧𝜑 = 0. Cuando 𝑉 = 𝛺1

𝑋 estos pares se conocen como
fibrados de Higgs, que están íntimamente relacionados con las representaciones
lineales del grupo fundamental de 𝑋.

Estudiar los datos espectrales para este tipo de objetos consiste en describir las
fibras de una cierta aplicación de Hitchin. Para hacer esto, repasamos la construc-
ción de la cubierta espectral universal y la correspondencia espectral dadas en un
artículo reciente de Chen y Ngô [2].
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Universal spectral covers and the Hitchin map

1 . I n t r o d u c t i o n

Let 𝑘 be an algebraically closed field, 𝑋 a smooth projective variety over 𝑘 and 𝑉 → 𝑋 a rank 𝑟 vector bundle
over 𝑋. We are interested in studying pairs (𝐸,𝜑), with 𝐸 → 𝑋 a rank 𝑛 vector bundle and 𝜑∶ 𝐸 → 𝐸⊗𝑉 an
“endomorphism twisted by 𝑉”, satisfying a commuting condition: 𝜑 ∧ 𝜑 = 0 as a morphism 𝐸 → 𝐸 ⊗ ∧2𝑉.
Locally, this means that 𝜑 can be written as (𝜑1,… ,𝜑𝑟), with [𝜑𝑖,𝜑𝑗] = 0.

A particularly interesting situation occurs when 𝑉 = 𝛺1
𝑋 is the cotangent bundle of 𝑋. In that case we say

that such an (𝐸,𝜑) is a Higgs bundle. These objects were introduced by Hitchin in 1987 [5] in the case that
𝑋 is a Riemann surface, and later generalized by Simpson [6] to Kähler manifolds of higher dimension.

When 𝑘 = ℂ is the field of complex numbers, a theorem of Corlette [3] and Simpson [6] identifies the
moduli space of stable Higgs bundles with the character variety parametrizing irreducible representations
of the fundamental group 𝜋1(𝑋) on GL𝑛(ℂ).

We denote byℳ𝑛,𝑉 the moduli stack of such pairs (𝐸,𝜑), where 𝐸 has rank 𝑛. The Hitchin morphism is
defined as the map

ℎ𝑛,𝑉∶ ℳ𝑛,𝑉 →
𝑛

⨁
𝑖=1

𝐻0(𝑋, 𝑆𝑖𝑉) ∶ (𝐸,𝜑) ↦ (𝜎1(𝜑),… ,𝜎𝑛(𝜑)),

where the 𝜎𝑖(𝜑) are the coefficients of the “characteristic polynomial” of 𝜑,

𝑝𝜑(𝑇) = det(𝑇 − 𝜑) = 𝑇𝑛 +∑𝑛
𝑖=1 𝜎𝑖(𝜑)𝑇

𝑛.

We are interested in studying the fibres of this morphism.

When dim𝑋 = 1 and the twisting bundle is a line bundle 𝑉 = 𝐿, if 𝐿𝑛 is base point free, then for a generic
𝑏 ∈ ⨁𝑛

𝑖=1 (𝑋, 𝐿
𝑖) there exists a smooth spectral curve 𝑌𝑏, with a finite morphism 𝑌𝑏 → 𝑋 such that the fibre

of the Hitchin map over 𝐿 is in correspondence with the Picard group of 𝑌𝑏. This was shown by Hitchin
in 1987 [4] in the case of Higgs bundles (𝐿 = 𝛺1

𝑋) and later generalized by Beauville, Narasimhan and
Ramanan [1] for a general line bundle 𝐿.

In particular, what Hitchin proved in [4] is that the Hitchin map endows the moduli space of stable Higgs
bundles on a Riemann surface of genus 𝑔 ≥ 2 with the structure of an algebraically integrable system.

We seek similar results to that of Beauville-Narasimhan-Ramanan for general values of dim𝑋 and rk 𝑉.

A recent paper by Chen and Ngô [2] has shed some light into this problem, by (among other things)
giving an interpretation of the Hitchin map in terms of “universal spectral data” and a proving a spectral
correspondence for Higgs bundles over projective surfaces.

In this document we review some of the main ideas of Chen and Ngô’s interpretation of the Hitchin map
and the spectral correspondence.

2 . U n i v e r s a l s p e c t r a l d a t a

Let 𝐸 be a 𝑘-vector space of dimension 𝑛. Consider 𝜑1,… ,𝜑𝑟 a family of 𝑟 endomorphisms of 𝐸 that
pairwise commute, that is [𝜑𝑖,𝜑𝑗] = 0. This family generates a 𝑘-algebra 𝐴 = 𝑘[𝜑1,… ,𝜑𝑟]. The evaluation
morphism 𝑘[𝑋1,… ,𝑋𝑟] → 𝐴 ⊂ End𝐸 endows 𝐸with the structure of a 𝑘[𝑋1,… ,𝑋𝑟]-module. Geometrically,
this can be interpreted as a sheaf ℱ over the 𝑟-dimensional affine space �𝑟

𝑘 such that 𝑝∗ℱ = 𝐸, where
𝑝∶ �𝑟

𝑘 → Spec(𝑘) is the natural morphism.

In the particular case where 𝑟 = 1, so 𝐴 = 𝑘[𝜑] for some endomorphism 𝜑∶ 𝐸 → 𝐸, since 𝑘[𝑇] is a PID,
𝐴 can be written as 𝐴 = 𝑘[𝑇]/(𝑚𝜑), where (𝑚𝜑) is the ideal generated by a polynomial 𝑚𝜑 which is by
definition the minimal polynomial of 𝜑. The roots of 𝑚𝜑 are precisely the eigenvalues 𝑥1,… , 𝑥𝑠 ∈ 𝑘 of
𝜑. If 𝐸 = ⨁𝑠

𝑖=1 𝐸𝑖 is the spectral decomposition of 𝐸 associated to 𝜑 and 𝑛𝑖 = dim𝐸𝑖, we can consider
the characteristic polynomial 𝑝𝜑(𝑇) = (𝑇 − 𝑥1)𝑛1 ⋯(𝑇 − 𝑥𝑠)𝑛𝑠. The Cayley-Hamilton theorem asserts that
𝑝𝜑(𝜑) = 0, and thus the minimal polynomial 𝑚𝜑 divides 𝑝𝜑. Geometrically, this implies that the sheaf ℱ is
supported in a closed subscheme of Spec(𝑘[𝑇]/(𝑝𝜑)).
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In the general case of 𝑟 > 1, the ring 𝐴 is of the form 𝑘[𝑋1,… ,𝑋𝑟]/𝐼, for 𝐼 some ideal that in principle can be
generated by several polynomials. However, we can take the primary decomposition of 𝐼, 𝐼 = 𝔪𝛼1

1 ⋯𝔪𝛼𝑠
𝑠 .

This induces a decomposition of 𝐸, 𝐸 = ⨁𝑠
𝑖=1 𝐸𝑖. If we denote 𝑛𝑖 = dim𝐸𝑖, we can consider the ideal

𝐽 = 𝔪𝑛1
1 ⋯𝔪𝑛𝑠

𝑠 . Using the Nakayama lemma, one can prove a generalized version of the Cayley-Hamilton
theorem asserting that 𝐽 ⊆ 𝐼. Geometrically, this means that the sheafℱ is supported in a closed subscheme
of Spec(𝑘[𝑋1,… ,𝑋𝑟]/𝐽).

Therefore, we can associate to the algebra 𝐴 = 𝑘[𝜑1,… ,𝜑𝑟] a formal combination of points of�𝑟
𝑘 sd(𝐴) =

∑𝑠
𝑖=1 𝑛𝑖[𝑥𝑖], with∑

𝑠
𝑖=1 𝑛𝑖 = 𝑛, where 𝑥𝑖 is the point of�𝑟

𝑘 associated to the maximal ideal𝔪𝑖. This formal
combination sd(𝐴) is known as the spectral datum of 𝐴.

The set parametrizing formal combinations of points of�𝑟
𝑘 of length 𝑛 is the symmetric product 𝑆𝑛�𝑟

𝑘 =
(�𝑟 × (𝑛)… ×�𝑟)/𝔖𝑛. A classical theorem ofWeyl shows that there exists a closed embedding

𝜄𝑛,𝑟∶ 𝑆𝑛�𝑟
𝑘 → �(𝑘𝑟 ⊕ 𝑆2𝑘𝑟 ⊕⋯⊕ 𝑆𝑛𝑘𝑟) ∶ ∑𝑛

𝑖=1 [𝑥𝑖] ↦ (𝜎1,… ,𝜎𝑛),

where 𝑆𝑖𝑘𝑟 is the 𝑖-th symmetric product vector space of 𝑘𝑟 and� denotes the functor sending a vector
space over 𝑘 to the associated affine space (regarded as a scheme), that is�(𝑉) = Spec(𝑘[𝑉]). The elements
𝜎𝑖 are defined as

𝜎1 = 𝑥1 +… + 𝑥𝑛, 𝜎2 = 𝑥1𝑥2 + 𝑥1𝑥3 +… + 𝑥𝑛−1𝑥𝑛, … 𝜎𝑛 = 𝑥1⋯𝑥𝑛.

In particular, for 𝑟 = 1 the map 𝜄𝑛,𝑟 is an isomorphism by the Fundamental Theorem on Symmetric
Polynomials.

We can now consider an “universal characteristic polynomial” by defining the map

𝜒𝑛,𝑟∶ �𝑟
𝑘 × 𝑆𝑛�𝑟

𝑘 → �(𝑆𝑛𝑘𝑟) ∶ (𝑥,∑𝑛
𝑖=1 [𝑥𝑖]) ↦ (𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑛).

Indeed, note that 𝜒𝑛,𝑟 (𝑥,∑
𝑛
𝑖=1 [𝑥𝑖]) = 𝑥𝑛 − 𝜎1𝑥𝑛−1 + … + (−1)𝑛𝜎𝑛. We define the Cayley scheme as the

0-fibre of this map,
Cayley𝑛(�

𝑟
𝑘) = 𝜒−1𝑛,𝑟(0).

The natural projection 𝑝𝑛,𝑟∶ Cayley𝑛(�
𝑟
𝑘) → 𝑆𝑛�𝑟

𝑘 is called the universal spectral cover.

The following theorem sums up the main properties of this map:

T h e o r e m 1 . The universal spectral cover 𝑝𝑛,𝑟 is finite of degree 𝑛 and generically étale over the set (𝑆𝑛�𝑟
𝑘)′

consisting of multiplicity-free formal combinations. For 𝑎 = ∑𝑠
𝑖=1 𝑛𝑖[𝑥𝑖], we have

𝑝−1𝑛,𝑟(𝑎) = Spec (
𝑘[𝑋1,… ,𝑋𝑟]
𝔪𝑛1

1 ⋯𝔪𝑛𝑠
𝑠
) .

Thus, 𝑝𝑛,𝑟 is flat if and only if 𝑟 = 1 or 𝑛 = 1. Finally, if 𝐴 = 𝑘[𝜑1,… ,𝜑𝑟], the associated sheaf ℱ is
supported in a closed subscheme of 𝑝−1𝑛,𝑟(sd(𝐴)).

The last part of this theorem can be interpreted as a “universal version” of the Cayley-Hamilton theorem.

3 . T h e H i t c h i n m a p

We come back now to the situation of the introduction, where 𝑋 is a smooth projective variety over 𝑘 and
𝑉 → 𝑋 is a rank 𝑟 vector bundle over 𝑋. We can consider now the scheme 𝑆𝑛(𝑉/𝑋), which is the result
of twisting the space 𝑆𝑛�𝑟

𝑘 by the GL𝑟-torsor attached to 𝑉. In other words, 𝑆𝑛(𝑉/𝑋) is a fibre bundle
over 𝑋 with fibre 𝑆𝑛�(𝑉𝑥) over 𝑥 ∈ 𝑋. We denote by ℬ𝑛,𝑉 the set of sections of 𝑆𝑛(𝑉/𝑋). The embedding
𝑆𝑛�𝑟

𝑘 ↪ �(𝑘𝑟 ⊕ 𝑆2𝑘𝑟 ⊕…⊕ 𝑆𝑛𝑘𝑟) induces an embedding 𝜄𝑛,𝑉∶ ℬ𝑛,𝑉 ↪⨁𝑛
𝑖=1𝐻

0(𝑋, 𝑆𝑖𝑉).

It is clear now that this gives a fatorization of the Hitchin morphism as ℎ𝑛,𝑉 = 𝜄𝑛,𝑉 ∘ sd. Therefore, the
problem of studying the fibres of ℎ𝑛,𝑉 is reduced to the problem of studying the fibres of the spectral data
map sd∶ ℳ𝑛,𝑉 → ℬ𝑛,𝑉.
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Consider now a section 𝑏 ∈ ℬ𝑛,𝑉, which is a map 𝑏∶ 𝑋 → 𝑆𝑛(𝑉/𝑋). If we twist the universal spectral cover
by the GL𝑟-torsor attached to 𝑉, we get a map Cayley𝑛(𝑉/𝑋) → 𝑆𝑛(𝑉/𝑋). Taking the fibered product of 𝑏
and this map we get a degree 𝑛 finite morphism 𝜋∶ 𝑌𝑏 → 𝑋 factorizing by an embedding 𝑌𝑏 ↪ 𝑉. This is
the spectral cover. Moreover, if 𝑏 is generically multiplicity free, then 𝜋 is generically étale. However, 𝜋 is
not a flat morphism in general.

Suppose now that (𝐸,𝜑) is a pair with spectral data 𝑏, then the twisted endomorphism 𝜑∶ 𝐸 → 𝐸 ⊗ 𝑉
can be seen as a morphism 𝑉∨ → End𝐸, which induces a morphism 𝑆•𝑉∨ → End𝐸. Since 𝑆•𝑉∨ = 𝑝∗𝒪𝑋,
the previous morphism defines a coherent sheaf ℱ on 𝑉 such that 𝑝∗ℱ = 𝐸. The universal version of the
Cayley-Hamilton theorem implies that the support of ℱ is contained precisely in the spectral cover 𝑌𝑏.
Therefore, we have a correspondence between those pairs (𝐸,𝜑) with spectral data 𝑏 and coherent sheaves
ℒ on 𝑌𝑏 with 𝜋∗ℒ = 𝐸. Moreover, we have the following lemma from commutative algebra:

L e m m a 2 . Let 𝐴 be a regular ring and 𝐵 a finite 𝐴-algebra. Any 𝐵-module 𝑀 is maximal Cohen-Macaulay
over 𝐵 if and only if it is locally free as an 𝐴-module.

This implies the following correspondence:

T h e o r e m 3 . The functor 𝜋∗ gives an equivalence of categories between pairs (𝐸,𝜑) with spectral data 𝑏
and maximal Cohen-Macaulay sheaves on 𝑌𝑏 of generic rank 1.

The main problem with the above result is that, since the map 𝜋 is not flat in general, the category of
maximal Cohen-Macaulay sheaves on 𝑌𝑏 might be empty. A way to solve this problem is by “modifying” 𝜋
in order to obtain a flat morphism �̃�∶ ̃𝑌𝑏 → 𝑋. For example, if dim𝑋 = 1, since any coherent sheaf on a
curve can be decomposed as a direct sum of a locally free and a torsion sheaf, we can obtain a flat spectral
cover just by removing the torsion of the structure sheaf. When dim𝑋 = 2, a construction by Chen and
Ngô [2] yields a Cohen-Macaulayfication of the spectral curve.

Moreover, note that if the spectral cover is an integral scheme, the corresponding sheaves over it are
torsion-free and, if it is smooth, then they are locally free. In the case where the twisting bundle has
rank 1 and its 𝑛-th power is base point free, Beauville, Narasimhan and Ramanan found that these good
conditions on the spectral cover are in fact satisfied for a generic 𝑏. It would be interesting then to find
similar conditions for the cases of general values for dim𝑋 and rk 𝑉.
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A b s t r a c t : Let ℳ be a von Neumann algebra, and let 0 < 𝑝, 𝑞 ≤ ∞. Then, the
space Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) of all rightℳ-module homomorphisms from 𝐿𝑝(ℳ)
to 𝐿𝑞(ℳ) is a reflexive subspace of the space of all continuous linear maps from
𝐿𝑝(ℳ) to 𝐿𝑞(ℳ). Further, the space Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) is hyperreflexive in each
of the following cases:

( i ) 1 ≤ 𝑞 < 𝑝 ≤ ∞;
( i i ) 1 ≤ 𝑝, 𝑞 ≤ ∞ andℳ is injective, in which case the hyperreflexivity constant

is at most 8.

R e s u m e n : Seaℳ un álgebra de von Neumann y sean 0 < 𝑝, 𝑞 ≤ ∞. El espacio
Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) de los homomorfismos deℳ-módulos a derechas de 𝐿𝑝(ℳ)
en𝐿𝑞(ℳ) es un subespacio reflexivo del espacio de aplicaciones lineales y continuas
de 𝐿𝑝(ℳ) en 𝐿𝑞(ℳ). Además, el espacio Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) es hiperreflexivo en
los siguientes casos:

( i ) 1 ≤ 𝑞 < 𝑝 ≤ ∞;
( i i ) 1 ≤ 𝑝, 𝑞 ≤ ∞ yℳ es inyectiva, en cuyo caso la constante de hiperreflexividad

es no mayor que 8.

K e y w o r d s : non-commutative 𝐿𝑝-spaces, injective von Neumann algebras,
reflexive subspaces, hyperreflexive subspaces, module homomorphisms.
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Module homomorphisms between non-commutative 𝐿𝑝-spaces

1 . I n t r o d u c t i o n

Let 𝒳,𝒴 be quasi-Banach spaces, and let 𝒮 be a closed linear subspace of 𝐵(𝒳,𝒴). In accordance with
Loginov and Šul’man [8], 𝒮 is called reflexive if

𝒮 = {𝑇 ∈ 𝐵(𝒳,𝒴) ∶ 𝑇(𝑥) ∈ {𝑆(𝑥) ∶ 𝑆 ∈ 𝒮} ∀ 𝑥 ∈ 𝒳}.

Following Larson [6, 7], in the case where 𝒳 and 𝒴 are Banach spaces, 𝒮 is called hyperreflexive if there
exists 𝐶 such that

dist(𝑇,𝒮) ≤ 𝐶 sup
‖𝑥‖≤1

inf {‖𝑇(𝑥) − 𝑆(𝑥)‖ ∶ 𝑆 ∈ 𝒮} ,

for all 𝑇 ∈ 𝐵(𝒳,𝒴), and the optimal constant is called the hyperreflexivity constant of 𝒮.

Ifℋ is a Hilbert space andℳ is a von Neumann algebra onℋ, then the double commutant theorem shows
that 𝒜 is a reflexive subspace of 𝐵(ℋ). Christensen [2–4] showed that many von Neumann algebras are
hyperreflexive, but the general case is still open.

The non-commutative 𝐿𝑝-spaces that we consider throughout are those introduced by Haagerup (see [5,
9, 10]). Letℳ be a von Neumann algebra. For each 0 < 𝑝 ≤ ∞, the space 𝐿𝑝(ℳ) is a contractive Banach
ℳ-bimodule or a contractive 𝑝-Banachℳ-bimodule according to 1 ≤ 𝑝 or 𝑝 < 1, and we will focus on the
rightℳ-module structure of 𝐿𝑝(ℳ).

Let 𝒜 be a 𝐶∗-algebra, and let 𝒳 and 𝒴 be quasi-Banach right 𝒜-modules. An operator 𝑇 ∈ 𝐵(𝒳,𝒴) is a
right 𝒜-module homomorphism if

𝑇(𝑥𝑎) = 𝑇(𝑥)𝑎 (𝑥 ∈ 𝒳, 𝑎 ∈ 𝒜).

We write Hom𝒜(𝒳,𝒴) for the space of right 𝒜-module homomorphisms from 𝒳 to 𝒴.

For 𝑇 ∈ 𝐵(𝒳,𝒴) and 𝑎 ∈ 𝒜, define linear maps 𝑎𝑇, 𝑇𝑎∶ 𝒳 → 𝒴 by

(𝑎𝑇)(𝑥) = 𝑇(𝑥𝑎), (𝑇𝑎)(𝑥) = 𝑇(𝑥)𝑎 (𝑥 ∈ 𝒳).

Let ad(𝑇)∶ 𝒜 → 𝐵(𝒳,𝒴) denote the inner derivation implemented by 𝑇, so that

ad(𝑇)(𝑎) = 𝑎𝑇 − 𝑇𝑎 (𝑎 ∈ 𝒜).

It is clear that 𝑇 is a right 𝒜-module homomorphism if and only if ad(𝑇) = 0, and, in the case where 𝒳 and
𝒴 are Banach 𝒜-modules, the constant ‖ad(𝑇)‖ is intended to estimate the distance from 𝑇 to the space
Hom𝒜(𝒳,𝒴).

In [1], we study the reflexivity and hyperreflexivity of the space Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)), whereℳ is a von
Neumann algebra and 0 < 𝑝, 𝑞 ≤ ∞.

2 . B i l i n e a r m a p s a n d o r t h o g o n a l i t y

Our research is based on the analysis of bilinear maps that satisfy a certain orthogonality property.

P r o p o s i t i o n . Let ℳ be a von Neumann algebra, let 𝒵 be a topological vector space, and let 𝜑∶ ℳ×ℳ → 𝒵
be a continuous bilinear map.

( i ) Suppose that
𝑒 ∈ Proj(ℳ) ⟹ 𝜑(𝑒, 𝑒⟂) = 0.

Then,
𝜑(𝑎, 1ℳ) − 𝜑(1ℳ, 𝑎) = 0 (𝑎 ∈ ℳ).

( i i ) Suppose that 𝒵 is a normed space and let the constant 𝜀 ≥ 0 be such that

𝑒 ∈ Proj(ℳ) ⟹ ‖𝜑(𝑒, 𝑒⟂)‖ ≤ 𝜀.

Then,
‖𝜑(𝑎, 1ℳ) − 𝜑(1ℳ, 𝑎)‖ ≤ 8𝜀‖𝑎‖ (𝑎 ∈ ℳ).

112 https://temat.es/monograficos

https://temat.es/monograficos


C. Godoy

This result remains true even ifℳ is just a unital 𝐶∗-algebra of real rank zero (see [1, Theorem 1.2]).

P r o p o s i t i o n . Let ℳ be a von Neumann algebra and let 0 < 𝑝, 𝑞 ≤ ∞. Let 𝑇 ∈ 𝐵(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)).

( i ) If
𝑒 ∈ Proj(ℳ)⟹ 𝑒⟂𝑇𝑒 = 0,

then 𝑇 ∈ Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)).
( i i ) If 𝑝, 𝑞 ≥ 1, then

‖ad(𝑇)‖ ≤ 8 sup
‖𝑥‖≤1

inf {‖𝑇(𝑥) − 𝛷(𝑥)‖ ∶ 𝛷 ∈ Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ))} .

This proposition is a direct consequence of the previous one, and it can be shown in much more general
situations (see [1, Theorems 2.2, 2.3 and 2.4]).

3 . R e f l e x i v i t y a n d h y p e r r e f l e x i v i t y

The first part of the second proposition leads us to this result.

T h e o r e m (Alaminos, Godoy and Villena [1, Corollary 2.11]). Let ℳ be a von Neumann algebra and let
0 < 𝑝, 𝑞 ≤ ∞. Then, the space Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) is reflexive.

In [1], we show a slightly stronger result: if 𝑇∶ 𝐿𝑝(ℳ) → 𝐿𝑞(ℳ) is a linear map such that

𝑇(𝑥) ∈ {𝛷(𝑥) ∶ 𝛷 ∈ Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ))},

then 𝑇 ∈ Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)). Note that the continuity of 𝑇 is not required.

The hyperreflexivity of these spaces is a substantially more complex problem. In fact, we need additional
hypotheses to solve it and the general case is still open.

T h e o r e m (Alaminos, Godoy and Villena [1, Theorems 3.7, 3.8 and 3.9]). Let ℳ be a von Neumann algebra
and let 1 ≤ 𝑝, 𝑞 ≤ ∞.

( i ) If 𝑝 = ∞ or 𝑞 = 1, then Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) is hyperreflexive and the hyperreflexivity constant is
less or equal than 8.

( i i ) If ℳ is injective and 𝑝, 𝑞 ≥ 1, then Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) is hyperreflexive and the hyperreflexivity
constant is less or equal than 8.

( i i i ) If 𝑞 < 𝑝, then Homℳ(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)) is hyperreflexive and the hyperreflexivity constant is less or
equal than a constant 𝐶𝑝,𝑞 that does not depend onℳ.

The proof of the first and second parts of the theorem consists of showing that, given 𝑇∈𝐵(𝐿𝑝(ℳ), 𝐿𝑞(ℳ)),
there is a homomorphism 𝛷 such that

‖𝑇 − 𝛷‖ ≤ ‖ad(𝑇)‖,

and then the second part of the second proposition concludes the demonstration.

The third part is shown by assuming towards a contradiction that for each 𝑛 ∈ ℕ there is a von Neumann
algebraℳ𝑛 and an operator 𝑇𝑛 ∈ 𝐵(𝐿𝑝(ℳ𝑛), 𝐿𝑞(ℳ𝑛)) such that

dist(𝑇𝑛,Homℳ𝑛(𝐿
𝑝(ℳ𝑛), 𝐿𝑞(ℳ𝑛))) > 𝑛‖ad(𝑇𝑛)‖ (𝑛 ∈ ℕ).
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A b s t r a c t : The isoperimetric inequality is one of the oldest and most outstanding
results in mathematics, and can be summarized by saying that the Euclidean balls
minimize the surface areameasure S(⋅) (Minkowski content) among those compact
convex sets with prescribed positive volume vol(⋅) (Lebesgue measure). It admits
the following “neighbourhood form”: for any compact convex set 𝐾 ⊂ ℝ𝑛, and all
𝑡 ≥ 0,

( 1 ) vol(𝐾 + 𝑡𝐵𝑛) ≥ vol(𝑟𝐵𝑛 + 𝑡𝐵𝑛),

where 𝑟 > 0 is such that vol(𝑟𝐵𝑛) = vol(𝐾) and 𝐵𝑛 denotes the (closed) Euclidean
unit ball.

In this talk we discuss and show a discrete analogue of the isoperimetric inequality
in its form (1) for the lattice point enumerator G𝑛(𝐾) = #(𝐾 ∩ ℤ𝑛) of a bounded
subset 𝐾 ⊂ ℝ𝑛: we determine sets minimizing the functional G𝑛(𝐾 + 𝑡[−1, 1]𝑛),
for any 𝑡 ≥ 0, among those bounded sets 𝐾 with given positive lattice point
enumerator. We also show that this new discrete inequality implies the classical
result for compact sets. The results of this talk will appear in [5].

R e s u m e n : La desigualdad isoperimétrica es uno de los resultados más antiguos
de las matemáticas, y puede ser sintetizada en el hecho de que las bolas euclídeas
minimizan la medida de área de superficie S(⋅) (contenido de Minkowski) entre
todos los conjuntos compactos y convexos con volumen positivo prescrito vol(⋅)
(medida de Lebesgue). Admite la siguiente “versión local”: para todo conjunto
compacto y convexo 𝐾 ⊂ ℝ𝑛, y todo 𝑡 ≥ 0,

( 2 ) vol(𝐾 + 𝑡𝐵𝑛) ≥ vol(𝑟𝐵𝑛 + 𝑡𝐵𝑛),

donde 𝑟 > 0 es tal que vol(𝑟𝐵𝑛) = vol(𝐾) y 𝐵𝑛 denota la bola unidad euclídea
(cerrada).

En esta charla discutimos y probamos un análogo discreto de la desigualdad isoperi-
métrica en su forma (2) para el enumerador de puntos de retículoG𝑛(𝐾) = #(𝐾∩ℤ𝑛)
de un conjunto acotado 𝐾 ⊂ ℝ𝑛: determinamos los conjuntos que minimizan
el funcional G𝑛(𝐾 + 𝑡[−1, 1]𝑛) para cualquier 𝑡 ≥ 0, entre todos los conjuntos
acotados 𝐾 con un enumerador de puntos de retículo positivo dado. También mos-
tramos que esta nueva desigualdad discreta implica el correspondiente resultado
clásico para conjuntos compactos. Los resultados de esta charla aparecerán en [5].

K e y w o r d s : isoperimetric inequality, lattice point enumerator, integer lattice.
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On discrete isoperimetric type inequalities

1 . I n t r o d u c t i o n

The classical isoperimetric inequality in its form for convex bodies (compact and convex sets) in ℝ𝑛 states
that the volume vol(⋅) (Lebesgue measure) and surface area S(⋅) (Minkowski content) of any 𝑛-dimensional
convex body 𝐾 satisfy

( 3 ) (
S(𝐾)
S(𝐵𝑛)

)
𝑛
≥ (

vol(𝐾)
vol(𝐵𝑛)

)
𝑛−1

,

where 𝐵𝑛 denotes the Euclidean (closed) unit ball. In other words, Euclidean balls minimize the surface
area among those convex bodies with prescribed positive volume.

There exist various facets of the isoperimetric inequality, due to its different versions and extensions.
Among other analogues of it we emphasize its equivalent analytic version, the Sobolev inequality (see
e.g. [4, Section 5]), and its form formixed volumes, the so-calledMinkowski first inequality (see e.g. [10,
Theorem 7.2.1]). Diskant’s inequality, which can be regarded as an improvement of the latter, and the
Bonnesen-type inequalities in the plane also deserve special attention (see e.g. [10, Section 7.2] and the
references therein). The isoperimetric inequality also has various ramifications into other settings, such
as its versions in the spherical and hyperbolic spaces (see e.g. [2]); it has been the starting point for new
engaging related results, such as a reverse isoperimetric inequality (see [1]), and it has led to various
remarkable consequences not only in geometry but also in analysis (see e.g. [3]). For an extensive survey
article on this inequality we refer the reader to [7].

Let us denote by + the Minkowski sum of sets, i.e., 𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for any non-empty sets
𝐴,𝐵 ⊂ ℝ𝑛. Also denote by 𝑟𝐴 the set {𝑟𝑎 ∶ 𝑎 ∈ 𝐴}, for any 𝑟 ≥ 0. The isoperimetric inequality (3) admits
the following “neighbourhood form” (see e.g. [6, Proposition 14.2.1]): for any 𝑛-dimensional convex body
𝐾 ⊂ ℝ𝑛, and all 𝑡 ≥ 0, we have

( 4 ) vol(𝐾 + 𝑡𝐵𝑛) ≥ vol(𝑟𝐵𝑛 + 𝑡𝐵𝑛),

where 𝑟𝐵𝑛, 𝑟 > 0, is a ball of the same volume as 𝐾. In fact, by subtracting vol(𝐾) = vol(𝑟𝐵𝑛) and dividing
by 𝑡 in both sides of (4), and taking limits as 𝑡 → 0+, one immediately gets (3) from (4).

The neighbourhood 𝐾 + 𝑡𝐵𝑛, 𝑡 ≥ 0, of the 𝑛-dimensional convex body 𝐾 coincides with the set of all points
ofℝ𝑛 having (Euclidean) distance from 𝐾 at most 𝑡. Exchanging the role of the unit ball 𝐵𝑛 in (4) by another
(𝑛-dimensional) convex body 𝐸 ⊂ ℝ𝑛, i.e., changing the involved “distance”, one is naturally led to the fact

( 5 ) vol(𝐾 + 𝑡𝐸) ≥ vol(𝑟𝐸 + 𝑡𝐸)

for all 𝑡 ≥ 0, where again 𝑟 > 0 is such that 𝑟𝐸 has the same volume as 𝐾. Thus, the advantage of using the
volume of a neighbourhood of 𝐾, instead of its surface area, is that it can be extended to other spaces in
which the latter notion makes no sense; it just suffices to consider a metric and a measure on the given
space. Relevant examples of spaces in which isoperimetric inequalities in this form hold are the unit
sphere, the Gauss space or the 𝑛-dimensional discrete cube {0, 1}𝑛 (see e.g. [6, Section 14.2]).

2 . M a i n r e s u l t s

Let us start by defining a family of sets which will be shown to be optimal under the hypothesis of the
discrete isoperimetric inequality. Given a vector 𝑢 = (𝑢1… , 𝑢𝑛) ∈ ℤ𝑛 and fixing 𝑖ᵆ ∈ {1,… , 𝑛}, we will
write

𝑢′ = (𝑢1… , 𝑢𝑖𝑢−1, 𝑢𝑖𝑢+1,… , 𝑢𝑛) ∈ ℤ𝑛−1.

With this notation, in [8] the following well-order ≺ in ℤ𝑛 is defined:

D e f i n i t i o n 1 . If 𝑛 = 1 we define the order ≺ given by

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ ⋯ ≺ 𝑚 ≺ −𝑚 ≺ …
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For 𝑛 ≥ 2 we set, for 𝑤 = (𝑤1,… ,𝑤𝑛) ∈ ℤ𝑛,

𝑀(𝑤) = max
≺

{𝑤𝑖 ∶ 𝑖 = 1,… , 𝑛} and 𝑖𝑤 = min{𝑖 ∶ 𝑤𝑖 = 𝑀(𝑤)},

and we define ≺ recursively as follows: for any 𝑢, 𝑣 ∈ ℤ𝑛 with 𝑢 ≠ 𝑣,

( i ) if𝑀(𝑢) ≺ 𝑀(𝑣), then 𝑢 ≺ 𝑣;
( i i ) if𝑀(𝑢) = 𝑀(𝑣), then 𝑢 ≺ 𝑣 if either 𝑖𝑣 < 𝑖ᵆ or (𝑖𝑣 = 𝑖ᵆ and) 𝑢′ ≺ 𝑣′.

Moreover, we write 𝑢 ⪯ 𝑣 if either 𝑢 ≺ 𝑣 or 𝑢 = 𝑣. ◀

This order will allow us to define the extended lattice cube ℐ𝑟 of 𝑟 points as the initial segment in ℤ𝑛

with respect to ≺. To define the sets 𝒞𝑟, which will be referred to as extended cubes, first we need the
following definition, which can be seen as a particular case of the family of weakly unconditional sets, first
introduced in [9] (we refer the reader to this work for further properties and relations of them with certain
Brunn-Minkowski type inequalities): for any non-empty finite set 𝐴 ⊂ ℝ𝑛, we write

𝒞𝐴 = {(𝜆1𝑥1,… , 𝜆𝑛𝑥𝑛) ∈ ℝ𝑛 ∶ (𝑥1,… , 𝑥𝑛) ∈ 𝐴, 𝜆𝑖 ∈ [0, 1] for 𝑖 = 1,… , 𝑛}.

(see Figure 1).

F i g u r e 1 : Sets 𝒞𝐴 ⊂ ℝ2 for different finite sets 𝐴 ⊂ ℤ2.

D e f i n i t i o n 2 . Let 𝑟 ∈ ℕ. By ℐ𝑟 we denote the initial segment in (ℤ𝑛,≺) of length 𝑟, i.e., the set of the first 𝑟
points with respect to the order ≺ in ℤ𝑛 (see Figure 2, left). Moreover, by 𝒞𝑟 we denote the set given by
𝒞𝑟 ≔ 𝒞ℐ𝑟 (see Figure 2, right). ◀
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F i g u r e 2 : The extended lattice cube ℐ23 in ℤ2 (left) and the corresponding extended cube 𝒞23 in ℝ2 (right).

TEMat monogr., 2 (2021) e-ISSN: 2660-6003 117



On discrete isoperimetric type inequalities

We note that if 𝑟 = 𝑚𝑛 for some 𝑚 ∈ ℕ then ℐ𝑟 is indeed a lattice cube. More precisely, ℐ𝑟 = {−𝑚/2 +
1,−𝑚/2+ 2,… ,𝑚/2− 1,𝑚/2}𝑛 if𝑚 is even and ℐ𝑟 = {−(𝑚− 1)/2,−(𝑚− 1)/2+ 1,… , (𝑚− 1)/2, (𝑚− 1)/2}𝑛

if𝑚 is odd (cf. Figure 2, left). This further implies that 𝒞𝑟 is a cube whenever 𝑟 = 𝑚𝑛 for some 𝑚 ∈ ℕ.

We are now ready to present the two main results. First, we obtain a discrete analogue of the classical
isoperimetric inequality.

T h e o r e m 3 . Let 𝐾 ⊂ ℝ𝑛 be a bounded set with G𝑛(𝐾) > 0 and let 𝑟 ∈ ℕ be such that G𝑛(𝒞𝑟) = G𝑛(𝐾).
Then,

( 6 ) G𝑛(𝐾 + 𝑡[−1, 1]𝑛) ≥ G𝑛(𝒞𝑟 + 𝑡[−1, 1]𝑛)

for all 𝑡 ≥ 0.

And finally, we show that this result is, in a sense, stronger than the classical one.

T h e o r e m 4 . The discrete isoperimetric inequality (6) implies the classical isoperimetric inequality (5),
with 𝐸 = [−1, 1]𝑛, for non-empty compact sets.
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A b s t r a c t : A complex system consisting of monitored and non-monitored com-
ponents is studied. Monitored components are subject to a degradation process,
following a homogeneous gamma process. They are subject to a condition-based
maintenance: the system is periodically inspected, and if the degradation level
of a monitored component reaches a preventive threshold, the component is re-
placed by a new one. Furthermore, non-monitored components can fail between
inspections. Time between these sudden failures follows an exponential distri-
bution. Failures are self-announcing and the repair of the failed component is
performed after a fixed delay time. In turn, these repair times are opportunities
for preventive maintenance of the monitored components. Assuming a cost for
each maintenance action, the expected cost rate of this system is analytically ob-
tained. Numerical examples are given considering identical and non-identical
components. Preventive thresholds and time between inspections that minimize
the expected cost rate are evaluated.

R e s u m e n : Se estudia un sistema complejo formado por componentes monito-
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tenimiento preventivo de las componentes monitorizadas. Asumiendo un coste
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Opportunistic maintenance under periodic inspections in heterogeneous complex systems

1 . I n t r o d u c t i o n

A system is a set of components with the aim of carrying out a certain function. Nevertheless, systems are
affected by external and internal degradation.
One example of this internal degradation is the pitting corrosion, which consists in the appearance of pits
simultaneously on a system. On the other hand, we also can find systems subject to external deterioration,
such as the changes in some material due to the temperature or humidity. These external factors are
considered as shocks, which result in traumatic failures.
Maintenance plays an important role in areas such as engineering, where the failure of the system leads to
high costs and production downtime. Rausand and Hoyland [2] classified the maintenance tasks into two
groups:

( i ) Corrective maintenance: it is performed when a system is not working. The purpose of this
maintenance policy is to return the system to a good condition in which it can perform its function
properly.

( i i ) Preventive maintenance: it is a planned maintenance performed when the system is working, in
order to avoid downs of the system and prevent total failures. This maintenance policy can be divided
in other classes, for instance,

• Age-based maintenance: maintenance actions are performed when the system exceeds a certain
fixed age.

• Condition-based maintenance: this is also called preventive maintenance. With this policy, the
system is maintained when its deterioration level exceeds a certain threshold.

In our model, condition-based maintenance is implemented through two different thresholds that
control the state of the system: a preventive threshold (denoted byM) and a corrective threshold
(denoted by L), lower than the previous one.

2 . S y s t e m d e s c r i p t i o n

The general assumptions of the model are the following:

( i ) Monitored components of the system are subject to a continuous degradation, which follows a
gamma process with shape and scale parameters 𝛼𝑖 and 𝛽𝑖. Let 𝑋𝑖(𝑡) be the degradation of the
monitored component 𝑖 at time 𝑡. Its density function is given by:

𝑓𝛼𝑖(𝑡),𝛽𝑖 =
𝛽𝛼𝑖𝑡𝑖
𝛤(𝛼𝑖𝑡)

𝑥𝛼𝑖𝑡−1 exp {−𝛽𝑖𝑥}, 𝑥 ≥ 0,

where 𝛤(⋅) is the well-known gamma function.
( i i ) Non-monitored components represents the sudden shocks to which the system is subject. Failures

arrivals are exponentially distributed, that is, they follow a Poisson arrival process. Let 𝑌 be the time
between these failures, then the survival function of 𝑌 is given by:

̄𝐹𝑌 = exp {−𝜆𝑡},

where 𝜆 is the parameter of the underlying Poisson process. Notice that non-monitored components
can only be maintained upon failure, and we cannot predict when the failure will occur.

( i i i ) Failures of both monitored and non-monitored components are independent. When a component
fails, a signal is immediately sent to the repair time, and it arrives with a delay of 𝜏 time units to start
the reparation.

( i v ) The system is subject to periodic inspections, that is, the deterioration level of the monitored
components is checked each 𝑇 time units, which is the inspection period.

( v ) An opportunistic maintenance policy is implemented on the system: maintenance and inspec-
tion times of the system are seen as opportunities to check the state of the rest of the monitored
components and perform a preventive maintenance of them if necessary.
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3 . M a t h e m a t i c a l m o d e l l i n g

A system renewal is themaintenance time in which all themonitored components are replaced and the time
to the next inspection is 𝑇 time units. However, describing the state using renewal theory is complicated,
since between renewals many preventive replacements can occur. To deal with it, semi-regenerative
processes are used instead of renewal processes. A semi-regenerative cycle is defined as the time between
two successive maintenance actions (which are the semi-regeneration points).

With that, we are able to study the evolution of the system with a Markov chain.

Let 𝑂𝑘 be the time between the (𝑘 − 1)-th and the 𝑘-th maintenance actions. The multiple process

(𝑋1(𝑂𝑘),𝑋2(𝑂𝑘),… ,𝑋𝑚(𝑂𝑘))

is a Markov chain with state space [0,𝑀) × 𝑚)… × [0,𝑀).

If the previous chain comes back to the initial state (0,… , 0) almost surely (that is, is a regeneration point),
then there exists a stationary measure 𝜋 solution of the equation

( 1 ) 𝜋(⋅) = ∫
𝑀

0
∫

𝑀

0
…∫

𝑀

0
ℚ(⋅|x)𝜋(dx),

where ℚ(⋅|x) denotes the kernel of the process.

A result that assures a finite expected time to the system renewal is given. The proof can be seen in
Proposition 4.1 of [1].

L e m m a 1 . If 𝜇 < 1, where 𝜇 is

𝜇 = 1 − 𝐹𝑌(𝑇 − 𝜏)
𝑚
∏
𝑖=1

(𝐹𝛼𝑖𝜏,𝛽𝑖(𝑀))𝐹𝛼𝑖(𝑇−𝜏),𝛽𝑖(𝐿 − 𝑀),

then the stationary distribution 𝜋 in (1) exists.

With the existence of the stationary measure 𝜋, the state of the system can be described at any time, so we
can study now the objective function of the model.

4 . O p t i m i z a t i o n o f t h e o b j e c t i v e f u n c t i o n

T h e o r e m 2 . For any realisation of the process, the long-run average reward per time unit is equal to the
expected reward earned during one cycle divided by the expected length of one cycle. That is,

𝑃 [ lim
𝑡⟶∞

�[𝐶(𝑡)]
𝑡 =

�[𝐶(𝑂1)]
�[𝑂1]

] = 1,

where 𝑂1 stands for the time to the next maintenance (that is, the length of a maintenance cycle) and 𝐶(𝑡)
is the total cost at time 𝑡.

Each maintenance task implies a certain cost. Let 𝐶∞ be the asymptotic cost rate. With the renewal-reward
theorem, the cost can be developed as

𝐶∞(𝑇,𝑀) =
�[𝐶𝑐(𝑂1)]
�[𝑂1]

+
�[𝐶𝑝(𝑂1)]
�[𝑂1]

+
�[𝐶𝑛𝑚(𝑂1)]

�[𝑂1]
+

�[𝐶(𝐼(𝑂1))]
�[𝑂1]

+
�[𝐶(𝐷(𝑂1))]

�[𝑂1]
−

�[𝑅(𝑂1)]
�[𝑂1]

,

where �[𝐶𝑐(𝑂1)] and �[𝐶𝑝(𝑂1)] are the expected costs due to preventive and corrective maintenance
of monitored components in a cycle, respectively; �[𝐶𝑛𝑚(𝑂1)] denotes the expected cost due to the
corrective replacement of non-monitored components; �[𝐶(𝐼(𝑂1))] corresponds to the expected cost due
to inspections; �[𝐶(𝐷(𝑂1))] is the expected cost due to downtime, and �[𝑅(𝑂1)] stands for the expected
reward obtained in a semi-regenerative cycle.

𝐶(𝑇𝑜𝑝𝑡,𝑀𝑜𝑝𝑡) = inf{𝐶∞(𝑇,𝑀),𝑇 < 2𝜏,𝑀 < 𝐿}.
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The following sequence of costs is used to study our maintenance strategy:

• Corrective replacement cost of monitored component 𝑖: 𝐶𝑐
𝑖 = 80monetary units, for all 𝑖 ∈ 𝐼.

• Preventive replacement cost of monitored component 𝑖: 𝐶𝑝
𝑖 = 30monetary units, for all 𝑖 ∈ 𝐼.

• Corrective replacement cost of non-monitored components: 𝐶𝑓 = 80monetary units.
• Downtime cost of monitored component 𝑖: 𝑐𝑖 = 5monetary units per time unit, for all 𝑖 ∈ 𝐼.
• Downtime cost of non-monitored components: 𝑐𝑛𝑚 = 5monetary units per time unit.

Furthermore, a reward provided by the monitored components of the system is considered. It depends
on the deterioration level of the monitored components, and it decreases as the deterioration level of a
component increases, so a classical exponential function is used to model it. Given the deterioration level
𝑥 of the monitored component 𝑖, the reward function 𝑟𝑖 is

𝑟𝑖(𝑥) = 𝜃0 + 𝑔 exp {−𝛾𝑖𝑥}, 0 ≤ 𝑥 ≤ 𝐿, 𝛾𝑖 > 0, ∀ 𝑖,

where 𝜃0 and 𝑔 are constants greater than 0.

To deal with the optimization of the objective cost function, we propose the following method. Firstly,
typical Monte-Carlo simulation is used to search for potential solutions of the optimal values of the time
between inspections (or inspection period) 𝑇 and the preventive threshold, denoted by𝑀.

After that, somemeta-heuristic algorithms, such as Pattern Search and the Genetic Algorithm, are employed
to optimize the previous parameters 𝑇 and𝑀. Nowadays, meta-heuristics are widely employed in stochastic
problems, to provide a sufficiently good solution to an optimization problem, despite the fact that they
don’t guarantee a globally optimal solution in some problems.

The results obtained with this method are shown in Table 1:

m 𝑇0 𝑀0

2 4.39 2.95
3 4.28 3.17
4 3.13 3.38
5 2.47 3.78
6 2.29 3.93
7 1.89 4.18
8 1.64 4.37
9 1.53 4.65
10 1.48 4.70

m (𝑇𝑜𝑝𝑡,𝑀𝑜𝑝𝑡) 𝐶∞(𝑇𝑜𝑝𝑡,𝑀𝑜𝑝𝑡)
2 (5.20, 2.02) 8.94
3 (3.86, 2.40) 11.02
4 (3.19, 2.88) 13.05
5 (3.20, 2.38) 13.10
6 (2.71, 3.51) 16.44
7 (2.30, 3.01) 16.90
8 (1.73, 3.22) 18.84
9 (1.46, 3.36) 20.11
10 (1.19, 3.45) 21.45

T a b l e 1 : (a) Starting points with MC. (b) 𝑇𝑜𝑝𝑡,𝑀𝑜𝑝𝑡 and 𝐶∞ using the Pattern Search.
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A b s t r a c t : Yano’s extrapolation theory provides a tool to obtain estimates on 𝐿1
spaces starting from information on estimates for 𝐿𝑝 spaces for every 1 < 𝑝 < 𝑝0, for
some 𝑝0 > 1. This document provides an introduction to this theory by sketching
the proof of Yano’s extrapolation theorem [3]. The main tool developed in the proof
of this theorem is the technique known as layer cake, which is nowadays used in
many other proofs in Fourier analysis.

R e s u m e n : La teoría de extrapolación de Yano da una herramienta para obtener
estimaciones en espacios 𝐿1 partiendo de información sobre estimaciones para
espacios 𝐿𝑝 para todo 1 < 𝑝 < 𝑝0, para algún 𝑝0 > 1. Este documento da una
introducción a esta teoría esbozando la demostración del teorema de extrapo-
lación de Yano [3]. La herramienta principal desarrollada en la prueba de este
teorema es la técnica conocida como layer cake, que se usa a día de hoy en muchas
demostraciones en análisis de Fourier.

K e y w o r d s : extrapolation theory, Yano’s theorem, endpoint estimates, layer cake
method.
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Yano’s extrapolation theorem

1 . I n t r o d u c t i o n

If you are familiar with functional analysis, or more specially with the theory of bounding operators, you
have probably heard about operator interpolation techniques, where we use operator bounding at the
“ends” of a family of spaces, to get bounds on the rest of the spaces of the family.

However, when it comes to extrapolation techniques, the intention is precisely the opposite. That is, use
what we know about the bounds of a certain operator in the “interior” of a family of spaces to obtain
bounds of this operator at the endpoints of the family. Beyond concrete points, what characterizes this
type of theorems is the use of a specific type of techniques. In this sense, two great schools stand out:
Yano’s and Rubio de Francia’s.

In these pages, we intend to present in a simple way the extrapolation technique of Yano, by explaining
the theorem that he published in 1951 [3]. The various applications of this method to the study of the
bounding of several operators is a unique knowledge paradigm in the field of Fourier analysis.

2 . C o n t e x t u a l i z a t i o n o f t h e p r o b l e m

D e f i n i t i o n 1 (𝐿 log 𝐿 space). For a measurable function 𝑓 defined in (𝑎, 𝑏), we will say that 𝑓 ∈ 𝐿∗𝑘 [𝑎, 𝑏] if

∫
𝑏

𝑎
|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) d𝑥, 𝑘 > 0. ◀

Note that this is not a norm, even though it allows us to characterize the functions in that space.

D e f i n i t i o n 2 . As usual, for two normed spaces (𝑋, ‖⋅‖𝑋) and (𝑌, ‖⋅‖𝑌), for an operator

𝑇∶ 𝑋 → 𝑌,

we are going to define the norm of 𝑇 as

‖𝑇‖ = sup
‖𝑓‖𝑋≤1

‖𝑇𝑓‖𝑌
‖𝑓‖𝑋

. ◀

In Fourier analysis, we are often concerned with operators 𝑇 which transform a measurable function 𝑓
defined in [0, 2π] into another measurable function also defined in [0, 2π] such that

( i ) for every 𝑝 > 1 we have
‖𝑇‖𝐿𝑝 ≤ 𝐴𝑝,

( i i ) for every 𝑓 ∈ 𝐿∗𝑘[0, 2π] we have

‖𝑇𝑓‖𝐿1[0,2π] ≤ 𝐴𝑘∫
2π

0
|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) d𝑥 + 𝐵𝑘,

where 𝐴𝑝,𝐴𝑘 and 𝐵𝑘 are constants depending only on 𝑝, 𝑘 and 𝑘, respectively.

Usually, given an operator 𝑇, it is checked that 𝑇 satisfies each one of the above conditions separately. But,
what if we could deduce that 𝑇 satisfied the last condition based on 𝑇 satisfying the first one? This is what
Yano’s theorem allows us to do.

T h e o r e m 3 . Let 𝑇 be a sublinear operator which transforms every integrable function to a measurable
function, both being defined in a finite interval (𝑎, 𝑏) such that

( i ) |𝑇𝑓| = |𝑇(−𝑓)|,
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( i i ) the inequality
‖𝑇‖𝐿𝑝[𝑎,𝑏] ≤

𝐴
(𝑝 − 1)𝑘

,

holds for 1 < 𝑝 ≤ 2, for some 𝑘 > 0 and the constant 𝐴 depending only on the length of the interval
(𝑎, 𝑏).

Then, we have that for every 𝑓 ∈ 𝐿∗𝑘[𝑎, 𝑏]

‖𝑇𝑓‖𝐿1[𝑎,𝑏] ≤ 𝐴𝑘∫
2π

0
|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) d𝑥 + 𝐵𝑘,

where 𝐴𝑘 and 𝐵𝑘 are constants depending only on 𝑘 and the lenght of the interval 𝑏 − 𝑎.

For the proof, we only need to check the theorem in the case where 𝑓 ≥ 1 because for any other function,
we can decompose it into the difference of two functions greater than one and apply the condition (i) in
order to obtain the desired result. Indeed,

𝑓 = (𝑓𝜒𝑓≥0 + 1) − (1 − 𝑓𝜒𝑓<0) = 𝑔1 − 𝑔2,

where 𝑔1, 𝑔2 ≥ 1.

So, given an arbitrary function 𝑓 ≥ 1, we decompose it in the following way:

𝑓 = ∑
𝑛≥0

2𝑛𝑓𝑛, where 𝑓𝑛 = 2−𝑛𝑓𝜒{2𝑛≤𝑓<2𝑛+1}.

The sublinearity of the operator 𝑇 allow us to work with these special functions 𝑓𝑛 which have the particu-
larity that 1 ≤ 𝑓𝑛(𝑥) < 2 for every 𝑛 ≥ 0 and any 𝑥 ∈ [𝑎, 𝑏]. Moreover, the definition of these functions
makes it possible for us to return to the initial function 𝑓 if desired.

In fact, from the above decomposition and applying the Hölder inequality, it is easy to see that for any
sequence {𝑝𝑛} of exponents such that 1 < 𝑝𝑛 ≤ 2 it is satisfied that

‖𝑇𝑓‖𝐿1[𝑎,𝑏] ≤ 𝐶∑
𝑛
2𝑛‖𝑇𝑓𝑛‖𝐿𝑝𝑛[𝑎,𝑏] ≤ 𝐶∑

𝑛

2𝑛

(𝑝𝑛 − 1)𝑘
‖𝑓𝑛‖𝐿𝑝𝑛[𝑎,𝑏],

with the constant 𝐶 only depending on the length of the interval and on the constant 𝐴 which appears on
the second hypothesis of the theorem.

At this point, it only remains to choose the exponent 𝑝𝑛, not fixed yet, to conclude the desired theorem.
For instance, we choose

𝑝𝑛 = {
2 if 𝑛 = 0,

1 + 1
𝑛 if 𝑛 ≠ 0.

For the end of the theorem we only need to use Young’s inequality in the right way and the fact that

2𝑛𝑓𝑛(𝑥)𝑛𝑘 ≤ 𝐶|𝑓(𝑥)| log𝑘 (1 + 𝑓2(𝑥)) ,

for every 𝑥 ∈ [𝑎, 𝑏].

This way of treating a function, by decomposing it into simpler and control-bounded functions, is known as
the layer cake method. This technique has been used in many other proofs in order to obtain extrapolation
theorems, but also in other areas of Fourier analysis. See, for example [1] or the proof of Lemma 1.4.20 in
[2, page 56], where the partition made is a little bit different since it considers the sets

𝐴𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑓∗(2𝑛+1) < |𝑓(𝑥)| ≤ 𝑓∗(2𝑛)},

where 𝑓∗ denotes the rearrangement invariant of 𝑓.
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A b s t r a c t : We study properties related to the density of norm-attaining operators. To
do so, we introduce the set 𝒜‖⋅‖(𝑋,𝑌) of norm-one norm-attaining operators from
𝑋 to 𝑌 such that, given some 𝜀 > 0, there exists 𝜂(𝜀,𝑇) such that, if ‖𝑇(𝑥)‖ > 1 − 𝜂,
then there is 𝑥0 with ‖𝑥0 − 𝑥‖ < 𝜀 and 𝑇 attains its norm at 𝑥0. These are operators
such that, whenever they almost attain their norm at a point, they do attain it at a
nearby point. The analogous set𝒜nu for the numerical radius is also introduced and
studied. We give examples of operators that belong to these sets and, in particular,
we give a characterisation of what diagonal operators belong to these sets for the
classical Banach sequence spaces. The contents are from [5].

R e s u m e n : Estudiamos propiedades relacionadas con la densidad de operadores
que alcanzan su norma. Para ello, introducimos el conjunto 𝒜‖⋅‖(𝑋,𝑌) de opera-
dores de norma uno de 𝑋 en 𝑌 tales que, dado un 𝜀 > 0, existe 𝜂(𝜀,𝑇) de forma
que, si ‖𝑇(𝑥)‖ > 1−𝜂, entonces existe un 𝑥0 con ‖𝑥0−𝑥‖ < 𝜀 y 𝑇 alcanza su norma
en 𝑥0. Estos son operadores tales que, si casi alcanzan su norma en un punto, la
alcanzan en un punto cercano. El conjunto análogo 𝒜nu para el radio numérico
también es introducido y estudiado. Vamos a dar ejemplos de operadores que
pertenecen a estas clases y, en particular, daremos una caracterización de qué
operadores diagonales pertenecen a estos conjuntos para los espacios de Banach
de sucesiones clásicos. Los contenidos forman parte de [5].

K e y w o r d s : Bishop-Phelps-Bollobás, norm attaining operators, diagonal operators.
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Local Bollobás type properties and diagonal operators

1 . I n t r o d u c t i o n

In this contribution, we will summarize some of the results from the recent work [5] that were presented
in a talk in the 3rd BYMAT Conference in 2020.

1 . 1 . N o t a t i o n a n d t e r m i n o l o g y

Let 𝑋 and 𝑌 be Banach spaces over the field � = ℝ or ℂ. We denote by 𝐵𝑋, 𝑆𝑋 and 𝑋∗ the closed unit ball,
the unit sphere and the topological dual of 𝑋, respectively. ℒ(𝑋,𝑌) represents the space of bounded and
linear operators from 𝑋 to 𝑌, and we shall write ℒ(𝑋) = ℒ(𝑋,𝑋). We will use the notation 𝑐0, ℓ1, ℓ∞ and ℓ𝑝
(1 < 𝑝 < ∞) for the classical Banach sequence spaces, and the notation 𝑥 = (𝑥(1), 𝑥(2), 𝑥(3),…) will be
used for any 𝑥 ∈ 𝑋 where 𝑋 is a Banach sequence space. If 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗, the dual action may be
written as ⟨𝑥∗, 𝑥⟩ or as 𝑥∗(𝑥) indistinctly.

We say that an operator 𝑇∶ 𝑋 → 𝑌 attains its norm (or is norm attaining ) if there exists some 𝑥 ∈ 𝑆𝑋 such
that 𝑇(𝑥) = ‖𝑇‖ = sup𝑥∈𝐵𝑋 |𝑇(𝑥)| (that is, when the supremum is actually attained), and the set of norm
attaining operators is denoted byNA(𝑋,𝑌). The set of states of 𝑋 is defined as𝛱(𝑋) ≔ {(𝑥, 𝑥∗) ∈ 𝑆𝑋×𝑆𝑋∗ ∶
𝑥∗(𝑥) = 1}. The numerical radius of an operator 𝑇∶ 𝑋 → 𝑋 is defined as 𝜈(𝑇) ≔ sup(𝑥,𝑥∗)∈𝛱(𝑋) |𝑥

∗(𝑥)|. It
is easy to see that the numerical radius is a seminorm which satisfies 0 ≤ 𝜈(𝑇) ≤ ‖𝑇‖ for every operator
𝑇∶ 𝑋 → 𝑋. We say that an operator 𝑇∶ 𝑋 → 𝑋 attains its numerical radius (or is numerical radius
attaining ) if there exist some (𝑥, 𝑥∗) ∈ 𝛱(𝑋) such that |𝑥∗(𝑇(𝑥))| = 𝜈(𝑇), and the set of such operators is
denoted by NRA(𝑋).

If 𝑋 and 𝑌 are Banach sequence spaces, an operator 𝑇∶ 𝑋 → 𝑌 is said to be diagonal if it is defined as
𝑇(𝑥) = (𝛼1𝑥(1),𝛼2𝑥(2),𝛼3𝑥(3),…) for all 𝑥 ∈ 𝑋, for some bounded sequence of scalars {𝛼𝑘}+∞𝑘=1 ∈ �.

1 . 2 . B r i e f h i s t o r i c a l b a c k g r o u n d

In 1961, Bishop and Phelps [3] proved that, for any Banach space 𝑋, the setNA(𝑋,�) is always dense in 𝑋∗.
Bollobás [4] gave a numerical refinement of that result in 1970, stating that you can always approximate a
functional 𝑥∗ ∈ 𝑆𝑋∗ and a point 𝑥 ∈ 𝑆𝑋 at which it almost attains its norm by a pair (𝑦, 𝑦∗) ∈ 𝛱(𝑋). It is
natural to wonder if any of these results also hold in the case of operators instead of functionals, however
Lindenstrauss [8] proved that there exist spaces 𝑋 and 𝑌 such that NA(𝑋,𝑌) is not dense in ℒ(𝑋,𝑌).

In order to study quantitatively when a pair of spaces satisfies that NA(𝑋,𝑌) is dense in ℒ(𝑋,𝑌), Acosta,
Aron, García and Maestre [2] introduced in 2008 the Bishop-Phelps-Bollobás property, abbreviated as
BPBp (see [2, Definition 1.1]). Roughly speaking, a pair of Banach spaces (𝑋,𝑌) has the BPBp if, whenever
we have an operator 𝑇 ∈ 𝑆ℒ(𝑋,𝑌) and a point 𝑥 ∈ 𝑆𝑋 at which it almost attains its norm, we can always
approximate them by an operator 𝑆 ∈ 𝑆ℒ(𝑋,𝑌) and a point 𝑦 ∈ 𝑆𝑋 at which it attains its norm. We refer the
interested reader to the survey [1] and references therein for more information and background on the
BPBp.

Motivated by that work, Guirao and Kozhushkina [7] introduced in 2013 the Bishop-Phelps-Bollobás
property for numerical radius (BPBp-nu for short), which is a natural adaptation of the BPBp to the case of
numerical radius instead of norms. These properties, as well as several variations, have been profusely
studied in the recent years. One of those properties is particularly relevant to this work, the L𝑜,𝑜, which is
a local version of the BPBp where 𝑆 = 𝑇 and 𝜂 depends on the previously fixed 𝑇 (see [6, Definition 2.1]).

1 . 3 . I n t r o d u c i n g t h e p r o b l e m

Most of the works studying BPBp-like properties focus in finding what spaces can, or can not, satisfy
properties of that kind. In the very recent work [5], the authors tackled the study from a different point of
view: finding what operators can satisfy properties of that kind. We are going to present here briefly some
of the findings from that work. We start by introducing two necessary concepts for this study, which are
classes of operators such that whenever they almost attain their norm (or numerical radius) at some point
(or state), they do attain it at a nearby point (or state). Note that this concept is closely related to the L𝑜,𝑜.
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D e f i n i t i o n 1 . Let 𝑋,𝑌 be Banach spaces.

( i ) 𝒜‖⋅‖(𝑋,𝑌) stands for the set of all norm-attaining operators 𝑇 ∈ ℒ(𝑋,𝑌) with ‖𝑇‖ = 1 such that if
𝜀 > 0, then there is 𝜂(𝜀,𝑇) > 0 such that whenever 𝑥 ∈ 𝑆𝑋 satisfies ‖𝑇(𝑥)‖ > 1 − 𝜂(𝜀,𝑇), there is
𝑥0 ∈ 𝑆𝑋 such that ‖𝑇(𝑥0)‖= 1 and ‖𝑥0 − 𝑥‖ < 𝜀.

( i i ) 𝒜nu(𝑋) stands for the set of all numerical radius attaining operators 𝑇 ∈ ℒ(𝑋,𝑋) with 𝜈(𝑇) = 1
such that if 𝜀 > 0, then there is 𝜂(𝜀,𝑇) > 0 such that whenever (𝑥, 𝑥∗) ∈ 𝛱(𝑋) satisfies |𝑥∗(𝑇(𝑥))| >
1 − 𝜂(𝜀,𝑇), there is (𝑥0, 𝑥∗0 ) ∈ 𝛱(𝑋) such that |𝑥∗0 (𝑇(𝑥0))| = 1, ‖𝑥0 − 𝑥‖ < 𝜀, and ‖𝑥∗0 − 𝑥∗‖ < 𝜀. ◀

In Section 2 we will list some of the results from [5], focusing mainly in those where the involved operators
are diagonal operators.

2 . R e s u l t s

2 . 1 . F i r s t r e s u l t s

In order to determine what operators satisfy certain properties, it is natural to begin wondering what
happens with operators between finite dimensional spaces and functionals. [5, Theorem 2.1] claims that,
if 𝑋 is a finite dimensional Banach space and 𝑌 is any Banach space, then every operator from 𝑆ℒ(𝑋,𝑌) is in
𝒜‖⋅‖(𝑋,𝑌), and every operator 𝑇 ∈ ℒ(𝑋) with 𝜈(𝑇) = 1 is in 𝒜nu(𝑋). As for functionals that may or may
not belong to 𝒜‖⋅‖, [5, Theorems 2.1 and 2.2] study the cases when 𝑋 = 𝑐0, ℓ1, ℓ∞ and the case where 𝑋 is
uniformly convex.
What can be said about other operators? Is there any relation between the sets 𝒜‖⋅‖(𝑋,𝑋) and 𝒜nu(𝑋) in
general? The following examples should make it clear that this is, in fact, not trivial, even in the particular
case of Hilbert spaces.

E x a m p l e 2 . Consider the following operators 𝑇∶ ℓ2 → ℓ2:

( i ) If 𝑇(𝑥) ≔ 𝑥, for all 𝑥 ∈ ℓ2, then 𝑇 ∈ 𝒜‖⋅‖(ℓ2, ℓ2) and 𝑇 ∈ 𝒜nu(ℓ2).
( i i ) If 𝑇(𝑥) ≔ (0, 𝑥(1), 𝑥(2), 𝑥(3), 𝑥(4),…), for all 𝑥 ∈ ℓ2, then 𝑇 ∈ 𝒜‖⋅‖(ℓ2, ℓ2) but 𝑇 ∉ 𝒜nu(ℓ2).
( i i i ) If 𝑇(𝑥) ≔ (2𝑥(2),−2𝑥(1), 𝑥(3), 0, 0,…), for all 𝑥 ∈ ℓ2, then 𝑇 ∉ 𝒜‖⋅‖(ℓ2, ℓ2) but 𝑇 ∈ 𝒜nu(ℓ2).

( i v ) If 𝑇(𝑥) ≔ (𝑥(1), 1
2
𝑥(2), 2

3
𝑥(3), 3

4
𝑥(4), 4

5
𝑥(5),…), for all 𝑥 ∈ ℓ2, then 𝑇 ∉ 𝒜‖⋅‖(ℓ2, ℓ2) and 𝑇 ∉ 𝒜nu(ℓ2),

even though 𝑇 attains both its norm ant its numerical radius, and ‖𝑇‖ = 𝜈(𝑇) = 1. ◀

We refer the reader to [5] for a collection of results and examples in the matter involving, for example,
compact operators, adjoint operators, canonical projections, Hilbert spaces, and direct sums of spaces.

2 . 2 . D i a g o n a l o p e r a t o r s

Let us examine items (i) and (iv) from Example 2. In both cases, 𝑇 is a diagonal operator satisfying
‖𝑇‖ = 𝜈(𝑇) = 1 and 𝑇 ∈ NA(ℓ2, ℓ2)∩NRA(ℓ2); however, their situations are completely different regarding
the sets 𝒜‖⋅‖ and 𝒜nu. In [5], a characterisation is made to determine what are the diagonal operators that
belong to the sets 𝒜‖⋅‖ and 𝒜nu when the involved spaces are the classical Banach sequence spaces 𝑐0 and
ℓ𝑝 (1 ≤ 𝑝 ≤ +∞). We will summarize here some of the intuitions behind as well as the main results.

E x a m p l e 3 . Consider the diagonal operators 𝑇∶ 𝑐0 → 𝑐0 defined as 𝑇(𝑥) = (𝛼1𝑥(1),𝛼2𝑥(2),…) for all
𝑥 ∈ 𝑐0, all of which satisfying ‖𝑇‖ = 𝜈(𝑇) = 1:

( i ) If 𝛼𝑛 ≔
𝑛

𝑛+1
, then 𝑇 can not be in 𝒜‖⋅‖(𝑐0, 𝑐0) ∪ 𝒜nu(𝑐0), since 𝑇 does not attain its norm or numerical

radius. So at least one of the 𝛼𝑛 needs to have absolute value 1 to be in our sets.

( i i ) If 𝛼1 = 1 and 𝛼𝑛 = 1 − 1

𝑛
for 𝑛 > 1, then 𝑇 is also not in 𝒜‖⋅‖(𝑐0, 𝑐0) ∪ 𝒜nu(𝑐0), since the only points

𝑥 ∈ 𝑆𝑐0 where it attains its norm are of the form 𝑠 ⋅ 𝑒1 with |𝑠| = 1, but the sequence {|𝑇(𝑒𝑛+1)|}+∞𝑛=1 is
strictly increasing and converges to 1, and similar with the numerical radius. So to be in our sets,
not only one of the 𝛼𝑛 needs to have |𝛼𝑛| = 1, but also, those that are not 1 have to be far from 1
(that is, 1 can not be an accumulation point of {|𝛼𝑛|}+∞𝑛=1).
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( i i i ) Finally, if 𝛼1 = 1 and 𝛼𝑛 =
1

𝑛
for 𝑛 > 1, then 𝑇 is in 𝒜‖⋅‖(𝑐0, 𝑐0) ∩ 𝒜nu(𝑐0), since the only points where

the norm is almost attained are close to some point 𝑥 ∈ 𝑆𝑐0 with |𝑥(1)| = 1 (similar for 𝒜nu). ◀

The intuitions presented above addresses us to necessary and sufficient conditions for a diagonal operator
to be in 𝒜‖⋅‖(𝑐0, 𝑐0) ∪ 𝒜nu(𝑐0), and they can be generalized to other spaces and to the complex case. We
summarize the main results on the matter from [5, Theorems 2.13, 2.15 and 2.17, and Corollary 2.16].

T h e o r e m 4 . Let (𝑋,𝑌) be (𝑐0, 𝑐0), (ℓ𝑝, ℓ𝑝) (1 ≤ 𝑝 ≤ +∞) or (ℓ𝑝, 𝑐0) (1 ≤ 𝑝 < +∞). Let 𝑇∶ 𝑋 → 𝑌 be the
norm one diagonal operator associated to the bounded sequence of complex numbers {𝛼𝑛}∞𝑛=1. Then,
𝑇 ∈ 𝒜‖⋅‖(𝑋,𝑌) if and only if both of these conditions are satisfied:

( i ) There exists some 𝑛0 ∈ ℕ such that |𝛼𝑛0| = 1.
( i i ) If 𝐽 = {𝑛 ∈ ℕ ∶ |𝛼𝑛| = 1}, then either 𝐽 = ℕ or sup𝑛∈ℕ\𝐽 |𝛼𝑛| < 1.

T h e o r e m 5 . Given 1 ≤ 𝑝 < +∞, let 𝑇∶ 𝑐0 → ℓ𝑝 be the norm one diagonal operator associated to the
bounded sequence of complex numbers {𝛼𝑛}∞𝑛=1. Then, 𝑇 ∈ 𝒜‖⋅‖(𝑐0, ℓ𝑝) if and only if there is some 𝑁 ∈ ℕ

such that 𝛼𝑛 = 0 for all 𝑛 > 𝑁.

T h e o r e m 6 . Let 𝑋 = 𝑐0 or ℓ𝑝, 1 ≤ 𝑝 < ∞. Let 𝑇∶ 𝑋 → 𝑋 be the numerical radius one diagonal operator
associated to the bounded sequence of complex numbers {𝛼𝑛}∞𝑛=1. Then, 𝑇 ∈ 𝒜nu(𝑋) if and only if the
following two conditions hold:

( i ) There exists some 𝑛0 ∈ ℕ such that |𝛼𝑛0| = 1.
( i i ) If 𝐽 = {𝑛 ∈ ℕ ∶ |𝛼𝑛| = 1}, then the cardinality of the set {𝛼𝑛 ∶ 𝑛 ∈ 𝐽} is finite and sup𝑛∈ℕ⧵𝐽 |𝛼𝑛| < 1

when 𝐽 ≠ ℕ.

In particular, if {𝛼𝑛}+∞𝑛=1 ⊂ ℝ, 𝑇 ∈ 𝒜nu(𝑋) if and only if 𝑇 ∈ 𝒜‖⋅‖(𝑋,𝑋).
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A b s t r a c t : Axial algebras are commutative non-associative algebras generated by
special elements called axes satisfying a prescribed fusion law. They were intro-
duced by Hall, Rehren and Shpectorov. This class has applications in physics, group
theory and also elsewhere in mathematics. Here, we introduce the axial algebras of
Monster type (2𝜂, 𝜂) and give an overview of the flip construction for such algebras.
We also apply it to the non-degenerate orthogonal groups 𝑂𝜀(2𝑘, 2). We describe
the classes of involutions (flips) of 𝑂𝜀(2𝑘, 2) and for each flip we investigate the
corresponding flip subalgebra. In this way, we build a new rich family of examples
of algebras of Monster type (2𝜂, 𝜂).

R e s u m e n : Las álgebras axiales son álgebras conmutativas no asociativas generadas
por elementos especiales, llamados ejes, que satisfacen una ley de fusión prescrita.
Fueron introducidas por Hall, Rehren y Shpectorov. Tienen aplicaciones en física,
teoría de grupos y también en otras áreas de las matemáticas. Aquí introduci-
mos las álgebras axiales de tipo Monster (2𝜂, 𝜂) y damos una visión general de la
construcción por involución para tales álgebras. También la aplicamos a los gru-
pos ortogonales no degenerados 𝑂𝜀(2𝑘, 2). Describimos las clases de involuciones
(flips) de 𝑂𝜀(2𝑘, 2) y para cada flip investigamos la correspondiente subálgebra. De
este modo, construimos una nueva e interesante familia de ejemplos de álgebras
de tipo Monster (2𝜂, 𝜂).
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Axial algebras of Monster type (2𝜂, 𝜂)

1 . I n t r o d u c t i o n

In 2009, Alexander Ivanov [5] turned the key properties used by Masahiko Miyamoto and Shinya Sakuma in
their calculations of vertex operator algebras generated by two Ising vectors into the axioms of a new class
of algebras called Majorana algebras. A Majorana algebra is a commutative non-associative algebra 𝐴 over
the field of real numbers generated by special idempotents with the fusion lawℳ( 1

4
, 1

32
) and satisfying

some additional properties. In 2015, Jon Hall, Felix Rehren and Sergey Shpectorov [3, 4] refined and
generalised the axioms of Majorana algebras and these new axioms became the axioms of axial algebras.

In this text, we start by providing the background on axial algebras. Then we introduce the notion of
3-transposition groups, from which we derive the Matsuo algebras. After that, we turn to the flips of
Matsuo algebras and we explain how a flip leads to a flip subalgebra that is an algebra of Monster type
(2𝜂, 𝜂). In the case of orthogonal groups over the field with two elements, we obtain two types of flips and
further split them into conjugacy classes. For each class we determine the dimension of the flip subalgebra.
Our approach is similar to that of Vijay Joshi [6] who completed the case of symplectic groups over �2.

2 . B a c k g r o u n d

2 . 1 . A x i a l a l g e b r a s

Let � be a field. All algebras in this text are over � and they are non-associative, that is, not necessarily
associative. For a set ℱ, the set of all subsets of ℱ is denoted by 2ℱ.

D e f i n i t i o n 1 . Let ℱ be a finite subset of � and ∗∶ ℱ × ℱ → 2ℱ be a symmetric binary operation. The pair
(ℱ, ∗) is a fusion law over �. ◀

Examples of fusion laws can be seen in Tables 1 and 2.

∗ 1 0 𝜂
1 1 𝜂
0 0 𝜂
𝜂 𝜂 𝜂 1, 0

T a b l e 1 : Fusion law 𝒥(𝜂)

∗ 1 0 𝛼 𝛽
1 1 𝛼 𝛽
0 0 𝛼 𝛽
𝛼 𝛼 𝛼 1, 0 𝛽
𝛽 𝛽 𝛽 𝛽 1, 0,𝛼

T a b l e 2 : Fusion lawℳ(𝛼, 𝛽)

D e f i n i t i o n 2 . Let 𝐴 be a commutative algebra. For 𝑎 ∈ 𝐴, the adjoint endomorphism ad𝑎∶ 𝐴 → 𝐴 is
defined by 𝑏 ↦ 𝑎𝑏 for all 𝑏 ∈ 𝐴. ◀

For 𝜆 ∈ �, let 𝐴𝜆(𝑎) = {𝑏 ∈ 𝐴 ∶ 𝑎𝑏 = 𝜆𝑏} be the 𝜆-eigenspace of ad𝑎.

D e f i n i t i o n 3 . Let ℱ be a fusion law over �. Then, 𝑎 ∈ 𝐴 is an ℱ-axis if

( i ) 𝑎 is an idempotent, i.e., 𝑎2 = 𝑎;
( i i ) ad𝑎 is semisimple and every eigenvalue of ad𝑎 is in ℱ, i.e., 𝐴 = 𝐴ℱ(𝑎) = ⨁𝜆∈ℱ 𝐴𝜆(𝑎);
( i i i ) 𝐴𝜆𝐴𝜇 ⊆ ⨁𝜈∈𝜆∗𝜇 𝐴𝜈(𝑎) for all 𝜆,𝜇 ∈ ℱ, where 𝜆 ∗ 𝜇 is the product in ℱ, hence a subset of ℱ. ◀

D e f i n i t i o n 4 . Let 𝐴 be a commutative algebra. We call 𝐴 an ℱ-axial algebra if it is generated by a set of
ℱ-axes. ◀

D e f i n i t i o n 5 . An ℱ-axis 𝑎 is primitive if 𝐴1(𝑎) = ⟨𝑎⟩, that is, 𝐴1(𝑎) is 1-dimensional. An ℱ-axial algebra is
primitive if it is generated by a set of primitive ℱ-axes. ◀

Jordan algebras are examples of axial algebras.
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D e f i n i t i o n 6 ([7]). A Jordan algebra is a commutative algebra 𝐴 satisfying the following condition:

(J) (Jordan Identity) 𝑥2(𝑦𝑥) = (𝑥2𝑦)𝑥 for all 𝑥, 𝑦 ∈ 𝐴. ◀

Every idempotent in a Jordan algebra satisfies the Peirce decomposition that amounts to the fusion law
𝒥( 1

2
).

D e f i n i t i o n 7 . An axial algebra of Jordan type 𝜂 is a primitive axial algebra generated by a set of axes satisfying
the fusion law 𝒥(𝜂). ◀

D e f i n i t i o n 8 . An axial algebra ofMonster type (𝛼, 𝛽) is a primitive axial algebra generated by a set of axes
satisfying the fusion lawℳ(𝛼, 𝛽). ◀

The Griess algebra is a 196, 844-dimensional algebra over the field of real numbers. This algebra is an axial
algebra of Monster type ( 1

4
, 1

32
).

2 . 2 . 3 - T r a n s p o s i t i o n g r o u p s

D e f i n i t i o n 9 ([1]). Suppose that 𝐺 is a finite group and 𝐶 is a normal subset of involutions (elements of
order 2) of 𝐺. If 𝐶 generates G and for all 𝑐, 𝑑 ∈ 𝐶, 𝑜(𝑐𝑑) is at most 3, then the pair (𝐺,𝐶) is a 3-transposition
group. ◀

Let 𝑉 be a vector space over �2, 𝑞∶ 𝑉 → �2 a non-degenerate quadratic form and (⋅, ⋅) the associated
symplectic form. Let𝐺 = 𝑂𝜀(2𝑘, 2) be the orthogonal group associated with 𝑉 and 𝑞, where dim𝑉 = 𝑛 = 2𝑘
and 𝑞 is of type 𝜀 ∈ {+,−}. Take 𝑤 ∈ 𝑉. The map 𝑟𝑤∶ 𝑢 ↦ 𝑢 + (𝑢,𝑤)𝑤 is called a transvection and it
lies in 𝐺 if 𝑞(𝑤) = 1. Take 𝐶 = {𝑟𝑤 ∶ 𝑤 ∈ 𝑉, 𝑞(𝑤) = 1} to be the class of transvections. Then, (𝐺,𝐶) is a
3-transposition group.

2 . 3 . M a t s u o a l g e b r a s

D e f i n i t i o n 1 0 . Let (𝐺,𝐶) be a 3-transposition group and � be a field with char� ≠ 2. Take 𝜂 ∈ �, 𝜂 ≠ 0, 1.
Let 𝐴 = 𝑀𝜂(𝐺,𝐶) be the algebra with the basis 𝐶 and the product ∘ defined by

𝑐 ∘ 𝑑 =
⎧

⎨
⎩

𝑐 if 𝑐 = 𝑑,
0 if 𝑜(𝑐𝑑) = 2,
𝜂
2
(𝑐 + 𝑑 − 𝑒) if 𝑜(𝑐𝑑) = 3,

where 𝑐, 𝑑 ∈ 𝐶 and 𝑒 = 𝑐𝑑. ◀

This algebra 𝐴 is theMatsuo algebra corresponding to (𝐺,𝐶) and it is of Jordan type 𝜂.

2 . 4 . F l i p s u b a l g e b r a s

Consider a Matsuo algebra 𝐴 = 𝑀𝜂(𝐺,𝐶).

D e f i n i t i o n 1 1 . A flip is an involutive automorphism of 𝐴. ◀

Involutive automorphisms of 𝐺 preserving 𝐶 act on 𝐴, and hence they are flips.

D e f i n i t i o n 1 2 . Let 𝑎, 𝑏 ∈ 𝐶 be such that 𝑎𝑏 = 0, i.e., 𝑎 and 𝑏 are orthogonal. Then, 𝑎 + 𝑏 is called a double
axis. ◀

D e f i n i t i o n 1 3 . Let 𝜎 be a flip of 𝐴. The flip subalgebra is generated by all single and double axes contained
in the fixed subalgebra 𝐴𝜍. ◀

T h e o r e m 1 4 ([2]). Every flip subalgebra is a primitive axial algebra of Monster type (2𝜂, 𝜂).
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3 . F l i p s u b a l g e b r a s i n t h e o r t h o g o n a l c a s e

The following theorems give us the information about the flip subalgebras for all possible flips in the
orthogonal case.

T h e o r e m 1 5 ([8]). Let 𝑈 be a maximal totally isotropic subspace of 𝑉 with a basis {𝑢1,… , 𝑢𝑘}, where each
𝑢𝑖 is non-singular. Let 𝜎 = 𝜏𝑖 = 𝑟 1𝑟 2 ⋯𝑟 𝑖 for all 1 ≤ 𝑖 ≤ 𝑘. If 𝑖 is odd, then the dimension of the flip
subalgebra is 2𝑛−3 + 2𝑛−𝑖−2. If 𝑖 is even, then the dimension is 2𝑛−3 + 2𝑛−𝑖−2 − 𝛿2𝑘−2, where 𝛿 = 1 for plus
type and 𝛿 = −1 for minus type.

T h e o r e m 1 6 ([8]). Let 𝑈 be a maximal totally singular subspace of 𝑉 with a basis {𝑢1,… , 𝑢𝑘−𝛽}, where
𝛽 = 0 for plus type and 𝛽 = 1 for minus type. Let 𝜎 = 𝜎𝑠 = 𝜎𝑈1𝜎𝑈2 ⋯𝜎𝑈𝑠, 1 ≤ 𝑠 ≤ ⌊𝑘−𝛽

2
⌋, where

𝑈𝑗 = ⟨𝑢2𝑗−1, 𝑢2𝑗⟩, for all 1 ≤ 𝑗 ≤ ⌊𝑘−𝛽
2
⌋, and 𝜎𝑈𝑗 = ∏0≠ᵆ∈𝑈𝑗

𝑟 . Then, the dimension of the flip subalgebra

is 2𝑛−2 + 2𝑛−2𝑠−2 − 𝛿2𝑘−1.
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A b s t r a c t : We have obtained the exact order estimates for approximations by greedy
algorithms of the classes 𝐿𝜓𝛽,𝑝 of periodic functios in the space 𝐿𝑞 for some relations
between parameters 𝑝 and 𝑞.

R e s u m e n : Se han obtenido las estimaciones de orden exacto para las aproximacio-
nes por algoritmos greedy de las clases 𝐿𝜓𝛽,𝑝 de funciones periódicas en el espacio
𝐿𝑞, para algunas relaciones entre los parámetros 𝑝 y 𝑞.

K e y w o r d s : greedy approximation, greedy algorithms, best approximations.
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Best approximations and greedy algorithms

1 . I n t r o d u c t i o n

Let 𝐿𝑞 be a space of functions 𝑓 which are 2π-periodic and summable to a power 𝑞, 1 ≤ 𝑞 < ∞ (resp.,
essentially bounded for 𝑞 = ∞), on the segment [−π,π]. The norm in this space is defined as follows:

‖𝑓‖𝐿𝑞 = ‖𝑓‖𝑞 =
⎧⎪
⎨⎪
⎩

(
1
2π ∫

π

−π
|𝑓(𝑥)|𝑞 d𝑥)

1/𝑞
, 1 ≤ 𝑞 < ∞,

ess sup
𝑥∈[−π,π]

|𝑓(𝑥)|, 𝑞 = ∞.

For a function 𝑓 ∈ 𝐿1, we consider its Fourier series

∑
𝑘∈ℤ

̂𝑓(𝑘)ei𝑘𝑥,

where ̂𝑓(𝑘) = 1

2π
∫π
−π 𝑓(𝑥)e

−i𝑘𝑥 d𝑥 are the Fourier coefficients of the function 𝑓. In what follows, we always
assume that the function 𝑓 ∈ 𝐿1 satisfies the condition

∫
π

−π
𝑓(𝑥) d𝑥 = 0.

Further, let 𝜓 ≠ 0 be an arbitrary function of natural argument and let 𝛽 be an arbitrary fixed real number.
If a series

∑
𝑘∈ℤ\{0}

̂𝑓(𝑘)
𝜓(|𝑘|)

ei(𝑘𝑥+𝛽
π
2
sign𝑘)

is the Fourier series of a summable function, then, following Stepanets [3], we can introduce the (𝜓, 𝛽)-
derivative of the function 𝑓 and denote it by 𝑓𝜓𝛽 . By 𝐿

𝜓
𝛽 we denote the set of functions 𝑓 satisfying this

condition. In what follows, we assume that the function 𝑓 belongs to the class 𝐿𝜓𝛽,𝑝 if 𝑓 ∈ 𝐿𝜓𝛽,𝑝 and

𝑓𝜓𝛽 ∈ 𝑈𝑝 = {𝜑 ∶ 𝜑 ∈ 𝐿𝑝, ‖𝜑‖𝑝 ≤ 1}, 1 ≤ 𝑝 ≤ ∞.

If 𝜓(|𝑘|) = |𝑘|−𝑟, 𝑟 > 0, and 𝑘 ∈ ℤ ⧵ {0}, then the (𝜓, 𝛽)-derivative of the function 𝑓 coincides with its
(𝑟, 𝛽)-derivative (denoted by 𝑓𝑟𝛽 ) in theWeyl–Nagy sense.

We give the definition of the greedy approximation under investigation. Let { ̂𝑓(𝑘(𝑙))}∞𝑙=1 be the Fourier
coefficients { ̂𝑓(𝑘)}𝑘∈ℤ of the function 𝑓 ∈ 𝐿1, arranged in non-increasing order of their absolute value, i.e.,

| ̂𝑓(𝑘(1))| ≥ | ̂𝑓(𝑘(2))| ≥ …

Denote for 𝑓 ∈ 𝐿𝑞

𝐺𝑚(𝑓, 𝑥) =
𝑚
∑
𝑙=1

̂𝑓(𝑘(𝑙))ei𝑘(𝑙)𝑥

and, if 𝐹 ⊂ 𝐿𝑞 is a certain function class, then we set

( 1 ) 𝐺𝑚(𝐹)𝑞 ≔ sup
𝑓∈𝐹

‖𝑓(⋅) − 𝐺𝑚(𝑓, ⋅)‖𝑞.

At present, there are many works devoted to the investigation of quantity (1) for important classes of
functions. For details and the corresponding references, see, e.g., [7].
By 𝐵 we denote the set of functions 𝜓 satisfying the following conditions:

( i ) 𝜓 is positive and nonincreasing;

( i i ) there exists a constant 𝐶 > 0 such that 𝜓(𝜏)
𝜓(2𝜏)

≤ 𝐶, 𝜏 ∈ ℕ.

Thus, the functions 1/𝜏𝑟, 𝑟 > 0; ln𝛾 (𝜏 + 1)/𝜏𝑟, 𝛾 ∈ ℝ, 𝑟 > 0, 𝜏 ∈ ℕ, and some other functions belong to the
set 𝐵.
For the quantities 𝐴 and 𝐵, the notation 𝐴 ≍ 𝐵means that there exist positive constants 𝐶1 and 𝐶2 such that
𝐶1𝐴 ≤ 𝐵 ≤ 𝐶2𝐴. If 𝐵 ≤ 𝐶2𝐴 (𝐵 ≥ 𝐶1𝐴), then we can write 𝐵 ≪ 𝐴 (𝐵 ≫ 𝐴). All 𝐶𝑖, 𝑖 = 1, 2,…, encountered
in our paper may depend only on the parameters appearing in the definitions of the class and metric in
which we determine the error of approximation.

136 https://temat.es/monograficos

https://temat.es/monograficos


Shkapa

2 . M a i n r e s u l t s

The following assertion is true:

T h e o r e m . Let 1 < 𝑝 < 𝑞 ≤ 2, 𝜓 ∈ 𝐵, 𝛽 ∈ ℝ and let, in addition, there exist 𝜀 > 0 such that the sequence

𝜓(𝑡)𝑡
1
𝑝
− 1
𝑞
+𝜀
, 𝑡 ∈ ℕ, does not increase. Then, the following order estimate is true:

𝐺𝑚(𝐿
𝜓
𝛽,𝑝)𝑞 ≍ 𝜓(𝑚)𝑚

1
𝑝
− 1

2 .

P r o o f . The upper bounds follow from the estimate for the approximation of functions from the classes
𝐿𝜓𝛽,𝑝 by their Fourier sums [3]:

ℰ𝑚(𝐿
𝜓
𝛽,𝑝)2 = sup

𝑓∈𝐿𝜓𝛽,𝑝

‖
‖‖𝑓(𝑥) −

𝑚
∑

𝑘=−𝑚

̂𝑓(𝑘)ei𝑘𝑥‖‖‖
2
≍ 𝜓(𝑚)𝑚

1
𝑝
− 1

2 .

We now determine the lower bounds. We will use the Rudin-Shapiro polinomials ℛ𝑙(𝑥):

ℛ𝑙(𝑥) =
2𝑙−1
∑

𝑗=2𝑙−1
𝜀𝑗ei𝑗𝑥, 𝜀𝑗 = ±1, 𝑥 ∈ ℝ,

satisfying the order estimate (see, e.g., [1]) ‖ℛ𝑙‖∞ ≪ 2𝑙/2.

We also need the well-known de la Vallee-Poussin kernels

𝑉𝑚(𝑥) =
1
𝑚

2𝑚−1
∑
𝑙=𝑚

𝐷𝑙(𝑥), 𝑥 ∈ ℝ, 𝑚 ∈ ℕ,

where 𝐷𝑙(𝑥) = ∑|𝑘|≤𝑙 e
i𝑘𝑥 is the Dirichlet kernel.

Further, for 𝜀 = ±1 we set 𝛬±1 ≔ {𝑘 ∶ ℛ̂𝑙(𝑘) = ±1}, and let 𝜀 = ±1 be such that |𝛬𝜀| > |𝛬−𝜀|. Then, for
given𝑚, we take 𝑙 ∈ ℕ from the relation 2𝑙−2 ≤ 𝑚 < 2𝑙−1, take a small positive parameter 𝛿 and consider a
function

𝑓(𝑥) = 𝐶3𝜓(2𝑙)2
𝑙( 1
𝑝
−1)

𝑓1(𝑥), 𝐶3 > 0,

where 𝑓1(𝑥) = 𝑉𝑚(𝑥) + 𝜀𝛿ℛ𝑚(𝑥) and 0 < 𝛿 ≤ 𝑚
1
2
− 1
𝑝 .

We now show that, for a certain choice of the constant 𝐶3 > 0, the function 𝑓 belongs to the class 𝐿𝜓𝛽,𝑝. To
this end, it suffices to verify that ‖𝑓𝜓𝛽 ‖𝑝 ≪ 1.

For this purpose, we use the estimate [2] ‖𝑡𝜓𝛽 ‖𝑝 ≪ 𝜓−1(𝑛)‖𝑡‖𝑝 (for any polynomial 𝑡 ∈ 𝑇𝑛, 1 < 𝑝 < ∞), and

the well-known relation (see, e.g., [4]) ‖𝑉2𝑙‖𝑝 ≍ 2
𝑙(1− 1

𝑝
)
, 1 ≤ 𝑝 ≤ ∞.

Hence, we can write

‖𝑓𝜓𝛽 ‖𝑝 ≪ 𝜓−1(𝑚)‖𝑓‖𝑝 ≤ 𝜓−1(𝑚)𝜓(2𝑙)2
𝑙( 1
𝑝
−1)

(‖𝑉𝑚‖𝑝 + 𝛿‖ℛ𝑚‖𝑝)

≤ 𝜓−1(𝑚)𝜓(2𝑙)2
𝑙( 1
𝑝
−1)

(‖𝑉𝑚‖𝑝 + 𝛿‖ℛ𝑚‖∞)

≪ 𝜓−1(𝑚)𝜓(2𝑙)2
𝑙( 1
𝑝
−1)

(2
𝑙(1− 1

𝑝
)
+ 2

𝑙( 1
2
− 1
𝑝
)
2

𝑙
2 ) ≪ 1.

This implies that, for a proper choice of the constant 𝐶3 > 0, function 𝑓 ∈ 𝐿𝜓𝛽,𝑝.

By using the estimate (see, e.g., [5, p. 581]) that, for 1 ≤ 𝑞 ≤ 2 and 1 < 𝑝 ≤ 2,

‖𝑓1 − 𝐺𝑚(𝑓1)‖𝑞 ≫ 𝑚
1
2 ,
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we obtain

sup
𝑓∈𝐿𝜓𝛽,𝑝

‖𝑓 − 𝐺𝑚(𝑓)‖𝑞 ≫ 𝜓(2𝑙)2
𝑙( 1
𝑝
−1)

‖𝑓1 − 𝐺𝑚(𝑓1)‖𝑞 ≫ 𝜓(𝑚)𝑚
1
𝑝
−1
𝑚

1
2 = 𝜓(𝑚)𝑚

1
𝑝
− 1

2 .

The required lower bound is established, which proves the theorem. ▪

R e m a r k . The assertion of the theorem for a special case of the classes𝑊 𝑟
𝑝,𝛽 was established byTemlyakov [6].

◀
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A b s t r a c t : We consider continuous singular and piecewise singular functions de-
fined in terms of given polybasic three-symbolic representation of real numbers,
which depend on three parameters and are a generalization of classic ternary
representations of real numbers. Their local and global properties (structural,
variational, extreme, differential, integral and fractal) are studied. We investigate
a family of continuous functions that store a central digit in a given polybasic
three-symbolic representation of real numbers, that depends on three parameters
and is a generalization of classic ternary representation of real numbers. It is
proved that the set of such functions is continuous. A special role in this family has
unique strictly decreasing function, called the inversor of digits. We also thoroughly
study the properties of several model representatives of countable subclasses of
functions with one and two infinite levels, respectively. They are piecewise singular.
We found equivalent definitions for them.

R e s u m e n : En esta contribución, se consideran funciones continuas singulares
y singulares a trozos, definidas en términos de una determinada representación
polibásica trisimbólica de los números reales, que depende de tres parámetros y
es una generalización de la representación ternaria clásica de los números reales.
Se estudian sus propiedades locales y globales (estructurales, variacionales, extre-
mas, diferenciales, integrales y fractales). Se investiga una familia de funciones
continuas que almacenan un dígito central en una determinada representación
polibásica trisimbólica de los números reales, que depende de tres parámetros y
es una generalización de la representación ternaria clásica de los números reales.
Se demuestra que el conjunto formado por dichas funciones es continuo. Una
función especial en esta familia tiene una única función estrictamente decrecien-
te, llamada inversor de los dígitos. También se estudian a fondo las propiedades
de varias representaciones de subclases contables de funciones con uno y dos
niveles infinitos respectivament. Estas son singulares a trozos y encontramos una
definición equivalente para ellas.
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Properties of functions associated with three-symbolic system of real numbers coding

1 . I n t r o d u c t i o n

Continuous functions often differ fundamentally in their local properties. We are not talking about smooth
functions, but about functions with a complex local structure, which have “features” in each arbitrarily
small interval. This “category” of functions includes tortuous and singular functions. The first ones do not
have intervals of monotonicity, but in each arbitrarily small segment they have the largest and the smallest
value. The theorems of Banach-Mazurkiewicz and Zamfirescu show that families of such functions are
“numerous” and, therefore, deserve attention. Recently, interest in such functions has been growing, and
many works have been devoted to them, in particular [1–4]. There is a common problem for them: the
problem of having an effective “apparatus” of tasks and research. Following the principle “from simple to
complex”, functions that have relatively simple local properties have been studied so far, namely: they have
the properties of self-similarity and self-affinity. For this class of functions, we are looking for alternative
ways of setting and studying, seeing some potential in the theory of functional equations.

The well-known Lebesgue theorem states that every monotonic function 𝑓 can be decomposed into a
linear combination 𝛼1𝑓𝑑 + 𝛼2𝑓𝑎𝑐 + 𝛼3𝑓𝑠 (𝛼𝑖 > 0, 𝛼1 + 𝛼2 + 𝛼3 = 1) of three monotonic functions: discrete
𝑓𝑑, absolutely continuous 𝑓𝑎𝑐 and singular 𝑓𝑠. Moreover, in 1981 T. Zamfirescu proved that the “majority”
of continuous monotonic functions are singular, since the latter in the metric space of all continuous
monotonic functions with supremum-metric form a set of Be of the second category. For more than 100
years of development, the theory of singular functions has been enriched mainly due to individual theories
(individual functions or finitely parametric families of functions have been studied), but the general theory
is still poorly developed, it contains little, but it is small. At the same time, the study of singular functions
has recently been intensified due to their connection with the theory of fractals.

On the basis of the general interest in singular functions, a natural interest in nonmonotonic singular
functions and nontrivial mixtures of singular and absolutely continuous functions arises. Examples
of nonmonotonic singular Kantor-type functions (functions whose constancy intervals form a set of
full measure) are easily constructed. The first examples of nowhere monotonic singular functions were
constructed in the 1950s by Indian mathematicians (Shukla U. K., Gard K. M.). Simple examples of singular
monotonic functions nowhere appear in the works of M. V. Pratsiovytyi and A. N. Agadjanov. There are
only a few works dedicated to such functions. Mixtures of singular and absolutely continuous functions
have not yet been the subject of serious study. The logical question is: in which “relatively simple” classes
are such functions dominant? And where do they “appear” naturally?

There are a number of problems associated with singular functions, one of which is the problem of effective
ways to set and research them. Recently, various systems of representation of real numbers with both
finite and infinite alphabets have been used for this purpose, one of which is 𝑄-representation of numbers,
first introduced in 1986 by M. V. Pratsiovytyi [3]. It was used to study singular distribution functions. We
use 𝑄-representation of numbers to study nonmonotonic piecewise singular functions. We are interested,
in particular, in the fractal aspect of the study.

2 . O b j e c t o f r e s e a r c h

The investigated functions are defined in terms of 𝑄3-representations of real numbers from the segment
[0, 1], namely: 𝑥 = 𝛽𝛼1(𝑥) +∑∞

𝑘=2 [𝛽𝛼𝑘(𝑥)∏
𝑘−1
𝑗=1 𝑞𝛼𝑗(𝑥)] ≡ 𝛥𝑄3

𝛼1𝛼2…𝛼𝑛…, where (𝑞0, 𝑞1, 𝑞2) is a predetermined
set of positive numbers such that 𝑞0 + 𝑞1 + 𝑞2 = 1, 𝛽0 = 0, 𝛽1 = 𝑞0, 𝛽2 = 𝑞0 + 𝑞1, 𝛼𝑛(𝑥) ∈ {0, 1, 2}.

The main object of research is a continuous function 𝑓 satisfying the conditions

( 1 ) 𝑓(𝛥𝑄3
𝛼1𝛼2…𝛼𝑛…) = 𝛥𝑄3

𝛾1𝛾2…𝛾𝑛… and 𝛾𝑛 = {
𝛾𝑛(𝑦) = 𝛾𝑛(𝛼1,𝛼2,… ,𝛼𝑛),
𝛾𝑛 = 1 ⇔ 𝛼𝑛 = 1.

That is, if 𝛾𝑛 = 1 if and only if 𝛾𝑛 = 1, then the function 𝑓 stores the digit 1 (without magnification). The set
of all such functions is denoted by 𝑃𝑐.
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3 . R e s u l t s

T h e o r e m 1 . The set of 𝑃𝑐 continuous functions on [0; 1], which store the number 1 in the 𝑄3-representation
of numbers, is continuum.

P r o o f . To prove this fact, it suffices to show that the function 𝑓, which for a predetermined 𝑦0 ∈ 𝐶 ≡
𝐶[𝑄3, {0, 2}] = {𝑥 ∶ 𝑥 = 𝛥𝑄3

𝛼1𝛼2…𝛼𝑛…, 𝛼1 ∈ {0, 2}} gives 𝑓(1) = 𝑦0. From this, the equivalence of subset 𝑃𝑐
and continuum set 𝐶 is obvious, which is equivalent to continuum 𝑃𝑐. ▪

A trivial example of a function that satisfies this definition is the function 𝑓(𝑥) = 𝑥. Another example
of such a function is the inversor, which is a continuous function 𝐼 with inhomogeneous differential
properties [4], which is denoted by the equality 𝐼(𝛥𝑄3

𝛼1𝛼2…𝛼𝑛…) = 𝛥𝑄3
[2−𝛼1][2−𝛼2]…[2−𝛼𝑛]…. The function 𝐼 can

be defined as the only solution to the system of functional equations 𝑓(𝛽𝑖 + 𝑞𝑖𝑥) = 𝛽[2−𝑖] + 𝑞[2−𝑖]𝑓(𝑥),
𝑖 = 0, 1, 2, in the class of continuous functions.

T h e o r e m 2 ([4]). The inversor 𝐼 has the following properties:

( i ) it is a correctly defined continuous monotone function and singular if 𝑞0 ≠ 𝑞2;

( i i ) its graph 𝛤𝐼 = {(𝑥, 𝐼(𝑥)) ∶ 𝑥 ∈ [0, 1]} is a self-affine set, namely: 𝛤𝐼 = ⋃2
𝑖=0 𝜙𝑖(𝛤𝐼) ≡ 𝜙(𝛤𝐼), where 𝜙𝑖 is

an affine transformation such that 𝜙𝑖 ∶ {
𝑥′ = 𝑞𝑖𝑥 + 𝛽𝑖,
𝑦′ = −𝑞[2−𝑖]𝑦 + 𝛽[3−𝑖], 𝑖 ∈ 𝐴3;

( i i i ) there is equality: ∫
1

0
𝐼(𝑥) d𝑥 =

2𝑞0𝑞1 + 𝑞20
1 − 2𝑞0𝑞1 − 𝑞21

.

Using the definition of the inversor, you can effectively specify functions with some symmetries of the
graph, which belong to the set 𝑃𝑐. For example, a function 𝑓 that is the only solution in the set 𝑃𝑐 of the
functional equation 𝑓(𝑥) = 𝑓(𝐼(𝑥)), 𝑥 ∈ [0, 1] under condition 𝑓(𝛥𝑄3

(0)) = 𝛥𝑄3
(02).

Consider another example, the function 𝑔(𝑥).

Define the digits 𝛾𝑛 of the function 𝑔(𝑥) as follows. Let {0, 2} ∋ 𝑖 be a fixed parameter. We put

( i ) 𝛾1 = 𝛼1; moreover, if 𝛼1 = 1, then 𝛾1+𝑟 = 𝛼1+𝑟, 𝑟 ∈ 𝑁, 𝑔(𝛥𝑄3
(0)) = 𝛥𝑄3

(02) and 𝑔(𝛥𝑄3
(2)) = 𝛥𝑄3

(20);

( i i ) if 𝛼1 = … = 𝛼𝑚 = 𝑖 and 𝛼𝑚+1 = 2 − 𝑖, then 𝛾𝑚+1+𝑟 = {
𝛼𝑚+1+𝑟, 𝑚 is odd number,
2 − 𝛼𝑚+1+𝑟, 𝑚 is even number;

( i i i ) if 𝛼1=…=𝛼𝑚=𝑖, 𝛼𝑚+1=…=𝛼𝑚+𝑘=1 and 𝛼𝑚+𝑘+1=2−𝑖, then 𝛾𝑚+𝑘+1+𝑟={
𝛼𝑚+𝑘+1+𝑟, 𝑚=2𝑡+1,
2−𝛼𝑚+𝑘+1+𝑟, 𝑚=2𝑡.

If 𝛼𝑚+𝑘+1 = 𝑖, then 𝛾𝑚+𝑘+1+𝑟 = {
2 − 𝛼𝑚+𝑘+1+𝑟, 𝑚 = 2𝑡 + 1,
𝛼𝑚+𝑘+1+𝑟, 𝑚 = 2𝑡,

where 𝑚, 𝑘, 𝑟, 𝑡 ∈ 𝑁.

It is obvious that the function 𝑔(𝑥) is correctly defined and satisfies (1), i.e., it belongs to 𝑃𝑐.

T h e o r e m 3 . The function 𝑔(𝑥) thus defined is the only solution of the functional equation with the
conditions

⎧

⎨
⎩

𝑔(𝐼(𝑥)) = 𝐼(𝑔(𝑥)), 𝑥 ∈ [0, 1],
𝑔(𝛥𝑄3

(0)) = 𝛥𝑄3
(02),

𝑔(𝛥𝑄3
(2)) = 𝛥𝑄3

(20).

P r o o f . From the definition 𝑔 for 𝑖, 𝑗 ∈ {0, 2} of the function, the relations follow:

𝑔(𝛥𝑄3
1𝛼1…𝛼𝑛…) = 𝛥𝑄3

1𝛼1…𝛼𝑛…,

𝑔(𝛥𝑄3
𝑖…𝑖⏟
2𝑚+1

[2−𝑖]𝛼2𝑚+3…𝛼2𝑚+3+𝑛…) = 𝛥𝑄3
𝑖[2−𝑖]…𝑖⏟⎵⎵⏟⎵⎵⏟

2𝑚+1
[2−𝑖]𝛼2𝑚+3…𝛼2𝑚+3+𝑛…,

𝑔(𝛥𝑄3
𝑖…𝑖⏟
2𝑚

[2−𝑖]𝛼2𝑚+2…𝛼2𝑚+2+𝑛…) = 𝛥𝑄3
𝑖[2−𝑖]…𝑖[2−𝑖]⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

2𝑚
𝑖[2−𝛼2𝑚+2]…[2−𝛼2𝑚+2+𝑛]…,
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𝑔(𝛥𝑄3
𝑖…𝑖⏟
2𝑚+1

1…1⏟
𝑘

𝑗𝛼𝑟1…𝛼𝑟𝑛…
) = 𝛥𝑄3

𝑖[2−𝑖]…𝑖⏟⎵⎵⏟⎵⎵⏟
2𝑚+1

1…1⏟
𝑘

[2−𝑖][𝑗+(−1)
[ 𝑗2 ]𝛼𝑟1]…[𝑗+(−1)

[ 𝑗2 ]𝛼𝑟𝑛]…
,

𝑔(𝛥𝑄3
𝑖…𝑖⏟
2𝑚

1…1⏟
𝑘

𝑗𝛼𝑟1…𝛼𝑟𝑛…
) = 𝛥𝑄3

𝑖[2−𝑖]…[2−𝑖]⏟⎵⎵⎵⏟⎵⎵⎵⏟
2𝑚

1…1⏟
𝑘

𝑖[𝑗+(−1)
[ 𝑗2 ]𝛼𝑟1]…[𝑗+(−1)

[ 𝑗2 ]𝛼𝑟𝑛]…
.

It is easy to see that for all the above relations, equality 𝑔(𝐼(𝑥)) = 𝐼(𝑔(𝑥)) holds. Therefore, equality
𝑔(𝐼(𝑥)) = 𝐼(𝑔(𝑥)) holds for the function 𝑔.

We show that 𝑔 is the only solution. Suppose that in the set 𝑃𝑐 there exists a function𝜓 different from 𝑔which
satisfies the conditions of the theorem. That is, there are points 𝑥0 = 𝛥𝑄3

𝑐1𝑐2…𝑐𝑛… that 𝑦0 = 𝜓(𝑥0) ≠ 𝑔(𝑥0) = 𝑦1.
Then for each such number 𝑥0 there exists the smallest natural 𝑘 such that ℎ = 𝛼𝑘(𝑦0) ≠ 𝛼𝑘(𝑦1) = 𝑙, ℎ ≠ 1 ≠ 𝑙,
ℎ, 𝑙 ∈ {0, 2} and 𝛼𝑗(𝑦0) = 𝛼𝑗(𝑦1) for 𝑗 < 𝑘. We choose among them 𝑥0 for which 𝑘 is the smallest. If there are
more than one 𝑥0, then we take the one for which the number ℎ is the smallest.

From the fact that 𝛼𝑗(𝑦0) = 𝛼𝑗(𝑦1) for 𝑗 < 𝑘 it follows that 𝑦0 and 𝑦1 belong some segment 𝛥𝑄3
𝑐′1𝑐′2…𝑐′𝑘−1

.

Let ℎ < 𝑙. From the above it follows that ℎ = 0, 𝑙 = 2. Then, there exists a point 𝑥1 < 𝑥0, i.e.,
𝑥1 ∈ 𝛥𝑄3

𝑐1𝑐2…𝑐𝑘−1[𝑐𝑘−1]
. Given the previous considerations, consider different 𝑄3-rational values: 𝑥0 ≡

𝛥𝑄3
𝑐1𝑐2…𝑐𝑘−1𝑐𝑘(0) = 𝛥𝑄3

𝑐1𝑐2…𝑐𝑘−1[𝑐𝑘−1](2)
≡ 𝑥1. The function 𝜓 at the points 𝑥0 and 𝑥1 takes values

𝑦0 = 𝜓(𝑥0) = 𝛥𝑄3
𝑐′1𝑐′2…𝑐′𝑘−1ℎ𝜏1𝜏2…𝜏𝑛…

= 𝛥𝑄3
𝑐′1𝑐′2…𝑐′𝑘−10𝜏1𝜏2…𝜏𝑛…

, 𝑦∗0 = 𝜓(𝑥1) = 𝛥𝑄3
𝑐′1𝑐′2…𝑐′𝑘−1𝑑𝑠1𝑠2…𝑠𝑛…

,

where 𝑑 ∈ 𝐴3, 𝜏𝑖, 𝑠𝑖 ∈ {0, 2}, 𝑖 ∈ 𝑁. If the conditions 𝜏𝑖 = 2, 𝑠𝑖 = 0 and 𝑑 = 1 are satisfied for all 𝑖, then the
function 𝜓 coincides with 𝑔, which contradicts the assumption. If the sequences (𝜏𝑛) and (𝑠𝑛) are arbitrarily
different from the previous case or 𝑑 ≠ 1, then the function 𝜓 is discontinuous. Therefore, 𝜓 ∉ 𝑃𝑐 which
contradicts the assumption.

If ℎ > 𝑙, i.e., ℎ = 2 and 𝑙 = 0, then the numbers 𝑦0 and 𝑦∗0 are equal if and only if the conditions 𝜏𝑖 = 0,
𝑠𝑖 = 2 and 𝑑 = 1 are satisfied for all 𝑖. In this case 𝜓 coincides with 𝑔, which contradicts the assumption.
For the remaining values of 𝑑, (𝜏𝑛), (𝑠𝑛) we obtain a discontinuous function, i.e., 𝜓 ∉ 𝑃𝑐.

Therefore, only function 𝑔 satisfies the conditions of the theorem. The theorem is proved. ▪

T h e o r e m 4 . The function 𝑔 has the following properties: for 𝑞0 = 𝑞2, it is a piecewise linear, and for
𝑞0 ≠ 𝑞2 it is a mixture of singular and piecewise linear; the graph of the function 𝑔 is “symmetrically similar”
with respect to the point (𝛥𝑄3

(1);𝛥
𝑄3
(1)); and it has two infinite levels 𝑦0 = 𝛥𝑄3

(02) and 𝑦′0 = 𝛥𝑄3
(20).
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A b s t r a c t : E. Oja, T. Viil, and D.Werner proved that every weakly compactly gener-
ated Banach space 𝑋 having a norm with the property that every linear functional
on 𝑋 has a unique Hahn-Banach extension to its bidual 𝑋∗∗ (which R. R. Phelps
referred to as “𝑋 having property U in 𝑋∗∗”) can be renormed to have the stronger
property that every linear continuous functional defined on any linear subspace
of 𝑋 has a unique Hahn–Banach extension to 𝑋∗∗ (the so-called total smoothness
property of 𝑋). We proved that, thanks to a deep theorem of M. Raja, the above
result can be obtained even in a stronger form and without any extra conditions
on the space 𝑋 (i.e., omitting the “weakly compactly generated” on the statement).
Here we recall this result and present some extensions in the direction of what is
called “weak Hahn-Banach smoothnes”. This is partially based on a joint work with
A. J. Guirao and V. Montesinos.

R e s u m e n : E. Oja, T. Viil, and D.Werner probaron que todo espacio de Banach dé-
bilmente compactamente generado que tenga una norma con la propiedad de que
todo funcional lineal y continuo en 𝑋 tenga una única extensión de Hahn-Banach
a su bidual 𝑋∗∗ (es decir, “𝑋 tiene la propiedad U en 𝑋∗∗”, en la terminología de
R. R. Phelps) puede ser renormado para tener la propiedad más fuerte de que todo
funcional lineal y continuo definido en cualquier subespacio lineal de 𝑋 tiene una
única extensión de Hahn-Banach a 𝑋∗∗ (lo que se conoce como total suavidad de
𝑋). Probamos que, gracias a un profundo teorema deM. Raja, se puede obtener una
versión incluso más fuerte del resultado anterior sin ninguna condición adicional
en el espacio 𝑋 (es decir, omitiendo “débilmente compactamente generado” en el
enunciado). Reproducimos el resultado y proponemos algunas extensiones usando
el concepto de suavidad Hahn-Banach débil del espacio. Esto está parcialmente
basado en un trabajo conjunto con A. J. Guirao y V. Montesinos.
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On unique-extension renormings

1 . I n t r o d u c t i o n

The present contribution —based on the joint work [2]— is motivated by a recent paper [4], where it is
proved that every weakly compactly generated Banach space whose norm has the Hahn-Banach smooth
property has an equivalent norm with the (stronger) totally smooth property. This improved an earlier
result of Sullivan [8] proving this statement under the assumption of separability. Our main contribution,
that solves an open problem in [4], is that no extra requirement —besides the Hahn-Banach property of
the norm— on the space is needed. This is a consequence of an important theorem due to M. Raja [7],
where the so-called Kadets-Klee property for the 𝑤 and 𝑤∗ topologies in the dual of a Banach space allows
for a renorming of the space with the local uniformly rotund property of its dual norm. By “renorming”
a Banach space we mean defining an equivalent norm on it —naturally seeking for better geometric or
analytic properties. Details and definitions needed are given below.

The basic Hahn-Banach theorem does not ensure uniqueness of the existing norm-preserving extension
from a subspace to the whole space. This issue was considered by Phelps, who introduced the following
definition:

D e f i n i t i o n 1 (Phelps). Let (𝑋, ‖⋅‖) be a Banach space, and 𝑀 a linear (not necessarily closed) subspace
of 𝑋. We will say that 𝑀 has property U in 𝑋 if each continuous linear functional on 𝑀 has a unique
norm-preserving extension to 𝑋. ◀

We shall consider every Banach space 𝑋 canonically embedded in its bidual space 𝑋∗∗.

D e f i n i t i o n 2 (Sullivan). The norm ‖⋅‖ of a Banach space (𝑋, ‖⋅‖) is said to be Hahn–Banach smooth (HBS,
for short) if (𝑋, ‖⋅‖) has property U in 𝑋∗∗ (i.e., every 𝑥∗ ∈ 𝑋∗ has a unique norm-preserving extension to
𝑋∗∗). ◀

D e f i n i t i o n 3 . The norm ‖⋅‖ of a Banach space (𝑋, ‖⋅‖) is said to be totally smooth (TS, for short) if every
linear subspace𝑀 of 𝑋 has property U in 𝑋∗∗ (i.e., for every linear subspace𝑀 of 𝑋, every 𝑓 ∈ 𝑀∗ has a
unique norm-preserving extension to 𝑋∗∗). ◀

Obviously, if a norm has the HBS property, then it has the TS property. Notice that properties U, HBS, and
TS, are of isometric nature. Indeed (some needed definitions will appear in Section 2 below),

( i ) the Hilbertian norm on a Hilbert space 𝐻 has property U. However, as happens in every Banach
space, 𝐻 has an equivalent norm ‖⋅‖ that fails to be Gâteaux differentiable at some 𝑥0 ∈ 𝑆𝐻. Thus,
two different norm-preserving extensions of 𝑥∗0 |𝑀 exist, where𝑀 ≔ span{𝑥0} and 𝑥∗0 belongs to the
subdifferential of ‖⋅‖ at 𝑥0. This shows that 𝑈 is not invariant under renormings.

( i i ) On the other hand, it is not hard to prove that a Banach space (𝑋, ‖⋅‖) is reflexive if, and only if, every
equivalent norm on 𝑋 is HBS. If (𝑋, ‖⋅‖) is a Banach space with a separable dual, it is well known (see
[3]) that 𝑋∗ admits an equivalent dual LUR norm |‖ ⋅ |‖∗, so the topologies 𝑤 and 𝑤∗ coincide on
𝑆𝑋∗. Proposition 6 below shows then that |‖ ⋅ |‖ on 𝑋 is HBS. By a previous observation, if moreover
the space 𝑋 is not reflexive, then it has an equivalent norm | ⋅ | which is not HBS. Thus, HBS is not
invariant under renormings.

( i i i ) Finally, Theorem 9 below shows that the property TS of a norm is equivalent to the HBS property
plus the strict convexity of its dual norm. Thus, the Hilbertian norm on a Hilbert space𝐻 is obviously
TS, although 𝐻 admits a non-rotund equivalent norm (this is a dualization of the argument in (i)
above). This shows that TS is also non-invariant under renormings.

The statement of our main result follows. As we mentioned, this improves results in [8] and [4], and solves
a problem in [4].

T h e o r e m 4 . Let (𝑋, ‖⋅‖) be a Banach space. Then, the following statements are equivalent:

( i ) 𝑋 has an equivalent norm with property HBS.
( i i ) 𝑋∗ has an equivalent 𝑤∗-𝑤-Kadets-Klee norm.
( i i i ) 𝑋 has an equivalent norm whose dual norm is LUR.
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( i v ) 𝑋 has an equivalent norm with property TS.

The following classes of Banach spaces satisfy one —and then all— of the conditions in Theorem 4:
(i) Asplund spaces that are weakly compactly generated, and (ii) spaces whose dual is a subspace of a
weakly compactly generated Banach space. In particular, separable Banach spaces satisfy one of the
conditions in Theorem 4 if, and only if, they are Asplund.

2 . T h e w a l k t h r o u g h

We shall provide a sketch of the proof of Theorem 4. We shall need some extra definitions. Recall that a
norm ‖⋅‖ on a Banach space is called strictly convex or rotund if the unit sphere does not contain non-trivial
line segments. It is called locally uniformly rotund (LUR, for short) if for every 𝑥, 𝑥𝑛 ∈ 𝑆𝑋, 𝑛 ∈ ℕ, such
that ‖𝑥 + 𝑥𝑛‖ → 2, then 𝑥𝑛 → 𝑥.

D e f i n i t i o n 5 . Let ‖⋅‖ be a norm in a Banach space 𝑋 and 𝜏1 ⊂ 𝜏2 ⊂ ‖⋅‖ two vector topologies on 𝑋. We say
that ‖⋅‖ has the 𝝉𝟏-𝝉𝟐-Kadets-Klee property if the topologies 𝜏1 and 𝜏2 coincide on its unit sphere. ◀

Proof of (i)⟺(ii) in Theorem 4: it will follow from Propositions 6 and 7 below.

P r o p o s i t i o n 6 (Godefroy). Let (𝑋, ‖⋅‖) be a Banach space. Then, 𝑥∗ ∈ 𝑆𝑋∗ has a unique norm-preserving
extension to 𝑋∗∗ if, and only if, the 𝑤∗ and 𝑤 topologies on 𝑆𝑋∗ coincide on 𝑥∗. In particular, ‖⋅‖ is HBS if,
and only if, its dual norm has the 𝑤∗-𝑤-Kadets-Klee property.

This last proposition suggests that in order to find an equivalent HBS norm on a Banach space 𝑋 —if
possible—, we should try to renorm the dual space 𝑋∗ with a 𝑤∗-𝑤-Kadets-Klee norm. There is an extra
requirement that in some cases is hard to achieve: the equivalent norm on the dual space must be a
dual norm. In our situation, this is obtained for free: as a particular case of the following result, any
𝑤∗-𝑤-Kadets-Klee norm on 𝑋∗ is already a dual norm.

P r o p o s i t i o n 7 . Let ‖⋅‖ be a 𝜏1-𝜏2-Kadets-Klee norm which is 𝜏2-lower semicontinuous. Then, it is also
𝜏1-lower semicontinuous.

(ii)⟺(iii): this is a consequence of the following deep result proved by Raja [6, 7], a landmark in renorming
theory.

T h e o r e m 8 (Raja). Let 𝑋 be a Banach space. If 𝑋 admits an equivalent norm whose dual is 𝑤∗-𝑤-Kadets-
Klee, then it admits an equivalent norm whose dual is LUR.

That (iv)⟹(i) was already mentioned above.

To finalize the proof of Theorem 4, the only remaining thing is to prove that (iii)⟹(iv). Notice that the
norm ‖⋅‖ of a Banach space (𝑋, ‖⋅‖) has the TS property if, and only if, every linear subspace𝑀 of 𝑋 has
property U in 𝑋 and ‖⋅‖ has the HBS property. We need the following result.

T h e o r e m 9 (Taylor-Foguel). Let (𝑋, ‖⋅‖) be a Banach space. Then, every linear subspace 𝑀 of 𝑋 has
property U on 𝑋 if, and only if, the dual norm ‖⋅‖∗ is rotund.

This last theorem and the paragraph above allow us to decompose the TS property in the following way:
The norm ‖⋅‖ of a Banach space is TS if, and only if, it has HBS property and its dual norm is strictly convex.
It is easy to see that the property of having a dual LUR norm is stronger than having those two properties
simultaneously. In fact, any LUR norm is already a strictly convex norm, and also, as an easy application
of the Riesz lemma, we have that if ‖⋅‖∗ is a dual LUR norm then the 𝑤∗ and the norm topologies (and so,
any topology in between them) coincide on its unit sphere. Proposition 6 shows that this implies the HBS
property on its predual norm ‖⋅‖, and the proof of Theorem 4 is over.

3 . S o m e f u r t h e r t o p i c s

We present here some remarks on, and some extensions of the previous results. Most of this can be found
in detail in [1].
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R e m a r k 1 0 . First of all, it is of key importance to prove that Theorem 4 is a real extension of the result of
Oja, Viil andWerner: Indeed, it could happen that all four conditions stated in Theorem 4 would imply
the original Banach space 𝑋 being WCG. However, this is not the case. To see this, it is enough to take
any Hausdorff non-Eberlein compact space 𝐾 such that 𝐾𝜔1 = ∅ (for example, 𝐾 = [0,𝜔1]), and consider
the corresponding 𝐶(𝐾) space. It is proved in [3] that 𝐶(𝐾)∗ admits a dual LUR norm (in particular, 𝐶(𝐾)
admits an HBS norm), but it is not aWCG space (as 𝐾 is not Eberlein). ◀

Some of the work done in Section 2 can be extended to more general cases. For this purpose, we may
introduce some extra definitions related to the uniqueness of extensions (if 𝑋 is a Banach space, then the
subset of 𝑋∗ consisting of all norm-attaining functionals on 𝑋 will be denoted by NA(𝑋)): (i) If𝑀 is a linear
(not necessarily closed) subspace of𝑋, we will say that𝑀 has property wU in𝑋 if each element in NA(𝑀) has
a unique norm-preserving extension to 𝑋. (ii) The space (𝑋, ‖⋅‖) is said to be weak Hahn–Banach Smooth
(wHBS for short) if (𝑋, ‖⋅‖) has property wU in 𝑋∗∗ (i.e., every 𝑥∗ ∈ NA(𝑋) has a unique norm-preserving
extension to 𝑋∗∗). The last definition is due to Sullivan. (iii) Let ‖⋅‖ be a norm in a Banach space 𝑋, 𝐴 ⊂ 𝑋
be a cone, and 𝜏1 ⊂ 𝜏2 ⊂ ‖⋅‖ two vector topologies on 𝑋. We say that ‖⋅‖ has the 𝝉𝟏-𝝉𝟐-Kadets-Klee property
with respect to 𝑨 when both topologies 𝜏1 and 𝜏2 coincide when restricted to 𝐴 ∩ 𝑆(𝑋,‖⋅‖)
These definitions allow us to generalize Proposition 7 and the equivalence (i)⟺(ii) in Theorem 4.

P r o p o s i t i o n 1 1 . Let ‖⋅‖ be a norm in the Banach space 𝑋 that is 𝜏1-𝜏2-Kadets-Klee with respect to a cone
𝐴 ⊂ 𝑋 that satisfies 𝐴 ∩ 𝐵(𝑋,‖⋅‖)

‖⋅‖
. Then, if the norm is 𝜏2-lower semicontinuous, it is also 𝜏1-lower semicon-

tinuous.

P r o p o s i t i o n 1 2 . Let (𝑋, ‖⋅‖) be a Banach space. Then, 𝑋 admits a wHBS norm if, and only if, 𝑋∗ admits a
norm which is 𝑤∗-𝑤-Kadets-Klee with respect to NA(𝑋).

There are further similarities between the two properties HBS and wHBS. For example, it can be proved
that a norm ‖⋅‖ is very smooth if, and only if, ‖⋅‖ its simultaneously Gâteaux smooth and wHBS, and this
scheme is the analogous version of the TS decomposition above, but for the unique extension of the
norm-attaining elements. It is natural to ask if wHBS on 𝑋 also implies the existence of dual norm on 𝑋∗

with good convexity properties, just as HBS implies the dual LUR norm on 𝑋∗. However, this is far from
being true, since Talagrand proved that there are some spaces (𝐶([0,𝜇]) with uncountable 𝜇 that admit a
Fréchet smooth equivalent norm (a much stronger property than being wHBS and even very smooth) but
its dual spaces do not admit a dual strictly convex norm (see [3]).
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A b s t r a c t : We obtain order estimates for several approximative characteristics of the
classes of periodic multivariate functions, that are connected to nonlinear approxi-
mation. Namely, we investigate a behaviour of the best orthogonal and𝑀-term
trigonometric approximations of the classes of functions with bounded generalized
derivative (the classes ofWeyl-Nagy type). We indicate cases, when there are advan-
tages of nonlinear methods over the approximation of corresponding functional
classes by step hyperbolic Fourier sums and by trigonometric polynomials with
“numbers” of harmonics from step hyperbolic crosses.

Further we get the estimates of entropy numbers for the classes of functions with
certain restrictions on their modulus of continuity (the classes of Nikol’skyi-Besov
type). All the error approximations are measured in a metric of the Lebesgue space.

R e s u m e n : Obtenemos estimaciones de orden para varias características aproxima-
tivas de las clases de funciones periódicas multivariantes, que están relacionadas
con la aproximación no lineal. Concretamente, investigamos el comportamien-
to de las mejores aproximaciones ortogonales y trigonométricas de término 𝑀
de las clases de funciones con derivada generalizada acotada (las clases de tipo
Weyl-Nagy). Indicamos los casos, cuando hay ventajas de los métodos no lineales
sobre la aproximación de las clases funcionales correspondientes por sumas de
Fourier hiperbólicas escalonadas y por polinomios trigonométricos con “números”
de armónicos de cruces hiperbólicos escalonados.

Además, obtenemos las estimaciones de los números de entropía para las clases
de funciones con ciertas restricciones en su módulo de continuidad (las clases de
tipo Nikol’skyi-Besov). Todas las aproximaciones de error se miden en una métrica
del espacio de Lebesgue.
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Best approximations and entropy numbers

1 . I n t r o d u c t i o n

Let ℝ𝑑, 𝑑 ≥ 1, be the Euclidean space with elements 𝒙 = (𝑥1,… , 𝑥𝑑) and (𝒙,𝒚) = 𝑥1𝑦1 + … + 𝑥𝑑𝑦𝑑,
𝒙,𝒚 ∈ ℝ𝑑. By 𝐿𝑞 ≔ 𝐿𝑞(π𝑑), π𝑑 = ∏𝑑

𝑗=1 [0, 2π], 1 ≤ 𝑞 ≤ ∞, we denote the space of functions 𝑓(𝒙), that
are 2π-periodic by each variable, equipped with the usual norm. Suppose further, that for the functions
𝑓 ∈ 𝐿1 the condition ∫

2π
0 𝑓(𝒙) d𝑥𝑗 = 0, 𝑗 = 1, 𝑑, holds.

Let us consider the Fourier series for 𝑓 ∈ 𝐿1, i.e.,

∑
𝑘∈ℤ𝑑

𝑓(𝑘)ei(𝑘,𝑥),

where 𝑓(𝒌) = (2π)−𝑑 ∫π𝑑 𝑓(𝒕)e
−i(𝒌,𝒕)d𝒕 are the Fourier coefficients of 𝑓. Further, let 𝝍 = (𝜓1,… ,𝜓𝑑), 𝜓𝑗 ≠ 0,

𝑗 = 1, 𝑑, be arbitrary sequences of natural argument, 𝛽𝑗 ∈ ℝ, 𝑗 = 1, 𝑑, ℤ̊𝑑 = (ℤ ⧵ {0})𝑑. Assume that the
series

∑
𝒌∈ ̊ℤ𝑑

𝑑
∏
𝑗=1

ei
π𝛽𝑗
2

sgn𝑘𝑗

𝜓𝑗(|𝑘𝑗|)
𝑓(𝒌)ei(𝒌,𝒙),

where ̊ℤ𝑑 = (ℤ ⧵ {0})𝑑, are the Fourier series of some function 𝑓𝝍𝜷 summable on π𝑑.

Let us denote by 𝐿𝝍𝜷,𝑝, 1 ≤ 𝑝 ≤ ∞, a set of functions 𝑓, for which (𝝍, 𝜷)-derivatives exist, and the condition
‖𝑓𝝍𝜷 ‖𝑝 ≤ 1 is satisfied. The univariate classes 𝐿𝜓𝛽,𝑝 were introduced in 1983 by A. I. Stepanets [10]. The
study of different approximative characteristics on the respective classes of multivariate functions was
initiated by A. S. Romanyuk and further continued by his students. Note also that these classes generalize
the well-knownWeyl-Nagy classes𝑊 𝒓

𝜷,𝑝, namely, 𝐿𝝍𝜷,𝑝 ≡ 𝑊 𝒓
𝜷,𝑝 in the case 𝜓𝑗 (|𝜏|) ≡ |𝜏|−𝑟𝑗, 𝜏 ∈ ℤ\{0}, 𝑟𝑗 > 0,

𝛽𝑗 ∈ ℝ, 𝑗 = 1, 𝑑.

When investigating best trigonometric approximations on the classes 𝐿𝝍𝜷,𝑝, we impose some additional
conditions on the sequences 𝜓𝑖, 𝑖 = 1,… , 𝑑. So, let 𝐷 be a set of functions 𝜓 of natural argument that
satisfy the conditions

• 𝜓 are positive and non increasing;

• there exists𝑀 > 0 such that for all 𝑙 ∈ ℕ we have 𝜓(𝑙)
𝜓(2𝑙)

≤ 𝑀.

Note that to the indicated set belong, in particular, the functions 𝜙(|𝜏|) = |𝜏|−𝑟; 𝜙(|𝜏|) = ln𝛼 (|𝜏| + 1), 𝛼 < 0;
𝜙(|𝜏|) = ln𝛼 (|𝜏| + 1)|𝜏|−𝑟, where 𝜏 ∈ ℤ ⧵ {0}, 𝛼 ∈ ℝ, 𝑟 > 0.

The results are presented in terms of functions

𝛷(𝑛) = min
(𝒔,𝟏)=𝑛

𝑑
∏
𝑗=1

𝜓𝑗(2𝑠𝑗), 𝛹(𝑛) = max
(𝒔,𝟏)=𝑛

𝑑
∏
𝑗=1

𝜓𝑗(2𝑠𝑗),

where the vectors 𝒔, 𝟏 ∈ ℕ𝑑. In the case 𝜓𝑗(|𝜏|) = |𝜏|−𝑟, 𝑗 = 1, 𝑑, 𝑟 > 0, we have 𝛷(𝑛) = 𝛹(𝑛) = 2−𝑛𝑟 and,
besides, for 𝑑 = 1 the functions 𝛷(𝑛) and 𝛹(𝑛) coincide and take the form 𝜓1(2𝑛).

In what follows, we also establish estimates for the entropy numbers of the classes 𝐵𝛺𝑝,𝜃 in the metric of the
space 𝐿𝑞, 1 ≤ 𝑞 ≤ ∞, under certain conditions imposed on the function 𝛺 and the parameters 𝑝, 𝜃. For
the first time, the indicated classes with 𝜃 = ∞ were considered by N. N. Pustovoitov [6]. In the paper by
S. Yongsheng andW. Heping [11], these classes were extended to the case 1 ≤ 𝜃 < ∞. They can be regarded
as a generalization of the classes 𝐵𝒓𝑝,𝜃 with respect to a smooth parameter. The classes 𝐵𝛺𝑝,𝜃 are defined
with the help of a majorant function 𝛺(𝒕), 𝒕 ∈ ℝ𝑑

+, for the mixed modulus of continuity 𝛺𝑙(𝑓, 𝒕)𝑝 of order 𝑙,
𝑙 ∈ ℕ, of the function 𝑓 ∈ 𝐿𝑝(π𝑑), 1 ≤ 𝑝 ≤ ∞, and a numerical parameter 𝜃, 1 ≤ 𝜃 ≤ ∞.

The results are given in terms of order relations. So, for two nonnegative sequences {𝑎(𝑛)}∞𝑛=1 and {𝑏(𝑛)}∞𝑛=1,
the relation (order inequality) 𝑎(𝑛) ≪ 𝑏(𝑛)means that there exists a constant 𝐶 > 0, independent of 𝑛 and
such that 𝑎(𝑛) ≤ 𝐶𝑏(𝑛). The relation 𝑎(𝑛) ≍ 𝑏(𝑛) is equivalent to 𝑎(𝑛) ≪ 𝑏(𝑛) and 𝑏(𝑛) ≪ 𝑎(𝑛).
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2 . E s t i m a t e s o f t h e b e s t t r i g o n o m e t r i c a p p r o x i m a t i o n

We now define the approximate characteristics. So, for 𝑓 ∈ 𝐿𝑞, 1 ≤ 𝑞 ≤ ∞, the quantity

( 1 ) 𝑒𝑀(𝑓)𝑞 = inf
𝒌𝑗,𝑐𝑗

‖
‖𝑓 −

𝑀
∑
𝑗=1

𝑐𝑗ei(𝒌
𝑗,𝒙)‖

‖𝑞

is called the best𝑀-term trigonometric approximation of function 𝑓, where {𝒌𝑗}𝑀𝑗=1 is the set of vectors
𝒌𝑗 = (𝑘𝑗1,… , 𝑘𝑗𝑑) ∈ ℤ𝑑, 𝑐𝑗 ∈ ℂ, 𝑗 = 1,𝑀. For 𝐹 ⊂ 𝐿𝑞, we put 𝑒𝑀(𝐹)𝑞 = sup𝑓∈𝐹 𝑒𝑀(𝑓)𝑞 and call it the best
𝑀-term trigonometric approximation of the functional class 𝐹.

We consider also a close to (1) characteristic 𝑒⊥𝑀(𝑓)𝑞 (respectively, 𝑒⊥𝑀(𝐹)𝑞), where the coefficients 𝑐𝑗 of
corresponding polynomials are the Fourier coefficients of the function 𝑓 with respect to the system {𝒌𝑗}𝑀𝑗=1.
The detailed history and further references could be found in the monograph by D. Dũng, V. N. Temlyakov
and T. Ullrich [2].

Let us formulate some results for the best𝑀-term approximation of the classes 𝐿𝝍𝜷,𝑝, that we proved in the
papers [7–9]. We considered first the limit case 𝑝 = 1.

T h e o r e m 1 . Let 1 < 𝑞 ≤ 2, 𝜓𝑗 ∈ 𝐷, 𝛽𝑗 ∈ ℝ, 𝑗 = 1, 𝑑, and 𝜀 > 0 be such that 𝜓𝑗 (|𝜏|) |𝜏|
1−1/𝑞+𝜀, 𝑗 = 1, 𝑑, do

not increase. Then, for any natural 𝑀 and 𝑛 that satisfy the condition 𝑀 = 𝑀(𝑛) ≍ 2𝑛𝑛𝑑−1, the following
relations hold:

𝛷(𝑛)𝑀1−1/𝑞(log𝑀)2(𝑑−1)(1/𝑞−1/2) ≪ 𝑒𝑀(𝐿
𝝍
𝜷,1)𝑞 ≪ 𝛹(𝑛)𝑀1−1/𝑞(log𝑀)2(𝑑−1)(1/𝑞−1/2).

Note, that in the univariate case we get an exact-order estimate 𝑒𝑀(𝐿
𝜓1
𝛽,1)𝑞

≍ 𝜓1(𝑀)𝑀1−1/𝑞, 1 < 𝑞 ≤ 2.

Analogous estimates (with the same left and right bounds) hold also for the quantity 𝑒⊥𝑀 (𝐿𝜓1
𝛽,1)𝑞

, 1 < 𝑞 < ∞.

T h e o r e m 2 . Let 2 < 𝑞 < ∞, 𝜓𝑗 ∈ 𝐷, 𝛽𝑗 ∈ ℝ, 𝑗 = 1, 𝑑, and 𝜀 > 0 be such that 𝜓𝑗 (|𝜏|) |𝜏|
1+𝜀, 𝑗 = 1, 𝑑, do

not increase. Then, for any natural 𝑀 and 𝑛 that satisfy the condition 𝑀 = 𝑀(𝑛) ≍ 2𝑛𝑛𝑑−1, the following
relations hold:

𝛷(𝑛)𝑀1/2 ≪ 𝑒𝑀(𝐿
𝝍
𝜷,1)𝑞 ≪ 𝛹(𝑛)𝑀1/2.

We see that, in the case 2 < 𝑞 < ∞, the best 𝑀-term approximation (that uses arbitrary coefficients of
approximation polynomials) gives better bounds than the corresponding best orthogonal approximation,
while for 1 < 𝑞 ≤ 2 they coincide in order.

In the paper [3], we get the estimates for 𝑒𝑀 (𝐿𝝍𝜷,𝑝)𝑞 in the case of “small smoothness” of respective functions.
We showed, that the best𝑀-term approximation in this case gives better bounds, than the corresponding
best orthogonal approximation and the approximation of functions from the class 𝐿𝝍𝜷,𝑝 by trigonometric
polynomials with numbers of harmonics from the so-called step hyperbolic crosses.

3 . E s t i m a t e s o f e n t r o p y n u m b e r s

Let 𝑋 be a Banach space, 𝐵𝑋(𝒚, 𝑟) be a ball of radius 𝑟 and center at point 𝒚 ∈ ℝ𝑑. For a compact set 𝐴 ⊂ 𝑋
and 𝜀 > 0 by 𝜀𝑘(𝐴,𝑋) we denote entropy numbers (see., e.g., [1]) of this set:

𝜀𝑘(𝐴,𝑋) = inf {𝜀 ∶ ∃𝒚1,… ,𝒚2𝑘 ∈ 𝑋 ∶ 𝐴 ⊆
2𝑘

⋃
𝑗=1

𝐵𝑋(𝒚𝑗, 𝜀)}.

In [4, 5], we obtained the estimates for entropy numbers of the classes of periodic multivariate functions
𝐵𝛺𝑝,𝜃, under the so-called Bari-Stechkin (see [1]) conditions (𝑆𝛼) and (𝑆𝑙) on the function𝛺, in the space 𝐿𝑞,
1 ≤ 𝑞 ≤ ∞. In particular, the following statement holds in the case 𝑑 = 2.
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T h e o r e m 3 . Let 𝑑 = 2, 2 ≤ 𝑝 ≤ ∞, 1 ≤ 𝜃 ≤ ∞, and 𝛺(𝒕) = 𝜔(
𝑑
∏
𝑗=1

𝑡𝑗), where the function 𝜔 satisfies

condition (𝑆𝛼) with some 𝛼 > 1/2 and condition (𝑆𝑙). Then, for any natural 𝑀 and 𝑛 such that 𝑀 =
𝑀(𝑛) ≍ 2𝑛𝑛, the following relation holds:

𝜀𝑀 (𝐵𝛺𝑝,𝜃, 𝐿∞) ≍ 𝜔 (2−𝑛) (log𝑀)1−1/𝜃.

Note that we got estimates of the quantity 𝜀𝑀 (𝐵𝛺𝑝,𝜃, 𝐿𝑞) for diferent relations between 𝑝 and 𝑞.
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A b s t r a c t : We give a lower bound for the numerical index of two-dimensional
real spaces with absolute and symmetric norm. This allows us to compute the
numerical index of the two-dimensional real 𝐿𝑝-space for 3/2 ≤ 𝑝 ≤ 3.

R e s u m e n : Damos una cota inferior del índice numérico para espacios reales dos-
dimensionales con normas absolutas y simétricas. Esto nos permite calcular el
índice numérico del espacio real dos-dimensional 𝐿𝑝 para 3/2 ≤ 𝑝 ≤ 3.

K e y w o r d s : numerical range, numerical radius, numerical index, absolute
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Numerical index of absolute symmetric norms

1 . I n t r o d u c t i o n

The numerical index of a Banach space is a constant relating the norm and the numerical range of bounded
linear operators on the space. Given a Banach space 𝑋, we will write 𝑋∗ for its topological dual and ℒ(𝑋)
for the Banach algebra of all (bounded linear) operators on 𝑋. For an operator 𝑇 ∈ ℒ(𝑋), its numerical
range is defined as

𝑉(𝑇) ≔ {𝑥∗(𝑇𝑥) ∶ 𝑥∗ ∈ 𝑋∗, 𝑥 ∈ 𝑋, ‖𝑥∗‖ = ‖𝑥‖ = 𝑥∗(𝑥) = 1},

and its numerical radius is
𝑣(𝑇) ≔ sup{|𝜆| ∶ 𝜆 ∈ 𝑉(𝑇)}.

Clearly, 𝑣 is a seminorm on ℒ(𝑋) satisfying 𝑣(𝑇) ≤ ‖𝑇‖ for every 𝑇 ∈ ℒ(𝑋). The numerical index of 𝑋 is the
constant given by

𝑛(𝑋) ≔ inf{𝑣(𝑇) ∶ 𝑇 ∈ ℒ(𝑋), ‖𝑇‖ = 1},

or, equivalently, 𝑛(𝑋) is the greatest constant 𝑘 ≥ 0 satisfying 𝑘 ‖𝑇‖ ≤ 𝑣(𝑇) for every 𝑇 ∈ ℒ(𝑋). There has
been a deep development of this field of study with the contribution of several authors. The state of the art
on the subject can be found in the survey paper [5] and references therein.

It is clear that 0 ≤ 𝑛(𝑋) ≤ 1 for every Banach space 𝑋. There are some classical Banach spaces for which the
numerical index has been calculated. If 𝐻 is a Hilbert space of dimension greater than one, then 𝑛(𝐻) = 0
in the real case and 𝑛(𝐻) = 1/2 in the complex case. Besides, 𝑛(𝐿1(𝜇)) = 1 and the same happens to all its
isometric preduals. In particular, it follows that 𝑛(𝐶(𝐾)) = 1 for every compact 𝐾.

2 . N u m e r i c a l i n d e x o f a b s o l u t e s y m m e t r i c n o r m s a n d 𝐿𝑝- s p a c e s
The problem of computing the numerical index of the 𝐿𝑝-spaces has been latent since the beginning of
the theory [4]. In order to present the known results on this matter we need to fix some notation. For
1 < 𝑝 < ∞, we write ℓ𝑚𝑝 for the𝑚-dimensional 𝐿𝑝-space, 𝑞 = 𝑝/(𝑝 − 1) for the conjugate exponent to 𝑝,
and

𝑀𝑝 ≔ max
𝑡∈[0,1]

|𝑡𝑝−1 − 𝑡|
1 + 𝑡𝑝 = max

𝑡≥1

|𝑡𝑝−1 − 𝑡|
1 + 𝑡𝑝 ,

which is the numerical radius of the operator represented by the matrix ( 0 1
−1 0) defined on the real space

ℓ2𝑝. This can be found in [7, Lemma 2]. However, some results have been obtained on the numerical index
of the 𝐿𝑝-spaces [1–3, 7, 8], we summarize them in the following list.

( i ) The sequence (𝑛(ℓ𝑚𝑝 ))𝑚∈ℕ is decreasing.
( i i ) 𝑛(𝐿𝑝(𝜇)) = inf{𝑛(ℓ𝑚𝑝 ) ∶ 𝑚 ∈ ℕ} for every measure 𝜇 such that dim(𝐿𝑝(𝜇)) = ∞.
( i i i ) In the real case, 𝑛(𝐿𝑝[0, 1]) ≥ 𝑀𝑝/12.

( i v ) In the real case,max { 1
21/𝑝

, 1
21/𝑞

} 𝑀𝑝 ≤ 𝑛(ℓ2𝑝) ≤ 𝑀𝑝.

The presence of the numerical radius of the operator represented by the matrix ( 0 1
−1 0) in the value

of the numerical index of 𝐿𝑝-spaces is not a coincidence. For those two-dimensional real spaces with
absolute and symmetric norm whose numerical index is known, it coincides with the numerical radius
of the mentioned operator. This happens, for instance, to a family of octagonal norms and to the spaces
whose unit ball is a regular polygon, see [6, Theorem 2 and Theorem 5]. In the paper [9], it is shown that
the same happens for many absolute and symmetric norms on ℝ2, this is the content of Theorem 1. We
say that a norm ‖⋅‖∶ ℝ2 → ℝ is absolute if ‖(1, 0)‖ = ‖(0, 1)‖ = 1 and

‖(𝑎, 𝑏)‖ = ‖(|𝑎|, |𝑏|)‖,

for every 𝑎, 𝑏 ∈ ℝ, and that the norm is symmetric if ‖(𝑏, 𝑎)‖ = ‖(𝑎, 𝑏)‖ for every 𝑎, 𝑏 ∈ ℝ. Some of the
most important examples of absolute and symmetric norms are ℓ𝑝-norms on ℝ2.
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If 𝑋 isℝ2 endowed with an absolute and symmetric norm, the existence of a basis of the space of operators
ℒ(𝑋) formed by onto isometries is particularly useful:

𝐼1 = (1 0
0 1) , 𝐼2 = (1 0

0 −1) , 𝐼3 = (0 1
1 0) , 𝐼4 = ( 0 1

−1 0) .

The first main result of the paper [9] is the following.

T h e o r e m 1 . [9, Theorem 2.2] Let 𝑋 be ℝ2 endowed with an absolute and symmetric norm. Let 𝑥0 ∈ 𝑆𝑋
and 𝑥∗0 ∈ 𝑆𝑋∗ be such that |𝑥∗0 (𝐼4𝑥0)| = 𝑣(𝐼4) and write 𝑐𝑗 = |𝑥∗0 (𝐼𝑗𝑥0)| for every 𝑗 = 1,… , 4. If 𝑐4 = 0, then
𝑛(𝑋) = 0. If, otherwise, 𝑐4 > 0, then

𝑛(𝑋) ≥ min{𝑐4,
2

1 + 1

𝑐2
+ 1

𝑐3
+ 1

𝑐4

} .

Moreover, if the inequality 𝑐4 (1 +
1

𝑐2
+ 1

𝑐3
) ≤ 1 holds, then

𝑛(𝑋) = 𝑣(𝐼4).

As a major consequence, the numerical index of ℓ2𝑝 for 3/2 ≤ 𝑝 ≤ 3 is calculated, which improves partially
[7, Theorem 1] and throws some light to the long standing problem of computing the numerical index of
𝐿𝑝-spaces.

T h e o r e m 2 . [9, Theorem 2.3] Let 𝑝 ∈ [ 3
2
, 3]. Then,

𝑛(ℓ2𝑝) = 𝑀𝑝 = sup
𝑡∈[0,1]

|𝑡𝑝−1 − 𝑡|
1 + 𝑡𝑝 .
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A b s t r a c t : We investigate historical aspects of developing mathematical modelling
method and analyze the functions of mathematical modelling in the process of
cognition. It is justified that modelling in the educational process acts simulta-
neously as a method of scientific knowledge, a part of the content of educational
material and an effective mean of its study.

We show that the development of students’ ideas about the role of mathematical
modelling in scientific knowledge and practice, the development of their ability to
build mathematical models of life phenomena, are an important task of modern
school. A possibility of improvement pupils’ literacy in mathematics is highlighted
by developing their correct conceptions about the method of mathematical mod-
elling.

R e s u m e n : Investigamos los aspectos históricos del desarrollo del método demode-
lización matemática y analizamos las funciones de la modelización matemática en
el proceso de cognición. Se justifica que la modelización en el proceso educativo
actúa simultáneamente como un método de conocimiento científico, una parte
del contenido del material educativo y un medio eficaz de su estudio.

Mostramos que el desarrollo de las ideas de los alumnos sobre el papel de la
modelización matemática en el conocimiento y la práctica científica, el desarrollo
de su capacidad para construir modelos matemáticos de los fenómenos de la
vida, son tareas importantes de la escuela moderna. La posibilidad de mejorar la
alfabetización matemática de los alumnos se pone de manifiesto en el desarrollo
de sus concepciones correctas sobre el método de modelización matemática.
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Evolution of mathematical modelling

1 . I n t r o d u c t i o n

Mathematical modelling is one of the main modern methods of reality cognition. It is widely used in all
areas of research.

The purpose of our research is to consider historical aspects of the formation of the modelling method
and to highlight its epistemological functions.

There are various interpretations of a model and modelling process concepts in modern scientific literature.
A term “model” is understood as a mental or materially realized system, which is able to replace an object
of study by reflecting or reproducing it, so that the study of model provides new information about this
object (see V. A. Shtoff [5]). Accordingly, modelling is a scientific method of studying different systems by
building models of these systems, which preserve some of the main features of the subject of study, and a
study of functioning of models with the transfer of data to the subject of research.

Themathematical model of the system is understood as a set of relations (formulas, equations, inequalities,
etc.), which determine characteristics of states of the system depending on its parameters, external
conditions, initial conditions and time. By the definition of V. M. Glushkov, a mathematical model is a set
of symbolic mathematical objects and the relations between them. For M. M. Amosov [1], a mathematical
model is a system that reflects another system.

The term “model” covers an extremely wide range of material and ideal objects. Determining the episte-
mological role of modelling theory, that is, its significance in the process of cognition, it is necessary, first
of all, to start from the historical aspects of the formation of the modelling method.

2 . H i s t o r i c a l a s p e c t s o f m a t h e m a t i c a l m o d e l l i n g

An investigation of historical aspect of developingmathematical modelling method shows that the progress
is closely linked to the development of a science.

Mathematical modelling originated in ancient times. Ancient Greek philosophers, for example, Archimedes
(287 – 212 B.C.), Democritus (460 – 370 B.C.) or Epicurus (341–270 B.C.), have already explained physical
properties of objects creating some analogies on intuitive base. The appearance of experimental modelling
was connected with the names of Leonardo da Vinci (1452 – 1519), Johannes Kepler (1571 – 1630), Galileo
Galilei (1564 – 1642), Nicolaus Copernicus (1473 – 1543). The scientists applied analog models, created
graphic constructions from real objects and obtained results in further research. It was Galileo Galilei
who proved the inability to bring a similarity of mechanical systems to their geometric similarity. He also
claimed that conclusions obtained from only geometrically similar to its prototype models often lead to
mistakes.

A powerful force for the mathematical modelling development was the appearance of mathematical
notation systems. The historically first comprehensive mathematical model was the classical mechanics of
Isaac Newton (1642 –1727). The scientist has initiated modelling method as those of theoretical research.

The term “model” was introduced to mathematics in the 19th century because of an emergence of the
hyperbolic geometry of Nikolai Lobachevsky (1792 – 1856) and the spherical geometry of Georg Riemann
(1835 – 1900). The termwas later used by the Germanmathematician Felix Klein (1849 – 1925). Nevertheless,
an application of mathematical modelling in the 19-20th centuries was accompanied by certain difficulties.
It happened so because of the lack of researcher’s mathematical education to describe mathematically
new phenomena of science. Therefore, mathematical modelling was applied only in those branches of
knowledge that have gained a high level of development. The first mathematized science is physics. The
example of physics mathematization shows a parallel development of both sciences. However, in some
cases mathematics has left physics behind preparing a necessary apparatus for it.

In the latter half of the 20th century there appeared a great value of works investigating mathematical mod-
elling in epistemological and didactic aspects. A fundamental research in this field was conducted by the
following scientists: N. H. Alekseev, B. M. Kedrov, V. A. Shtoff, A. I. Uyemov, L. M. Fridman, L. R. Kalapusha,
etc.
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There are various classifications of models in modern scientific literature. Scientists highlight functions
of modelling, analyze the connections of modelling with other experimental and theoretical methods
of cognition (see V. E. Bakhrushin [1], L. R. Kalapusha [3], B. A. Glinskii, B. S. Gryaznov, B. S. Dynin and
E. P. Nikitin [2]).

It is shown that a mathematical model can be created in three ways:

( i ) as a result of direct study of the real process (phenomenological model);
( i i ) as a result of the deduction process, when the new model is a special case of a certain general model

(asymptotic model);
( i i i ) as a result of the induction process, when the newmodel is a generalization of othermodels (ensemble

models).

The model, as a special epistemological form, can be understood only when considering the set of its
various functions. The analysis of scientific and methodical literature showed the diversity of views of
scientists on the definition of epistemological functions of the modelling method.

V. A. Shtoff [5] states: “In the theoretical thinking one see a domination of the one side, in sensory
perceptions and observations — the other, whereas in the model they are linked together, and in this
regard we have a specifics of the model and one of its most important epistemological functions.”

I. Novik [4] distinguishes five main functions of modelling:

( i ) illustrative,
( i i ) translational,
( i i i ) substitution-heuristic,
( i v ) approximation,
( v ) extrapolation-prognostic.

The scientist notes that these functions are not alternative, they coexist in models, but their presence in
each model is optional; moreover, some other functions may be found in certain models.

A number of scientists (B. A. Glinskii, E. P. Nikitin and others, see [2]) distinguish such modelling functions
as:

( i ) interpretive (explanations based on logic and formalized language of presentation),
( i i ) explanatory (shows that this object is a subject to a particular law or set of laws),
( i i i ) predictive (operation, the task of which is to obtain data on objects and processes or non-existent,

or existing, but not known), and
( i v ) criterion (verifying the truth of knowledge about the original).

We can undoubtedly state that mathematical modelling as a method of reality cognition is used not only
because it can replace an experiment. It has a great independent significance because

( i ) with the help of mathematical modelling, it is possible to develop different mathematical models on
the basis of the same data, and these models would interpret the studied phenomenon differently;

( i i ) in the process of model building, one can make various additions to the hypothesis under study and
get simplification;

( i i i ) in the case of complex mathematical models, one can use computers;
( i v ) it is possible to conduct model experiments.

In the latter half of the 20th century there appeared a great value of works investigating mathematical mod-
elling in epistemological and didactic aspects. A fundamental research in this field was conducted by the
following scientists: N. H. Alekseev, B. M. Kedrov, V. A. Shtoff, A. I. Uyemov, L. M. Fridman, L. R. Kalapusha,
etc.
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It was established that an acquaintance of pupils (students) with the method of modelling, including
mathematical, helps them to understand logic of scientific knowledge and to learn its methodology (see
the book by L. R. Kalapusha [3]).

Modelling in the educational process acts simultaneously as:

( i ) a method of scientific knowledge,
( i i ) a part of the content of educational material, and
( i i i ) an effective mean of its study.

The development of students’ ideas about the role of mathematical modelling in scientific knowledge
and practice, the development of their ability to build mathematical models of life phenomena, are an
important task of modern school.

In particular, we need to pay special attention to developing students’ skills to reformulate an applied
problem into the language of mathematics and to create adequate mathematical models. It is important,
that students concentrate correctly, highlighting the essential and non-essential properties of objects;
abstract from insignificant properties; correctly interpret the relationships between objects of the problem.
The teachers should form a particular attitude of students to the acquired knowledge through the disclosure
of the essence of mathematical modelling.

Despite the widespread use of the method of mathematical modelling, the development of relevant
students’ skills is not systematic and is mostly done during mathematics lessons. This significantly reduces
didactic effectiveness of the use of thismethod in learning process, in particular, in increasingmathematical
literacy of students. To overcome this limitation, in our opinion, it is possible to use interdisciplinary
connections more effectively.

For example, when generalizing the basic properties of directly proportional and linear functions in
mathematics lessons, it is advisable to use the knowledge of students that were already obtained in physics
lessons when studying thermal phenomena. We offer them, as a homework, to build graphs of the amount
of heat obtained during the combustion of this type of fuel, its mass, for example, for dry firewood,
anthracite, gasoline. We analyze these graphs in math lessons. It is possible not only to repeat the basic
properties of direct proportionality, but also to form in students the concept of function as a mathematical
model.

The development of correct ideas of students about the nature of the reflection ofmathematical phenomena
and processes of the real world, the role of mathematical modelling in scientific knowledge and in practice,
is of great importance for the formation of their mathematical literacy.
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A b s t r a c t : In number theory, it is often productive to gather arithmetic data in
order to conjecture new results and discover unknown behaviour. The most no-
table modern case of this is the LMFDB, which contains lots of information on
arithmetically interesting objects such as fields, algebraic curves and modular
functions. Despite such a large collection of data, the isogeny-based cryptography
community still lacks a range of examples of supersingular isogeny graphs. This
work is a first attempt at generating these examples for genus 1, and it involves
exploring elliptic curve isogenies and computing some of their graph invariants.

R e s u m e n : En teoría de números, suele ser productivo recabar datos aritméticos pa-
ra poder conjeturar nuevos resultados y descubrir comportamientos desconocidos.
El caso moderno más notable es el de la base de datos LMFDB, que contiene infor-
mación sobre objetos de interés aritmético tales como cuerpos, curvas algebraicas
o funciones modulares. A pesar de existir tal colección de datos, la comunidad de
criptografía basada en isogenias todavía carece de un repositorio de ejemplos de
grafos de isogenias supersingulares. Este trabajo es un primer intento de generar
estos ejemplos para género 1, e involucra explorar isogenias de curvas elípticas y
computar algunos invariantes de dichos grafos.

K e y w o r d s : elliptic curves, isogeny graphs, distributed computing.
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1 . I n t r o d u c t i o n

This paper is the starting point of a project to systematically produce data on isogeny graphs. Supersingular
isogeny graphs of elliptic curves are used in proposed postquantum protocols, and having examples of
them can help to further experiment with them. Our end goal is to investigate higher-dimensional abelian
varieties over finite fields, and this is the first step to produce a framework for the task.

Not only we produce adjacency matrices of isogeny graphs, but we also want to list their graph invariants.
Some quantitative work has already been done in [1], and we follow them to compute several of our
metrics. We have used SageMath 9 over Python 3 [6] for our purposes.

2 . E l l i p t i c c u r v e s a n d i s o g e n y g r a p h s

An elliptic curve over a finite field �𝑞 of characteristic 𝑝 ≠ 2, 3 is given by an equation

𝐸∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴,𝐵 ∈ �𝑞

satisfying 4𝐴3 + 27𝐵2 ≠ 0. Such a curve has a group structure, displaying the simplest examples of abelian
varieties. An isogeny between two elliptic curves is an algebraic map 𝐸 → 𝐸′ which is compatible with
the group structures. Isogenies are characterised by the properties of being surjective and having finite
kernel. The degree of a separable isogeny is the size of its kernel. If deg(𝜙) = ℓ, we say 𝜙 is an ℓ-isogeny.
An isomorphism is the case of an isogeny with trivial kernel.

Two elliptic curves are isomorphic over ̄�𝑞 if and only if they have the same 𝑗-invariant, defined as

𝑗(𝐸) = 1728 4𝐴3

4𝐴3 + 27𝐵2 .

For each 𝑗 ∈ ̄�𝑞, there is an elliptic curve with that invariant, which we denote by 𝐸𝑗.

An elliptic curve is said to be supersingular if it has no 𝑝-torsion points. Hence, the supersingular isogeny
graph 𝛤1(ℓ;𝑝), with ℓ ≠ 𝑝 two different primes, is defined as follows:

( i ) Its vertices are the 𝑗-invariants of supersingular elliptic curves over ̄�𝑝. These 𝑗-invariants are all in
�𝑝2, and so they can be represented by two integers modulo 𝑝.

( i i ) Given two vertices 𝑗 and 𝑗′, 𝜙 is an edge from 𝑗 to 𝑗′ if there is an ℓ-isogeny 𝜙∶ 𝐸𝑗 → 𝐸𝑗′. Multiple
edges are allowed, although they are fairly rare in the genus 1 case.

For each ℓ-isogeny 𝜙∶ 𝐸𝑗 → 𝐸𝑗′ there is always a dual ℓ-isogeny ̂𝜙∶ 𝐸𝑗′ → 𝐸𝑗, so we can regard 𝛤1(ℓ;𝑝) as
being an undirected graph.

We can find a supersingular 𝑗-invariant in �𝑝2 in �̃�((log𝑝)3) using Bröker’s algorithm [3]. The graph 𝛤1(ℓ;𝑝)
is always connected, so we can easily list all of its vertices with an exploration algorithm.

There are at least two known methods to compute an isogeny [2]. However, to compute the number
of edges in 𝛤1(ℓ;𝑝) from 𝑗 to 𝑗′ it is sufficient to factor a modular polynomial. This allows us to work
without equations for the curves 𝐸𝑗 and 𝐸𝑗′, which would potentially require working over a larger finite
field. Fix a prime 𝑝, and let 𝑁 be any non-zero integer coprime with 𝑝. The 𝑁th modular polynomial
𝛷𝑁(𝑋,𝑌) is the equation that defines the planar model of the modular curve 𝑋0(𝑁) classifying elliptic
curves over ℂ with a cyclic group of order 𝑁. The function field of this curve is ℂ(𝑗(𝜏), 𝑗(𝑁𝜏)), and so two
curves 𝐸𝑗 and 𝐸𝑗′ over ℂ have an 𝑁-isogeny between them whenever 𝛷𝑁(𝑗, 𝑗′) = 0. In fact, one can prove
that 𝛷𝑁(𝑋,𝑌) ∈ ℤ[𝑋,𝑌]. Reducing the polynomial modulo 𝑝, we get the main result for our purposes: 𝐸
and 𝐸′ over ̄�𝑞 are 𝑁-isogenous via a cyclic isogenies if, and only if, 𝛷𝑁(𝑗(𝐸), 𝑗(𝐸′)) = 0.

Therefore, given 𝑗 = 𝑗(𝐸), the 𝑁-neighbors of 𝐸 are given by the roots of 𝛷𝑁(𝑗,𝑌) ∈ �𝑝2[𝑌]. In the case
𝑁 = ℓ prime, this polynomial has at most ℓ + 1 distinct roots (in general, the number of roots is given by
Dedekind’s 𝜓 function).
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2 . 1 . G r a p h p r o p e r t i e s

Once we have the list of nodes of 𝛤1(ℓ;𝑝) and its adjacency matrix, we want to compute several of its
properties, which we now explain.

( i ) Diameter and largest eigenvalues. The graph 𝛤1(ℓ;𝑝) is (ℓ + 1)-regular and almost-undirected (i.e., it
is undirected at every vertex except for a bounded number of them). Therefore, its diameter can be
controlled by the eigenvalues of the adjacency matrix. More precisely, we know that the eigenvalues
can be ordered as ℓ + 1 = 𝜆1 > 𝜆2 ≥ … ≥ 𝜆𝑛 > −(ℓ + 1).
If we fix the prime ℓ and let 𝜆⋆(𝑝) = max{|𝜆2|, |𝜆𝑛|}, the diameter of the family {𝛤1(ℓ;𝑝)}𝑝 grows like
𝑂(log𝑝) as long as there exists some fixed constant 𝛬ℓ < ℓ + 1 with 𝜆⋆(𝑝) ≤ 𝛬ℓ for all 𝑝. This is
indeed the case for supersingular graphs of elliptic curves (they have the Ramanujan property), but
the result for higher-dimensional varieties is still conjectural [5].

( i i ) Size of the spine. The spine of 𝛤1(ℓ;𝑝) is the induced subgraph of vertices that are defined over �𝑝.
Knowing the structure of the spine is useful since it tends to be a very small subgraph where finding
paths is simpler. If we are able to solve that particular problem, then finding a path between any two
vertices reduces to finding paths to the spine.

( i i i ) Number of isogenous conjugate pairs. Each 𝑗-invariant outside of the spine, 𝑗 ∈ �𝑝2 ⧵ �𝑝, has a
Frobenius conjugate 𝑗𝑝. This corresponds to the Frobenius (inseparable) isogeny 𝐸 → 𝐸(𝑝), given by
(𝑥, 𝑦) ↦ (𝑥𝑝, 𝑦𝑝). An ℓ-isogenous conjugate pair is a pair of vertices (𝑗, 𝑗𝑝) connected by an ℓ-degree
isogeny.

3 . D i s t r i b u t e d c o m p u t a t i o n

Due to the great computational cost of calculating the data, the task has to be performed in parallel.
Parallel programming on a single computer has been useful for graphs with relatively small 𝑝, where they
could be calculated using a typical 4-core personal computer in a reasonable time. In order to calculate
the graphs with 𝑝 ≈ 30 000, we needed to scale the computational power beyond a single computer and
use distributed computing. Therefore, the calculations have been carried out in a parallel and distributed
way, having more than 500 threads of parallel execution in a distributed way1.

3 . 1 . G r a p h c o m p u t a t i o n p r o c e d u r e

The computation of each graph and its properties has been divided in five sequential stages (i.e., a stage
can only be run after the previous ones). We now describe them.

The first step to start working with graphs is computing the nodes of the ℓ-isogeny graph, so for a given 𝑝we
want to compute a list with all the nodes from 𝛤1(ℓ;𝑝). To discover the nodes we use a slight modification
of the breadth-first search algorithm (BFS) starting from an initial node. Given a node 𝑗, we obtain all
its neighbours by factoring 𝛷ℓ(𝑗,𝑌). Because the node list depends exclusively on 𝑝, and for efficiency
reasons, we explore the graph 𝛤1(ℓ;𝑝) with ℓ = 2. The BFS algorithm is not well suited to be run in parallel,
so parallelization has been achieved by just exploring multiple graphs simultaneously.

Checks over the node list. On the one hand, we know we must have [𝑝−1
12
] + 𝜀 nodes in 𝛤1(ℓ;𝑝) (with

𝜀 = 0, 1, 1, 2 according to 𝑝 ≡ 1, 5, 7, 11 mod 12). On the other hand, we can test any given node for
supersingularity with SageMath’s function E.is_supersingular. Using these two facts, we can guarantee
that the computed node list is complete and correct.

Computation of the adjacency matrix of 𝛤1(ℓ;𝑝). Given 𝑝 and ℓ, we compute all the neighbours of each
node in 𝛤1(ℓ;𝑝). This task is highly parallelizable, since it is enough to split the list of nodes into batches of
similar size and assign one batch to every thread of execution. Once we have the list of neighbours for
every node it can be easily converted to the adjacency matrix.

1Code can be found at https://github.com/gfinol/IsogenyGraph.
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Checks on adjacency matrix. We check that the matrix is square, has correct dimensions and all nodes
have out-degree ℓ + 1. It is important to notice that these are sanity checks to discard possible errors on
the computation rather than checks to prove the correctness of the whole matrix.

Finally, we compute the graph metrics using the adjacency matrices. Similarly to our other tasks, we
compute them for several graphs simultaneously.

3 . 2 . L i t h o p s

To scale computational power beyond one machine we have used the Lithops2 framework, which provides
an API mimicking the Python multiprocessing library and allows us to execute our code transparently [7]
in a distributed serverless environment without having a physical computer cluster nor having to manage
one. Thanks to the similar APIs, the code can be executed in parallel on a single machine or distributed
using FaaS by just changing the module import from multiprocessing to Lithops. This also allows us to use
SageMath in a distributed environment.

4 . R e s u l t s a n d f u t u r e w o r k

We have computed all graphs 𝛤1(ℓ;𝑝) for primes 13 ≤ 𝑝 < 30 000 and degrees ℓ ∈ {2, 3, 5, 7, 11}, along
with the graph properties specified in Section 2.1. The data has been uploaded to Zenodo [4].

We have built a framework to compute examples for larger 𝑝 and ℓ in the future, and that will also allow us
to explore isogeny graphs of higher-dimensional abelian varieties. This will provide us with data to further
confirm existing conjectures [5] on such graphs.
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A b s t r a c t : In many fields such as image classification, geostatistical surveys, and
air pollution, regarding the limitations of resources, time and technology, spatial
sampling plays a crucial role. In spatial sampling, a set of sample locations are
chosen such that the spatial prediction at unobserved locations be optimal. While
many studies are focused on only one objective function as the predictor variance,
and the predictor entropy, in applied problems we are interested in more than
one objective. In this study, the optimization problem of spatial sampling with
minimum cost is investigated from both the perspective of covariogram estimation
and kriging variance. For this purpose, a bi-objective optimization problem of
soil sampling has been considered. The first objective function is the mean total
error and the second objective function is the cost of the distance travelled by
the sampler. The mean total error is the sum of the ordinary kriging variance
and uncertainties of the estimated covariogram parameters. The non-dominated
sorting genetic algorithm-II and Taguchi method is applied to this problem. The
results show the proper performance of this algorithm in multi-objective spatial
sampling for spatial predictions.

R e s u m e n : El muestreo espacial juega un papel crucial en muchos campos, como
la clasificación de imágenes, los estudios geoestadísticos y la contaminación at-
mosférica, con respecto a las limitaciones de recursos, tiempo y tecnología. En el
muestreo espacial, se elige un conjunto de ubicaciones de la muestra de forma que
la predicción espacial en las ubicaciones no observadas sea óptima. Mientras que
muchos estudios se centran en una sola función objetivo, como la varianza y la
entropía del predictor, en los problemas aplicados interesa más de un objetivo. En
este estudio, el problema de optimización del muestreo espacial con coste mínimo
se investiga tanto desde la perspectiva de la estimación del covariograma como de
la varianza de kriging. Para ello, se ha considerado un problema de optimización
bi-objetivo de muestreo de suelos. La primera función objetivo es el error total
medio y la segunda función objetivo es el coste de la distancia recorrida por el
muestreador. El error total medio es la suma de la varianza ordinaria de kriging y
las incertidumbres de los parámetros estimados del covariograma. Se aplica a este
problema el algoritmo genético de ordenación no dominante-II y el método de
Taguchi. Los resultados muestran el buen funcionamiento de este algoritmo en el
muestreo espacial multiobjetivo para las predicciones espaciales.

K e y w o r d s : spatial sampling, spatial prediction, multi-objective optimization,
uncertainty.
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Multi-objective spatial sampling

1 . I n t r o d u c t i o n

Optimization of spatial sampling is a critical issue applied in many areas, including geostatistics, air
pollution, and epidemiology. In spatial sampling, a set of sample locations is chosen. The spatial prediction
at unobserved locations is optimal for the predictor variance and the predictor entropy. While there
are several types of research on the single-objective spatial sampling, in many applied problems we are
interested in more than one objective in sampling [4]. This paper aims to use Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) in spatial sampling subject to the spatial correlation of data. The rest of
this paper is organized as follows. Section 2 is devoted to the problem statement. Materials and methods
are introduced in Section 3. This section recalls some preliminaries on multi-objective optimization theory
and customizes the NSGA-II for the introduced spatial sampling optimization model. Numerical results
are provided in Section 4.

2 . P r o b l e m s t a t e m e n t

In this paper, the soil sampling of a field in Silsoe, Bedfordshire, UK, shown in Figure 2, is investigated [5].
It is assumed that the sampler enters and leaves the field at the corner {100, 100} and collects 50 sample
points across this domain. The first objective function is the spatial mean total error defined by [5, 7]

( 1 ) �̄�2𝑃 =
1
𝒜
∫
𝑠∈𝒜

(𝜎2𝑂𝐾(s) + 𝐸[𝜏2(s)]) d𝑠,

where 𝜎2𝑂𝐾(s) and 𝐸[𝜏2(s)] are the squared prediction error (ordinary kriging variance) and the uncertainty
in the estimated spatial model (covariogram) parameters, respectively, and

𝜎2𝑂𝐾(𝑠0) = 𝑉𝑎𝑟(𝑍(𝑠0) − ̃𝑍(𝑠0|𝜽)) = 𝑪(𝑠0 − 𝑠0|𝜽) − 𝝀𝑇𝒅,

𝐸[𝜏2(𝑠0)] =
𝑞
∑
𝑖=1

𝑞
∑
𝑗=1

𝐶𝑜𝑣(𝜃𝑖, 𝜃𝑗)
𝜕𝝀𝑇

𝜕𝜃𝑖
𝑪 𝜕𝝀𝜕𝜃𝑗

,

where 𝝀𝑇, 𝜕𝝀
𝜕𝜃𝑖

, and 𝐶𝑜𝑣(𝜃𝑖, 𝜃𝑗) are the vector of kriging weights, the 𝑛-vector of partial derivatives of the
kriging weights with respect to the 𝑖th variance parameter, and the covariance between the 𝑖th and 𝑗th
parameters, respectively. Furthermore,

( (𝜆𝑖)𝑛𝑖=1
𝜓 ) = [

(𝐶(𝑠𝑖 − 𝑠𝑗|𝜽))
𝑛
𝑖,𝑗=1

⃗1

1⃗ 0
]

⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝐴

−1

× ( (𝐶(𝑠0 − 𝑠𝑖|𝜽))
𝑛
𝑖=1

1 )
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝑑

,

𝜕𝝀
𝜕𝜃𝑖

= 𝑨−1 (
𝜕𝒅
𝜕𝜃𝑖

− 𝜕𝑨
𝜕𝜃𝑖

𝑨−1𝒅) ,

𝐶𝑜𝑣(𝜃𝑖, 𝜃𝑗) ≈ 𝑭−1(𝜃𝑖, 𝜃𝑗) = (
1
2 Tr [𝑪

−1 𝜕𝑪
𝜕𝜃𝑖

𝑪−1 𝜕𝑪
𝜕𝜃𝑗

])
−1
.

Note that 𝐶 is the spherical covariogram [1]. Marchant and Lark [5] andWadoux et al. [7] investigated
some single-objective optimization problems with the same objective function (1). We consider the cost of
the sampling defined by 𝐶𝑜𝑠𝑡 = 𝑑(s) × 𝐶𝑚 as the other objective function where 𝐶𝑚 and 𝑑(s) are a fixed
cost per each meter travelled by the sampler and the total distance walked to visit all points, respectively.
We set, 𝐶𝑚 = 1 and 𝑑(s) = ∑𝑛−1

𝑖=1 ‖𝑠𝑖+1 − 𝑠𝑖‖, s = (𝑠1,… , 𝑠𝑛).

3 . M a t e r i a l s a n d m e t h o d s

In this section, we provide some preliminaries on multi-objective optimization theory and Spatial NSGA-II
Algorithm.
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3 . 1 . M u l t i - o b j e c t i v e o p t i m i z a t i o n

A general multi-objective optimization problem can be formulated as follows:

( 2 ) min𝑓(𝑥) = (𝑓1(𝑥),… ,𝑓𝑚(𝑥)), 𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽ℓ, 𝑥 ∈ 𝑋 ⊆ ℝ𝑛,

where 𝑓𝑖, 𝑔𝑗∶ ℝ𝑛 → ℝ (𝑖 ∈ 𝐼𝑚 ≔ {1,… ,𝑚}, 𝑗 ∈ 𝐽ℓ ≔ {1,… , ℓ}), and 𝑚 > 1. The nonempty set 𝑆 ≔ {𝑥 ∈ 𝑋 ⊆
ℝ𝑛 ∶ 𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽ℓ} is called the feasible set.

D e f i n i t i o n 1 ([3]). A feasible solution ̂𝑥 ∈ 𝑆 is called efficient or Pareto optimal solution of Problem (2), if
there is no 𝑥 ∈ 𝑆 such that 𝑓𝑘(𝑥) ≤ 𝑓𝑘( ̂𝑥) for each 𝑘 ∈ 𝐼𝑚 and 𝑓𝑖(𝑥) < 𝑓𝑖( ̂𝑥) for some 𝑖 ∈ 𝐼𝑚. The set of all
Pareto optimal solutions of Problem (2) is called Pareto frontier for this problem. ◀

Now, the bi-objective spatial optimization problem can be represented as

min
s∈𝒜

𝑓(s) = (�̄�2𝑃, 𝑑(s)),

s.t. �̄�2𝑃 − 1 ≤ 0, 𝑑(s) − 5000 ≤ 0, ‖𝑠𝑖 − 𝑠𝑗‖ ≥ 20 ∀𝑠𝑖, 𝑠𝑗 ∈ 𝒜, 𝑖 ≠ 𝑗,

where 𝒜 is the interested area of study.

3 . 2 . S p a t i a l N S G A - I I A l g o r i t h m

The NSGA-II algorithm is suggested by [2]. In the Figure 1, the diagram of the customized version of the
NSGA-II for spatial sampling is shown. Note that the parameters of the algorithm are set by the Taguchi
method [6].

F i g u r e 1 : Diagram of the customized NSGA-II for the bi-objective spatial sampling optimization problem.

4 . N u m e r i c a l r e s u l t s

Note that, in Figure 2, each point on the Pareto frontier corresponds to a sample of 50 points in the field.
Results show the suitable dispersion and coverage on the Pareto frontier obtained by the customized
NSGA-II. It is clear from this frontier that there is a conflict between these two objective functions. For
instance, sample 2 shows that minimizing the mean total error requires more cost.

As a sensitivity analysis, we change the parameters of the spherical covariogram. These values are chosen
from the literature. In Table 1, in case 3, the mean of mean total errors is smallest, and in case 5, the mean
of costs is smallest. Now, the choice of these parameters is also dependent on the decision-makers and
their priorities. If they want less total mean error, they must choose parameters in case 3, and for less cost,
they choose parameters in case 5.
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F i g u r e 2 : The region of interest and three sample designs from the estimated Pareto frontier obtained by
NSGA-II with the parameters shown in the Table 1, case 1.

T a b l e 1 : Spherical covariogram parameters 𝑐0, 𝑐1, and 𝑎, and the mean of the objective functions values for
each optimized sampling scheme.

Case 𝑐0 𝑐1 𝑎 mean of �̄�2𝑃 mean of 𝐶𝑜𝑠𝑡
1 0.127 1.0 240.0 0.5173 3438
2 0.127 1.5 240.0 0.6610 3418
3 0.127 0.5 240.0 0.3395 3512
4 0.127 1.0 120.0 0.7675 3490
5 0.127 1.0 90.0 0.8941 3315
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to investigate the growth and the oscillation of fixed points of solutions of higher
order complex linear differential equations with entire coefficients. We describe the
relationship between the solutions and the entire coefficients in terms of 𝜑-order
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Growth and fixed points of solutions of LDE

1 . I n t r o d u c t i o n

Throughout this paper, we use the standard notations of Nevanlinna value distribution theory such as
𝑇(𝑟,𝑓), 𝑁(𝑟,𝑓), 𝑁(𝑟,𝑓) (see [5]). The term “meromorphic function” will mean meromorphic in the whole
complex plane ℂ. For 𝑘 ≥ 2, we consider the following linear differential equations:

𝑓(𝑘) + 𝐴𝑘−1(𝑧)𝑓(𝑘−1) +… + 𝐴0(𝑧)𝑓 = 0,( 1 )

𝑓(𝑘) + 𝐴𝑘−1(𝑧)𝑓(𝑘−1) +… + 𝐴0(𝑧)𝑓 = 𝐹(𝑧).( 2 )

It is well know that, if the coefficients 𝐹 and 𝐴0(𝑧),… ,𝐴𝑘−1 are entire functions, all solutions of (1) and (2)
are entire. Cao, Xu, and Chen [1] have investigated the growth of meromorphic solutions of equations
(1) and (2) when the coefficients are meromorphic functions of finite iterated order. Chyzhykov and
Semochko [2] used a more general concept called the 𝜑-order which can cover an arbitrary growth of fast
growing functions. They obtained the precise estimates for 𝜑-order of entire solutions of (1) when the
coefficient 𝐴0 strictly dominates the growth of coefficients. Later, the authors [3] investigated equations
(1) and (2) when the coefficients are meromorphic functions with finite 𝜑-order.

D e f i n i t i o n 1 ([2]). Let 𝜑 be an increasing unbounded function on (0,+∞). The 𝜑-orders of a meromorphic
function 𝑓 are defined by

𝜌0𝜑(𝑓) = lim sup
𝑟→+∞

𝜑 (e𝑇(𝑟,𝑓))
log 𝑟 , 𝜌1𝜑(𝑓) = lim sup

𝑟→+∞

𝜑 (𝑇(𝑟,𝑓))
log 𝑟 . ◀

D e f i n i t i o n 2 ([3]). Let 𝜑 be an increasing unbounded function on (0,+∞). We define the 𝜑-convergence
exponents of the sequence of zeros of a meromorphic function 𝑓 by

𝜆0𝜑(𝑓) = lim sup
𝑟→+∞

𝜑 (e𝑁(𝑟,1/𝑓))
log 𝑟 , 𝜆1𝜑(𝑓) = lim sup

𝑟→+∞

𝜑 (𝑁 (𝑟, 1
𝑓
))

log 𝑟 .

Similarly, if we replace 𝑁 (𝑟, 1/𝑓) by 𝑁 (𝑟, 1/𝑓), we obtain 𝜆
0
𝜑(𝑓) and 𝜆

1
𝜑(𝑓), which denote the 𝜑-convergence

exponents of the sequence of distinct zeros of 𝑓. ◀

Let𝛷 denotes the class of positive unbounded increasing functions on (0,+∞) such that 𝜑(e𝑡) grows slowly,
i.e., for all 𝑐 > 0 we have lim𝑡→+∞

𝜑(e𝑐𝑡)
𝜑(e𝑡)

= 1. For instance, log log(⋅) ∈ 𝛷, while log(⋅) ∉ 𝛷.

P r o p o s i t i o n 3 ([2, 4]). Let 𝜑 ∈ 𝛷 and let 𝑓1,𝑓2 be two meromorphic functions. Then, for 𝑗 = 0, 1 we have

max {𝜌𝑗𝜑(𝑓1 + 𝑓2), 𝜌
𝑗
𝜑(𝑓1 𝑓2)} ≤ max {𝜌𝑗𝜑(𝑓1), 𝜌

𝑗
𝜑(𝑓2)} .

Moreover, if 𝜌𝑗𝜑(𝑓1) < 𝜌𝑗𝜑(𝑓2), then 𝜌
𝑗
𝜑(𝑓1 + 𝑓2) = 𝜌𝑗𝜑(𝑓1𝑓2) = 𝜌𝑗𝜑(𝑓2).

P r o p o s i t i o n 4 ([3, 4]). Let 𝜑 ∈ 𝛷 and let 𝑓 be a meromorphic function. Then,

( i ) 𝜌𝑗𝜑(𝑓′) = 𝜌𝑗𝜑(𝑓) for 𝑗 = 0, 1,
( i i ) if 𝜌0𝜑(𝑓) < +∞, then 𝜌1𝜑(𝑓) = 0.

T h e o r e m 5 ([2]). Let 𝜑 ∈ 𝛷 and 𝐴0,𝐴1,… ,𝐴𝑘−1 be entire functions satisfying

max{𝜌0𝜑(𝐴𝑗), 𝑗 = 1,… , 𝑘 − 1} < 𝜌0𝜑(𝐴0).

Then, every solution 𝑓 ≢ 0 of (1) satisfies 𝜌1𝜑(𝑓) = 𝜌0𝜑(𝐴0).

T h e o r e m 6 ([3]). Let 𝜑 ∈ 𝛷 and let 𝐴0,𝐴1,… ,𝐴𝑘−1,𝐹 ≢ 0 be meromorphic functions. If 𝑓 is a meromor-
phic solution of (2) satisfying for 𝑖 = 0, 1

max {𝜌𝑖𝜑(𝐹), 𝜌𝑖𝜑(𝐴𝑗) ∶ 𝑗 = 0, 1,… , 𝑘 − 1} < 𝜌𝑖𝜑(𝑓),

then 𝜆
𝑖
𝜑(𝑓) = 𝜆𝑖𝜑(𝑓) = 𝜌𝑖𝜑(𝑓).
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2 . M a i n r e s u l t s

This paper is concerned with the properties of growth and oscillation of fixed points of entire solutions of
equations (1) and (2) involving the concept of 𝜑-order. We list here our main results.

T h e o r e m 7 . Under the hypothesis of Theorem 5, if 𝐴1(𝑧) + 𝑧𝐴0(𝑧) ≢ 0, then every solution 𝑓 ≢ 0 of (1)
satisfies 𝜆

1
𝜑(𝑓 − 𝑧) = 𝜌1𝜑(𝑓) = 𝜌0𝜑(𝐴0).

P r o o f . Let 𝑓 ≢ 0 be an entire solution of (1). Set 𝑔 = 𝑓 − 𝑧. Clearly,

( 3 ) 𝜆
1
𝜑(𝑔) = 𝜆

1
𝜑(𝑓 − 𝑧) and 𝜌1𝜑(𝑔) = 𝜌1𝜑(𝑓 − 𝑧) = 𝜌1𝜑(𝑓).

From (1), we get

( 4 ) 𝑔(𝑘) + 𝐴𝑘−1(𝑧)𝑔(𝑘−1) +… + 𝐴1(𝑧)𝑔′ + 𝐴0(𝑧)𝑔 = −[𝐴1(𝑧) + 𝑧𝐴0(𝑧)].

By Theorem 5, we have 𝜌1𝜑(𝑓) = 𝜌0𝜑(𝐴0). Since 𝐴1(𝑧) + 𝑧𝐴0(𝑧) ≢ 0 is also an entire function, it follows from
Proposition 4 that

max {𝜌1𝜑(−𝐴1 − 𝑧𝐴0), 𝜌1𝜑(𝐴𝑗) ∶ 𝑗 = 0, 1,… , 𝑘 − 1} < 𝜌1𝜑(𝑓) = 𝜌1𝜑(𝑔).

Thus, by applying Theorem 6 to (4), we obtain 𝜆
1
𝜑(𝑔) = 𝜌1𝜑(𝑔). Therefore, 𝜆

1
𝜑(𝑓 − 𝑧) = 𝜌1𝜑(𝑓) = 𝜌0𝜑(𝐴0). ▪

By using analogous proofs of Theorem 1 and Theorem 4 in Kara and Belaïdi [3], we can easily obtain the
following two results.

T h e o r e m 8 . Let 𝜑 ∈ 𝛷 and let 𝐴0,𝐴1,… ,𝐴𝑘−1 be entire functions satisfying

max {𝜌0𝜑(𝐴𝑗) ∶ 𝑗 = 0, 1,… , 𝑘 − 1 (𝑗 ≠ 𝑠)} < 𝜌0𝜑(𝐴𝑠) < +∞.

Then, every transcendental solution 𝑓 of (1) satisfies 𝜌1𝜑(𝑓) ≤ 𝜌0𝜑(𝐴𝑠) ≤ 𝜌0𝜑(𝑓). Furthermore, there exists at
least one solution satisfying 𝜌1𝜑(𝑓) = 𝜌0𝜑(𝐴𝑠).

T h e o r e m 9 . Let 𝜑 ∈ 𝛷 and let 𝐴0,𝐴1,… ,𝐴𝑘−1,𝐹 ≢ 0 be entire functions satisfying

max {𝜌1𝜑(𝐹), 𝜌0𝜑(𝐴𝑗) ∶ 𝑗 = 1,… , 𝑘 − 1} < 𝜌0𝜑(𝐴0) < +∞.

Then, every solution 𝑓 of (2) satisfies 𝜆
1
𝜑(𝑓) = 𝜆1𝜑(𝑓) = 𝜌1𝜑(𝑓) = 𝜌0𝜑(𝐴0) with at most one exceptional

solution satisfying 𝜌1𝜑(𝑓) < 𝜌0𝜑(𝐴0).

By replacing the dominant coefficient 𝐴0 in Theorem 7 by an arbitrary coefficient 𝐴𝑠 (𝑠 ∈ {0, 1,… , 𝑘 − 1}),
we obtain the following result.

T h e o r e m 1 0 . Under the hypothesis ofTheorem 8, if 𝐴1(𝑧)+𝑧𝐴0(𝑧) ≢ 0, then every transcendental solution
𝑓 of (1) such that 𝜌0𝜑(𝑓) > 𝜌0𝜑(𝐴𝑠) satisfies 𝜆

0
𝜑(𝑓 − 𝑧) = 𝜌0𝜑(𝑓). Moreover, there exists at least one solution 𝑓1

satisfying 𝜆
1
𝜑(𝑓1 − 𝑧) = 𝜌1𝜑(𝑓1) = 𝜌0𝜑(𝐴𝑠).

P r o o f . By Theorem 8, we have 𝜌1𝜑(𝑓) ≤ 𝜌0𝜑(𝐴𝑠). Assume that 𝜌0𝜑(𝐴𝑠) < 𝜌0𝜑(𝑓) and, since 𝐴1(𝑧) + 𝑧𝐴0(𝑧) ≢ 0,
then

max {𝜌0𝜑(−𝐴1 − 𝑧𝐴0), 𝜌0𝜑(𝐴𝑗) ∶ 𝑗 = 0, 1,… , 𝑘 − 1} = 𝜌0𝜑(𝐴𝑠) < 𝜌0𝜑(𝑓).

Thus, by using the fact that 𝜌0𝜑(𝑓) = 𝜌0𝜑(𝑔) = 𝜌0𝜑(𝑓 − 𝑧), and applying Theorem 6 to (4), we obtain

𝜆
0
𝜑(𝑔) = 𝜌0𝜑(𝑔), i.e., 𝜆

0
𝜑(𝑓 − 𝑧) = 𝜌0𝜑(𝑓). Again, by Theorem 8, there exists a solution 𝑓1 of (1) such that

𝜌1𝜑(𝑓1) = 𝜌0𝜑(𝐴𝑠). We deduce from Proposition 4 that

max {𝜌1𝜑(−𝐴1 − 𝑧𝐴0), 𝜌1𝜑(𝐴𝑗) ∶ 𝑗 = 0, 1,… , 𝑘 − 1} < 𝜌1𝜑(𝑓1) = 𝜌1𝜑(𝑓1 − 𝑧).

Hence, it follows from Theorem 6 and (4) that 𝜆
1
𝜑(𝑓1 − 𝑧) = 𝜌1𝜑(𝑓1 − 𝑧). Therefore, 𝜆

1
𝜑(𝑓1 − 𝑧) = 𝜌1𝜑(𝑓1) =

𝜌0𝜑(𝐴𝑠). ▪
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T h e o r e m 1 1 . Under the hypothesis of Theorem 9, if 𝐹(𝑧) − [𝐴1(𝑧) + 𝑧𝐴0(𝑧)] ≢ 0, then every solution 𝑓 of
(2) such that 𝜌1𝜑(𝑓) = 𝜆

1
𝜑(𝑓) satisfies 𝜆

1
𝜑(𝑓 − 𝑧) = 𝜌1𝜑(𝑓).

P r o o f . Let 𝑓 be a solution of (2) such that 𝜌1𝜑(𝑓) = 𝜆
1
𝜑(𝑓). Set 𝑔 = 𝑓 − 𝑧. Equation (2) becomes

( 5 ) 𝑔(𝑘) + 𝐴𝑘−1(𝑧)𝑔(𝑘−1) +⋯+ 𝐴1(𝑧)𝑔′ + 𝐴0(𝑧)𝑔 = 𝐹(𝑧) − [𝐴1(𝑧) + 𝑧𝐴0(𝑧)] .

It follows from Theorem 9 that every solution 𝑓 of (2) satisfies 𝜌1𝜑(𝑓) = 𝜌1𝜑(𝐴0) = 𝜆
1
𝜑(𝑓) with at most one

exceptional solution satisfying 𝜌1𝜑(𝑓) < 𝜌0𝜑(𝐴0). Hence, by Proposition 4 and since 𝐹(𝑧)−[𝐴1(𝑧) + 𝑧𝐴0(𝑧)] ≢
0, we obtain

max {𝜌1𝜑(𝐹 − 𝐴1 − 𝑧𝐴0), 𝜌1𝜑(𝐴𝑗) ∶ 𝑗 = 0, 1,… , 𝑘 − 1} < 𝜌1𝜑(𝑓) = 𝜌1𝜑(𝑔).

Thus, by applying Theorem 6 to (5), we obtain 𝜆
1
𝜑(𝑔) = 𝜌1𝜑(𝑔). Therefore, 𝜆

1
𝜑(𝑓 − 𝑧) = 𝜌1𝜑(𝑓). ▪

3 . F u t u r e a s p e c t s

This paper rises many interesting questions, such as the following:

Question 1: Can we obtain similar results if the coefficients of equations (1) and (2) are meromorphic
functions?

Question 2: What can be said if we consider equations (1) and (2) with analytic functions in the unit disc
𝛥 = {𝑧 ∈ ℂ ∶ |𝑧| < 1}?
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A b s t r a c t : For the systems of ordinary differential equations of an arbitrary order
on a compact interval, we study a character of solvability of the most general linear
boundary-value problems in the Sobolev spaces𝑊 𝑛

𝑝 , with 𝑛 ∈ ℕ and 1 ≤ 𝑝 ≤ ∞.
We find the indices of these Fredholm problems and obtain a criterion of their well-
posedness. Each of these boundary-value problems relates to a certain rectangular
numerical characteristic matrix with kernel and cokernel of the same dimension
as the kernel and cokernel of the boundary-value problem. The condition for the
sequence of characteristic matrices to converge is found. We obtain a constructive
criterion under which the solutions to these problems depend continuously on the
small parameter 𝜀 at 𝜀 = 0, and find the degree of convergence of the solutions. Also
applications of these results to multipoint boundary-value problems are obtained.

R e s u m e n : Para los sistemas de ecuaciones diferenciales ordinarias de un orden
arbitrario en un intervalo compacto, estudiamos un carácter de solubilidad de los
problemas lineales de valor límite más generales en los espacios de Sobolev𝑊 𝑛

𝑝 ,
con 𝑛 ∈ ℕ y 1 ≤ 𝑝 ≤ ∞. Encontramos los índices de estos problemas de Fredholm
y obtenemos un criterio de su buena composición. Cada uno de estos problemas
de valor límite se relaciona con una cierta matriz característica numérica rectan-
gular con núcleo y cokernel de la misma dimensión que el núcleo y el cokernel
del problema de valor límite. Se encuentra la condición para que la secuencia
de matrices características converja. Obtenemos un criterio constructivo bajo el
cual las soluciones de estos problemas dependen continuamente del pequeño
parámetro 𝜀 en 𝜀 = 0, y encontramos el grado de convergencia de las soluciones.
También se obtienen aplicaciones de estos resultados a problemas de valores límite
multipunto.

K e y w o r d s : differential system, generic boundary-value problem, Sobolev space,
operator index, continuity in a parameter.
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Generic boundary-value problems

1 . G e n e r i c b o u n d a r y - v a l u e p r o b l e m

Let a finite interval [𝑎, 𝑏] ⊂ ℝ and parameters {𝑚, 𝑛, 𝑟, 𝑙} ⊂ ℕ, 1 ≤ 𝑝 ≤ ∞, be given. By 𝑊 𝑛+𝑟
𝑝 =

𝑊 𝑛+𝑟
𝑝 ([𝑎, 𝑏];ℂ) ≔ {𝑦 ∈ 𝐶𝑛+𝑟−1[𝑎, 𝑏] ∶ 𝑦(𝑛+𝑟−1) ∈ 𝐴𝐶[𝑎, 𝑏], 𝑦(𝑛+𝑟) ∈ 𝐿𝑝[𝑎, 𝑏]} we denote a complex Sobolev

space and set𝑊 0
𝑝 ≔ 𝐿𝑝. This space is a Banach one with respect to the norm

‖𝑦‖𝑛+𝑟,𝑝 =
𝑛+𝑟−1
∑
𝑘=0

‖𝑦(𝑘)‖𝑝 + ‖𝑦(𝑛+𝑟)‖𝑝,

where ‖⋅‖𝑝 is the norm in the space 𝐿𝑝 ([𝑎, 𝑏];ℂ). Similarly, by (𝑊 𝑛+𝑟
𝑝 )𝑚 ≔ 𝑊 𝑛+𝑟

𝑝 ([𝑎, 𝑏];ℂ𝑚) and
(𝑊 𝑛+𝑟

𝑝 )𝑚×𝑚 ≔ 𝑊 𝑛+𝑟
𝑝 ([𝑎, 𝑏];ℂ𝑚×𝑚) we denote Sobolev spaces of vector-valued functions and matrix-

valued functions, respectively, whose elements belong to the function space𝑊 𝑛+𝑟
𝑝 .

We consider the following linear boundary-value problem

(𝐿𝑦)(𝑡) ≔ 𝑦(𝑟)(𝑡) +
𝑟
∑
𝑗=1

𝐴𝑟−𝑗(𝑡)𝑦(𝑟−𝑗)(𝑡) = 𝑓(𝑡), 𝑡 ∈ (𝑎, 𝑏),( 1 )

𝐵𝑦 = 𝑐,( 2 )

where the matrix-valued functions 𝐴𝑟−𝑗(⋅) ∈ (𝑊 𝑛
𝑝 )𝑚×𝑚, the vector-valued function 𝑓(⋅) ∈ (𝑊 𝑛

𝑝 )𝑚, the
vector 𝑐 ∈ ℂ𝑙, and the linear continuous operator

( 3 ) 𝐵∶ (𝑊 𝑛+𝑟
𝑝 )𝑚 → ℂ𝑙

are arbitrarily chosen, and the vector-valued function 𝑦(⋅) ∈ (𝑊 𝑛+𝑟
𝑝 )𝑚 is unknown.

We represent vectors and vector-valued functions in the form of columns. A solution to the boundary-value
problem (1), (2) is understood as a vector-valued function 𝑦(⋅) ∈ (𝑊 𝑛+𝑟

𝑝 )𝑚 satisfying equation (1) almost
everywhere on (𝑎, 𝑏) (everywhere for 𝑛 ≥ 2) and equality (2) specifying 𝑙 scalar boundary conditions. The
solutions of equation (1) fill the space (𝑊 𝑛+𝑟

𝑝 )𝑚 if its right-hand side 𝑓(⋅) runs through the space (𝑊 𝑛
𝑝 )𝑚.

Hence, the boundary condition (2) with continuous operator (3) is the most general condition for this
equation.

It includes all known types of classical boundary conditions, namely, the Cauchy problem, two- and
many-point problems, integral and mixed problems, and numerous nonclassical problems. The last class
of problems may contain derivatives (generally fractional) 𝑦(𝑘)(⋅) with 0 < 𝑘 ≤ 𝑛 + 𝑟.

For 1 ≤ 𝑝 < ∞, every operator 𝐵 in (3) admits a unique analytic representation

𝐵𝑦 =
𝑛+𝑟−1
∑
𝑘=0

𝛼𝑘𝑦(𝑘)(𝑎) +∫
𝑏

𝑎
𝛷(𝑡)𝑦(𝑛+𝑟)(𝑡) d𝑡, 𝑦(⋅) ∈ (𝑊 𝑛+𝑟

𝑝 )𝑚,

where the matrices 𝛼𝑘 ∈ ℂ𝑟𝑚×𝑚 and the matrix-valued function 𝛷(⋅) ∈ 𝐿𝑝′([𝑎, 𝑏];ℂ𝑟𝑚×𝑚), 1/𝑝 + 1/𝑝′ = 1.

For 𝑝 = ∞ this formula also defines an operator 𝐵∶ (𝑊 𝑛+𝑟
∞ )𝑚 → ℂ𝑟𝑚. However, there exist other operators

from this class generated by the integrals over finitely additive measures.

With the generic inhomogeneous boundary-value problem (1), (2), we associate a linear continuous
operator in pair of Banach spaces

( 4 ) (𝐿,𝐵)∶ (𝑊 𝑛+𝑟
𝑝 )𝑚 → (𝑊 𝑛

𝑝 )𝑚 × ℂ𝑙.

Recall that a linear continuous operator 𝑇∶ 𝑋 → 𝑌, where 𝑋 and 𝑌 are Banach spaces, is called a Fredholm
operator if its kernel ker𝑇 and cokernel 𝑌/𝑇(𝑋) are finite-dimensional. If operator 𝑇 is Fredholm, then its
range 𝑇(𝑋) is closed in 𝑌 and the index

ind𝑇 ≔ dimker𝑇 − dim(𝑌/𝑇(𝑋)) ∈ ℤ

is finite.
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T h e o r e m 1 . The linear operator (4) is a bounded Fredholm operator with index 𝑚𝑟 − 𝑙.

Theorem 1 allows the next specification.

For each number 𝑘 ∈ {1,… , 𝑟}, we consider the family of matrix Cauchy problems:

𝑌 (𝑟)
𝑘 (𝑡) +

𝑟
∑
𝑗=1

𝐴𝑟−𝑗(𝑡)𝑌
(𝑟−𝑗)
𝑘 (𝑡) = 𝑂𝑚, 𝑡 ∈ (𝑎, 𝑏),

with the initial conditions
𝑌 (𝑗−1)
𝑘 (𝑎) = 𝛿𝑘,𝑗𝐼𝑚, 𝑗 ∈ {1,… , 𝑟}.

Here, 𝑌𝑘(⋅) is an unknown𝑚×𝑚matrix-valued function, and 𝛿𝑘,𝑗 is the Kronecker symbol.

By [𝐵𝑌𝑘] we denote the numerical𝑚× 𝑙matrix, in which the 𝑗-th column is the result of the action of the
operator 𝐵 on the 𝑗-th column of the matrix-valued function 𝑌𝑘(⋅).

D e f i n i t i o n 2 . A block rectangular numerical matrix𝑀(𝐿,𝐵) ≔ ([𝐵𝑌0] ,… , [𝐵𝑌𝑟−1]) ∈ ℂ𝑚𝑟×𝑙 is characteristic
to the inhomogeneous boundary-value problem (1), (2). It consists of 𝑟 rectangular block columns
[𝐵𝑌𝑘(⋅)] ∈ ℂ𝑚×𝑙. ◀

Here 𝑚𝑟 is the number of scalar differential equations of the system (1), and 𝑙 is the number of scalar
boundary conditions.

T h e o r e m 3 . The dimensions of the kernel and cokernel of the operator (4) are equal to the dimensions of
the kernel and cokernel of the characteristic matrix 𝑀(𝐿,𝐵), respectively.

Theorem 3 implies a criterion for the invertibility of the operator (4).

C o r o l l a r y 4 . The operator (𝐿,𝐵) is invertible if and only if 𝑙 = 𝑚𝑟 and the matrix 𝑀(𝐿,𝐵) is nondegenerate.

2 . G e n e r i c b o u n d a r y - v a l u e p r o b l e m w i t h a p a r a m e t e r

Let us consider, parameterized by number 𝜀 ∈ [0, 𝜀0), 𝜀0 > 0, the linear boundary-value problem

𝐿(𝜀)𝑦(𝑡, 𝜀) ≔ 𝑦(𝑟)(𝑡, 𝜀) +
𝑟
∑
𝑗=1

𝐴𝑟−𝑗(𝑡, 𝜀)𝑦(𝑟−𝑗)(𝑡, 𝜀) = 𝑓(𝑡, 𝜀), 𝑡 ∈ (𝑎, 𝑏),( 5 )

𝐵(𝜀)𝑦(⋅; 𝜀) = 𝑐(𝜀),( 6 )

where for every fixed 𝜀 the matrix-valued functions 𝐴𝑟−𝑗(⋅; 𝜀) ∈ (𝑊 𝑛
𝑝 )𝑚×𝑚, the vector-valued function

𝑓(⋅; 𝜀) ∈ (𝑊 𝑛
𝑝 )𝑚, the vector 𝑐(𝜀) ∈ ℂ𝑟𝑚, 𝐵(𝜀) is the linear continuous operator 𝐵(𝜀)∶ (𝑊 𝑛+𝑟

𝑝 )𝑚 → ℂ𝑟𝑚, and
the solution (the unknown vector-valued function) 𝑦(⋅; 𝜀) ∈ (𝑊 𝑛+𝑟

𝑝 )𝑚.

It follows fromTheorem 1 that the boundary-value problem (5), (6) is a Fredholm one with index zero.

D e f i n i t i o n 5 . A solution to the boundary-value problem (5), (6) depends continuously on the parameter 𝜀
at 𝜀 = 0 if the following two conditions are satisfied:

• there exists a positive number 𝜀1 < 𝜀0 such that, for any 𝜀 ∈ [0, 𝜀1) and arbitrary chosen right-hand
sides 𝑓(⋅; 𝜀) ∈ (𝑊 𝑛

𝑝 )𝑚 and 𝑐(𝜀) ∈ ℂ𝑟𝑚, this problem has a unique solution 𝑦(⋅; 𝜀) that belongs to the
space (𝑊 𝑛+𝑟

𝑝 )𝑚;
• the convergence of the right-hand sides 𝑓(⋅; 𝜀) → 𝑓(⋅; 0) in (𝑊 𝑛

𝑝 )𝑚 and 𝑐(𝜀) → 𝑐(0) in ℂ𝑟𝑚 as 𝜀 → 0+
implies the convergence of the solutions 𝑦(⋅; 𝜀) → 𝑦(⋅; 0) in (𝑊 𝑛+𝑟

𝑝 )𝑚. ◀

Consider the following conditions as 𝜀 → 0+:

( i ) the limiting homogeneous boundary-value problem

𝐿(0)𝑦(𝑡, 0) = 0, 𝑡 ∈ (𝑎, 𝑏), 𝐵(0)𝑦(⋅, 0) = 0

has only the trivial solution;
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( i i ) 𝐴𝑟−𝑗(⋅; 𝜀) → 𝐴𝑟−𝑗(⋅; 0) in the space (𝑊 𝑛
𝑝 )𝑚×𝑚 for each number 𝑗 ∈ {1,… , 𝑟};

( i i i ) 𝐵(𝜀)𝑦 → 𝐵(0)𝑦 in the space ℂ𝑟𝑚 for every 𝑦 ∈ (𝑊 𝑛+𝑟
𝑝 )𝑚.

T h e o r e m 6 . A solution to the boundary-value problem (5), (6) depends continuously on the parameter 𝜀
at 𝜀 = 0 if and only if this problem satisfies condition (i) and the conditions (ii) and (iii).

We supplement our result with a two-sided estimate of the error ‖𝑦(⋅; 0) − 𝑦(⋅; 𝜀)‖𝑛+𝑟,𝑝 of the solution 𝑦(⋅; 𝜀)
via its discrepancy

̃𝑑𝑛,𝑝(𝜀) ≔ ‖𝐿(𝜀)𝑦(⋅; 0) − 𝑓(⋅; 𝜀)‖𝑛,𝑝 + ‖𝐵(𝜀)𝑦(⋅; 0) − 𝑐(𝜀)‖ℂ𝑟𝑚.

Here, we interpret 𝑦(⋅; 0) as an approximate solution to the problem (5), (6).

T h e o r e m 7 . Suppose that the boundary-value problem (5), (6) satisfies conditions (i), (ii) and (iii). Then,
there exist positive numbers 𝜀2 < 𝜀1 and 𝛾1, 𝛾2 such that, for any 𝜀 ∈ (0, 𝜀2), the following two-sided
estimate is true:

𝛾1 ̃𝑑𝑛,𝑝(𝜀) ≤ ‖𝑦(⋅; 0) − 𝑦(⋅; 𝜀)‖𝑛+𝑟,𝑝 ≤ 𝛾2 ̃𝑑𝑛,𝑝(𝜀),

where the quantities 𝜀2, 𝛾1, and 𝛾2 do not depend on 𝑦(⋅; 𝜀) and 𝑦(⋅; 0).

Thus, the error and discrepancy of the solution 𝑦(⋅; 𝜀) to the boundary-value problem (5), (6) are of the
same degree of smallness.

The results are published in the articles by Atlasiuk and Mikhailets [1, 2].
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A b s t r a c t : Many operators in analysis are non-local, in the sense that a perturbation
of the input near a point modifies the output everywhere; consider for example
the operator that maps the initial data to the corresponding solution of the heat
equation.

Sparse Domination consists in controlling such operators by a sum of positive,
local averages. This allows to derive plenty of estimates, which are often optimal.

In this work we will introduce this concept, and we will discuss the case of operators
that are beyond Calderón–Zygmund theory.

R e s u m e n : Muchos operadores en análisis son no locales, en el sentido de que una
perturbación de la entrada cerca de un punto modifica la salida en todas partes;
consideremos, por ejemplo, el operador que mapea los datos iniciales a la solución
correspondiente de la ecuación del calor.

La dominación dispersa consiste en controlar estos operadores mediante una
suma de medias locales positivas. Esto permite derivar multitud de estimaciones
que a menudo son óptimas.

En este trabajo introduciremos este concepto y discutiremos el caso de los opera-
dores que están más allá de la teoría de Calderón–Zygmund.

K e y w o r d s : sparse domination, weighted estimates, 𝑇(1) theorem, elliptic
operators.
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What is Sparse Domination?

1 . W e i g h t e d e s t i m a t e s

In Harmonic Analysis, weighted inequalities allow us to better understand the action of operators on
different domains, and they have many applications to PDEs [12], approximation theory, complex analysis
and operator theory [1].

We call weight a positive, locally integrable function. You might be interested in understanding how your
operator depends on the weight in the underlying measure. Given a (sub)linear operator 𝑇 from 𝐿𝑝 to
itself, you can start asking the following questions:

( i ) For which weights 𝑤 is the operator bounded from 𝐿𝑝(𝑤) to 𝐿𝑝(𝑤)?
( i i ) Can we characterise all such weights?
( i i i ) How does the operator norm depend on the weight?

Since the ’90s there have been a lot of efforts towards answering these questions and to quantify this
dependence, also in relation to a problem in quasiconformal theory [2, 17].

A key step towards this goal was a representation of the action of the operator in terms of simpler dyadic
operators. This representation was first obtained for the Hilbert transform [16], and later for general
Calderón–Zygmund operators [13]. Today we know that a domination, rather than a representation, is
often enough for deriving optimal weighted estimates with less effort. Such domination is popular as
sparse domination.

Sparse domination is having a tremendous impact on Harmonic Analysis [4, 7–10]. It has simplified the
proof of the 𝐴2-conjecture [13], has found applications beyond the classical theory [4], in the discrete
setting [10], and has resolved long-standing questions in operator theory [1].

1 . 1 . M a x i m a l o p e r a t o r s

The questions posed above were first answered by Benjamin Muckenhoupt [15] for the maximal operator:

𝑀𝑓(𝑥) = sup
𝑄∋𝑥

1
|𝑄|

∫
𝑄
|𝑓(𝑦)| d𝑦,

where the supremum is taken over cubes 𝑄 with sides parallel to the coordinate axis.

If we could control an operator 𝑇 by the maximal operator 𝑀, we could derive weighted estimates for 𝑇
from the ones for 𝑀. Unfortunately, contrarily to maximal operators, singular integral operators are not
bounded in 𝐿∞. Thus we cannot hope to control them (pointwise) by a single maximal average.

Sparse domination consists in controlling non-local operators by a sum of positive averages. This allows
to derive plenty of unweighted, weighted, and vector valued estimates (which are often optimal) from
weighted 𝐿𝑝 estimates for maximal operators, while the 𝐿∞-norm is still allowed to blow up.

This domination can be performed by constructing a sparse family of cubes for a given input function.
Roughly speaking, a sparse family is a collection of cubes having a subcollection of sets that are disjoint
and not too small. More precisely, for a fixed 𝜏 ∈ (0, 1) we say that:

D e f i n i t i o n 1 . A collection of dyadic cubes 𝒮 is 𝜏-sparse if for any 𝑄 ∈ 𝒮 there exists a subset 𝐸𝑄 ⊂ 𝑄 such
that {𝐸𝑄}𝑄∈𝒮 are pairwise disjoint and the ratio |𝐸𝑄|/|𝑄| is bounded below by 𝜏. ◀

Given a function 𝑓 and a cube 𝑄0, one can construct a sparse collection inside 𝑄0 by selecting maximal
cubes covering the superlevel set:

𝐹(𝑄0) = {𝑥 ∈ 𝑄0 ∶ 𝑀𝑓(𝑥) > 𝜆 1
|𝑄0|

∫
𝑄0

|𝑓|} .

The weak boundedness of 𝑀 ensures that we can choose 𝜆 > 0 so that the measure of the complement
𝐸𝑄0 ≔ 𝑄0 ⧵ 𝐹(𝑄0) is not too small. By iterating this procedure, one obtains a collection of nested cubes
organised in generations.
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Then, our operator is controlled by the desired average on 𝐸𝑄0. At each iteration, the remaining area
shrinks geometrically, leading to the pointwise domination for 𝑥 ∈ 𝑄0

( 1 ) |𝑇𝑓(𝑥)| ≤ 𝐶 ∑
𝑄∈𝒮

(
1
|𝑄|

∫
𝑄
|𝑓|) 1𝑄(𝑥),

where the collection 𝒮 is the union of all maximal cubes in each iteration, and it is sparse as in definition 1.

The same method can be used to bound bilinear expressions, leading to a domination by a sparse bilinear
form:

( 2 )
||∫

𝑄0

𝑇𝑓 ⋅ 𝑔 d𝑥|| ≤ 𝐶 ∑
𝑄∈𝒮

(
1
|𝑄|

∫
𝑄
|𝑓|) (

1
|𝑄|

∫
𝑄
|𝑔|) |𝑄|.

The sparse collections 𝒮 in (1) and (2) depend on the input functions.

How does one recover bounds in terms of the maximal function? When we integrate sparse operators, the
sparseness property allows to reduce the sum over 𝒮 to a sum over disjoint sets. The averages are then
controlled by the maximal averages. For example, for a 1

2
-sparse family 𝒮 we have that |𝑄| ≤ 2|𝐸𝑄|, so

∑
𝑄∈𝒮

(
1
|𝑄|

∫
𝑄
|𝑓|) |𝑄| ≤ 2 ∑

𝑄∈𝒮
(
1
|𝑄|

∫
𝑄
|𝑓|) |𝐸𝑄| ≤ 2 ∑

𝑄∈𝒮
∫
𝐸𝑄

𝑀𝑓 ≤ 2∫
𝑄0

𝑀𝑓.

In a similar fashion, one recovers 𝐿𝑝 estimates from 𝐿𝑝 bounds of the maximal operator. One can then take
the supremum over all possible 1

2
-sparse collections 𝒮 obtaining the same weighted estimates.

2 . F u r t h e r a p p l i c a t i o n s

2 . 1 . S p a r s e 𝑇1 t h e o r e m s

In the ’80s, David and Journé [11] showed that 𝐿2-boundedness of singular integral operators follows
from the uniform boundedness on characteristic functions. This result is known as the “𝑇(1) theorem”, as
the operator is tested on constant functions. The analogous condition for classical square functions is a
Carleson measure condition [6].

These classical results have recently been recast to give a sparse domination [5, 14]. Thus, instead of just 𝐿2
boundedness, these theorems imply all weighted 𝐿𝑝-bounds with optimal dependence on the weight.

2 . 2 . S p a r s e d o m i n a t i o n o f n o n - i n t e g r a l o p e r a t o r s

Classical operators in Harmonic Analysis come with an integral representation and a kernel. On the other
hand, many operators coming from elliptic PDEs are “non-integral”, in the sense that they do not possess
such an explicit representation.

Recently, the sparse paradigm has been successfully applied also in this context [4], where the usual
assumptions on the kernel are replaced by hypotheses on the action of the operator on the semigroup
e−𝑡𝐿 generated by the elliptic operator 𝐿.

For non-integral square functions, optimal weighted estimates are deduced form a different sparse form [3],
which reflects the quadratic nature of these operators. This quadratic sparse domination yields estimates
for square functions associated with divergence forms and Laplace–Beltrami operators on Riemannian
manifolds as particular examples.
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Identities in prime rings

1 . G P I s i n o n e v a r i a b l e i n p r i m e r i n g s

Prime rings are the noncommutative counterparts of integral domains. A commutative unital ring 𝑅 is an
integral domain if

𝑎𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0, for 𝑎, 𝑏 ∈ 𝑅.
In the noncommutative setting, elements are replaced by ideals. So, a ring 𝑅 is prime if

𝐼𝐽 = 0 implies 𝐼 = 0 or 𝐽 = 0, for 𝐼, 𝐽 ideals of 𝑅.

There is also a characterization of primeness by elements. A ring 𝑅 is prime if and only if

( 1 ) 𝑎𝑥𝑏 = 0 for all 𝑥 ∈ 𝑅 implies 𝑎 = 0 or 𝑏 = 0, for 𝑎, 𝑏 ∈ 𝑅.

We can say that prime rings are those in which, as in (1), an identity with one term (𝑎𝑥𝑏) in one variable (𝑥)
cornered by two fixed expressions (𝑎, 𝑏) can be simplified to one of those expressions (𝑎 = 0 or 𝑏 = 0). What
other simplifications of similar identities follow from primeness? It is straightforward to show, using the
characterization by elements, the following simplification of an identity with one term and two variables:
if 𝑅 is prime, then

𝑎𝑥𝑏𝑦𝑐 = 0 for all 𝑥, 𝑦 ∈ 𝑅 implies 𝑎 = 0 or 𝑏 = 0 or 𝑐 = 0, for 𝑎, 𝑏, 𝑐 ∈ 𝑅.

In general an identity of this kind, formed by a linear combination of some expressions of variables
cornered by some fixed elements of the ring, is called a generalized polynomial identity (GPI). It is also
true, but not that straightforward to show, that primeness allows to simplify any GPI in one variable. Now
we need to introduce some technical concepts. Just as an integral domain can be embedded in its field of
quotients, a prime ring 𝑅 has a similar overring, called the Martindale ring of quotients 𝑄(𝑅). Although
𝑄(𝑅) is not a division ring, its center 𝒞 ≔ 𝒞(𝑅) ≔ 𝑍(𝑄(𝑅)) is a field, called the extended centroid of 𝑅. And
although 𝑅 is not a 𝒞-algebra in general, we can work in 𝒞𝑅 + 𝒞 inside 𝑄(𝑅) and informally consider the
elements of 𝒞 as scalars for 𝑅 (see [2, Section 2] for more details). In this paper we will consider GPIs with
coefficients in the extended centroid. As stated above, primeness allows to simplify any GPI in one variable
(and degree 1 in the variable) [2, Theorem 2.3.4]:

L e m m a 1 (Martindale’s). Let 𝑅 be a prime ring, 𝑎1, 𝑏1,… , 𝑎𝑛, 𝑏𝑛 ∈ 𝑅 and 𝜆1,… , 𝜆𝑛 ∈ 𝒞. If 𝜆1, 𝑏1 ≠ 0, then

( 2 ) 𝜆1𝑎1𝑥𝑏1 +… + 𝜆𝑛𝑎𝑛𝑥𝑏𝑛 = 0 for all 𝑥 ∈ 𝑅 implies 𝑎1 ∈ 𝒞𝑎2 +… + 𝒞𝑎𝑛.

The conclusion of Martindale’s lemma is that 𝑎1 is a linear combination of the left elements of the other
terms of the GPI.

2 . O p e r a t o r - a l g e b r a i c e l e m e n t s

We are interested in a special kind of GPI in one variable, in which only powers of a fixed element 𝑎 ∈ 𝑅
appear as coefficients from the ring, with 𝜆𝑖𝑗 ∈ 𝒞:

𝜆10𝑎𝑥 + 𝜆01𝑥𝑎 + 𝜆20𝑎2𝑥 + 𝜆11𝑎𝑥𝑎 + 𝜆02𝑥𝑎2 + 𝜆30𝑎3𝑥 + 𝜆21𝑎2𝑥𝑎 +… = 0 for all 𝑥 ∈ 𝑅.

This kind of GPI appears often in Herstein’s theory, the study of the nonassociative structures and objects
arising from associative rings (see e.g. [3–5, 7]). We write it more concisely as

( 3 )

𝑛
∑
𝑖,𝑗=0

𝜆𝑖𝑗𝑎𝑖𝑥𝑎𝑗 = 0 for all 𝑥 ∈ 𝑅,

with the implicit assumption that 𝑖 +𝑗 > 0. If we apply Martindale’s lemma to (3), by looking at a fixed term
of the form 𝜆𝑖𝑗𝑎𝑖𝑥𝑎𝑗 with 𝜆𝑖𝑗 ≠ 0 we find that either 𝑎𝑗 = 0 (implying 𝑎 is nilpotent, in particular algebraic),
or 𝑎𝑖 is a linear combination of the other left powers of 𝑎 appearing in the GPI, implying that 𝑎 is algebraic.
So Martindale’s lemma implies in any case that 𝑎 is an algebraic element, and thus it must have a minimal
polynomial. But given a GPI of this form there can be several different minimal polynomials giving rise to
it. The problem we want to solve is: which are the minimal polynomials giving rise to a fixed GPI of the
form (3)? We solve the problem by translating it to a polynomial problem in two variables, which we then
solve by elementary algebraic geometry.
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3 . A p o l y n o m i a l p r o b l e m

Given a GPI of the form (3), we can associate to it a polynomial in two variables in 𝒞[𝑋,𝑌] by translating
it term by term, translating the left power of 𝑎 as a power of 𝑋 and the right power of 𝑎 as a power of 𝑌.
For example, the identity 𝑎2𝑥 − 2𝑎𝑥𝑎 + 3𝑎𝑥𝑎3 = 0 generates the polynomial 𝑋2 − 2𝑋𝑌 + 3𝑋𝑌 3. More in
general, we get

𝑛
∑
𝑖,𝑗=0

𝜆𝑖𝑗𝑎𝑖𝑥𝑎𝑗 ↦ 𝑓(𝑋,𝑌) ≔
𝑛
∑
𝑖,𝑗=0

𝜆𝑖𝑗𝑋 𝑖𝑌 𝑗.

It can be shown (the proofs will appear elsewhere) that the problem of finding the minimal polynomials is
equivalent to this one: which are the polynomials in one variable 𝑝 ∈ 𝒞[𝑋] such that the fixed polynomial
in two variables 𝑓 ∈ 𝒞[𝑋,𝑌] belongs to the ideal generated by 𝑝(𝑋) and 𝑝(𝑌)?

This problem can be solved through the Taylor expansion of the polynomial 𝑓. If char(𝒞) = 0, then the
coefficients of the expansion are given by evaluations of the partial derivatives of 𝑓 divided by factorials of
some integers. To solve this problem for any field 𝒞 of arbitrary characteristic we need to compute the
coefficients of the expansion without making any divisions. These coefficients are given by the Hasse-
Schmidt partial derivatives, which are linear maps but not derivations in general, and that we succinctly
present here for two variables:

𝐷𝑋𝑖(𝑋𝑚𝑌𝑛) ≔ (
𝑚
𝑖
)𝑋𝑚−𝑖𝑌𝑛, 𝐷𝑌 𝑖(𝑋𝑚𝑌𝑛) ≔ (

𝑛
𝑖
)𝑋𝑚𝑌𝑛−𝑖, 𝐷𝑋𝑖𝑌𝑗 ≔ 𝐷𝑋𝑖 ∘ 𝐷𝑌𝑗.

Now, a version of the combinatorial nullstellensatz [1] accounting for multiplicities [6] solves our polyno-
mial problem:

T h e o r e m 2 . Let 𝑝 ∈ 𝒞[𝑋] have root structure 𝑝(𝑋) = ∏𝑛
𝑖=1 (𝑋 − 𝜆𝑖)

𝑒𝑖 over the algebraic closure of 𝒞. Then,
𝑓 ∈ 𝒞[𝑋,𝑌] belongs to the ideal of 𝒞[𝑋,𝑌] generated by {𝑝(𝑋),𝑝(𝑌)} if and only if for each pair of roots
(𝜆𝑖, 𝜆𝑗) we have

𝐷𝑋𝑟𝑌𝑠𝑓(𝜆𝑖, 𝜆𝑗) = 0

for all 0 ≤ 𝑟 < 𝑒𝑖, 0 ≤ 𝑠 < 𝑒𝑗.

From this theorem, we can readily extract an algorithm for determining the minimal polynomials of a
given GPI of the form (3) in a prime ring. The conditions on the partial derivatives imply that we can
even determine them geometrically, by plotting the two-dimensional curve generated by the zeros of the
polynomial in two variables and determining its behaviour over rectangular grids of potential roots.

E x a m p l e 3 . Let us determine the possible minimal polynomials making 𝑎 satisfy the GPI

𝑎3𝑥𝑎 − 2𝑎𝑥𝑎2 = 0

in a prime ring. We consider its associated polynomial in two variables

𝑓(𝑋,𝑌) = 𝑋3𝑌 − 2𝑋𝑌 2.

By Theorem 2, the potential roots of the minimal polynomials must be roots of

𝑓(𝑋,𝑋) = 𝑋4 − 2𝑋3 = 𝑋3(𝑋 − 2),

so the potential roots are 0 (with multiplicity at most 3) and 2. We may have 0 as the unique root (with
some maximal multiplicity 𝑒), 2 as the unique root, or both 2 and 0 (with some maximal multiplicity
perhaps smaller than 𝑒). To determine them, we compute the Hasse-Schmidt derivatives of 𝑓:

𝐷𝑋𝑓 = 3𝑋2𝑌 − 2𝑌 2, 𝐷𝑌𝑓 = 𝑋3 − 4𝑋𝑌,

𝐷𝑋2𝑓 = (
3
2
)𝑋𝑌 = 3𝑋𝑌, 𝐷𝑋𝑌𝑓 = 3𝑋2 − 4𝑌, 𝐷𝑌2𝑓 = −(

2
2
)2𝑋 = −2𝑋,

𝐷𝑋3𝑓 = (
3
3
)𝑌 = 𝑌, 𝐷𝑋2𝑌𝑓 = 3𝑋, 𝐷𝑋𝑌2𝑓 = −2, 𝐷𝑌3𝑓 = 0,

𝐷𝑋3𝑌𝑓 = 1, 𝐷𝑋4𝑓 = 𝐷𝑋2𝑌2𝑓 = 𝐷𝑋𝑌3𝑓 = 0.
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( i ) Since 𝐷𝑋𝑓, 𝐷𝑌𝑓, 𝐷𝑋𝑌𝑓 have (0, 0) as zero, 0 can be found as the unique root of a minimal polynomial
with multiplicity 2. To be found with multiplicity 3, we would need also 𝐷𝑋2𝑓, 𝐷𝑋2𝑌𝑓, 𝐷𝑋2𝑌2𝑓, 𝐷𝑋𝑌2𝑓,
and 𝐷𝑌2𝑓 to have (0, 0) as zero; this happens if and only if char(𝒞) = 2, since 𝐷𝑋𝑌2𝑓 = −2. We cannot
have 0 with multiplicity 4 because 𝐷𝑋3𝑌𝑓 = 1 ≠ 0 in all characteristics.

( i i ) Since 𝐷𝑋𝑓(2, 2) = 24, 𝐷𝑌𝑓(2, 2) = −23, 𝐷𝑋𝑌𝑓(2, 2) = 22, for 2 to be found as the unique root of a
minimal polynomial with multiplicity 2 it is necessary and sufficient that char(𝒞) = 2, in which case
we have 2 = 0 and we are in the previous case.

( i i i ) To find 0 and 2 together as roots of the same minimal polynomial, it is necessary that 𝐷𝑋𝑓(0, 2) =
−23 = 0, so again we would have char(𝒞) = 2 and, hence, only one root.

In conclusion, the maximal possible minimal polynomials for 𝑎 are 𝑋2, 𝑋3 if char(𝒞) = 2, and 𝑋 − 2; so
𝑎3𝑥𝑎 − 2𝑎𝑥𝑎2 = 0 for all 𝑥 ∈ 𝑅 prime if and only if either 𝑎2 = 0; 𝑎2 ≠ 0, 𝑎3 = 0 and 2 = 0; or 𝑎 = 2. ◀
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A b s t r a c t : A Schreier decoration is a combinatorial coding of an action of the free
group 𝐹𝑑 on the vertex set of a 2𝑑-regular graph. We investigate whether a Schreier
decoration exists on various countably infinite transitive graphs as a factor of iid.

We show that the square lattice and also the three other Archimedean lattices of
even degree and ℤ𝑑, 𝑑 ≥ 3, have finitary factor of iid Schreier decorations, and
exhibit examples of transitive graphs of arbitrary even degree in which obtaining
such a decoration as a factor of iid is impossible.

We also prove that non-amenable quasi-transitive unimodular 2𝑑-regular graphs
have a factor of iid balanced orientation, meaning each in- and outdegree is equal
to 𝑑. This result involves extending earlier spectral-theoretic results on Bernoulli
shifts to the Bernoulli graphings of quasi-transitive unimodular graphs. Balanced
orientation is also obtained for symmetrical planar lattices.

R e s u m e n : Una decoración de Schreier es una codificación combinatoria de una
acción del grupo libre 𝐹𝑑 en el conjunto de vértices de un grafo 2𝑑-regular. Investi-
gamos si existe una decoración de Schreier en varios grafos transitivos numerables
infinitos como un factor de iid.

Mostramos que el retículo cuadrado y también los otros tres grafos arquimedianos
de grado par y ℤ𝑑, 𝑑 ≥ 3, tienen decoraciones de Schreier de factor finito de iid,
y mostramos ejemplos de grafos transitivos de grado par arbitrario en los que la
obtención de tal decoración como factor de iid es imposible.

También demostramos que los grafos 2𝑑-regulares unimodulares cuasi transitivos
no amenables tienen un factor de orientación equilibrada iid, lo que significa que
cada grado de entrada y salida es igual a 𝑑. Este resultado implica la extensión
de los resultados espectrales anteriores sobre los desplazamientos de Bernoulli a
los grafos de Bernoulli de los grafos unimodulares cuasi-transitivos. También se
obtiene la orientación equilibrada para retículos planos simétricos.

K e y w o r d s : transitive graph, factor of iid, Schreier graph, site percolation,
Archimedean lattice, planar lattice, graphing, spectral gap.
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Factor of iid Schreier decoration of transitive graphs

1 . I n t r o d u c t i o n , n o t a t i o n , a n d b a s i c s

A Schreier decoration of a 2𝑑-regular graph 𝐺 is a colouring of the edges with 𝑑 colours together with an
orientation such that, at every vertex, there is exactly one incoming and one outgoing edge of each colour.
A partial result towards a Schreier decoration is a balanced orientation of the edges. An orientation of a
graph with all degrees even is balanced if the indegree of any vertex is equal to its outdegree. We investigate
whether an invariant random Schreier decoration or at least balanced orientation can be obtained on
infinite transitive graphs as a factor of iid.

Informally, a Schreier decoration is a factor of iid if it is produced by a certain randomised local algorithm.
To start with, each vertex independently gets a random label from [0, 1]. Then it makes a deterministic
measurable decision about the decoration of its incident edges, based on the labelled graph that it sees
from itself as a root. Adjacent vertices must make a consistent decision regarding the edge between them.

1 . 1 . S c h r e i e r g r a p h s , f a c t o r s o f i i d a n d n o n - e x a m p l e s

Given a group 𝛤 = ⟨𝑆⟩ and an action 𝛤 ↷ 𝑋, the Schreier graph Sch(𝛤 ↷ 𝑋, 𝑆) has 𝑋 as its vertex set, and
for every 𝑥 ∈ 𝑋, 𝑠 ∈ 𝑆, we introduce an oriented 𝑠-labelled edge from 𝑥 to 𝑠 ⋅ 𝑥. A map 𝛷∶ 𝑋 → 𝑌 between
two 𝛤-spaces is a 𝛤-factor if it is measurable and 𝛾 ⋅ 𝛷(𝑥) = 𝛷(𝛾 ⋅ 𝑥) for every 𝛾 ∈ 𝛤, 𝑥 ∈ 𝑋.

D e f i n i t i o n 1 . Let 𝐺 be a graph and u denote the Lebesgue measure on [0, 1]. We endow the space [0, 1]𝑉(𝐺)
with the product measure u𝑉(𝐺). A factor of iid Schreier decoration (respectively, balanced orientation) of
𝐺 is an Aut(𝐺)-factor 𝛷∶ ([0, 1]𝑉(𝐺), u𝑉(𝐺)) → Sch(𝐺) (respectively, to BalOr(𝐺)). ◀

For simple graphs 𝐺1 and 𝐺2, let the graph 𝐺1 × 𝐺2 be defined by having 𝑉(𝐺1 × 𝐺2) = 𝑉(𝐺1) × 𝑉(𝐺2) with
vertices (𝑢, 𝑣) and (𝑢′, 𝑣′) being adjacent if 𝑢 = 𝑢′ and 𝑣𝑣′ ∈ 𝐸(𝐺2) or 𝑣 = 𝑣′ and 𝑢𝑢′ ∈ 𝐸(𝐺1).

P r o p o s i t i o n 2 . Let 𝐻 be a finite (2𝑑 − 2)-regular graph with an odd number of vertices. The 2𝑑-regular
graph 𝐻 × 𝑃, where 𝑃 is the bi-infinite path, has no factor of iid balanced orientation.

Being quasi-isometric to 𝑃 is a necessary condition in our non-examples. It is, however, not sufficient.

P r o p o s i t i o n 3 . Let 𝐻 be a finite bipartite (2𝑑 − 2)-regular graph. Then, the 2𝑑-regular graph 𝐻 × 𝑃, where
𝑃 is the bi-infinite path, has a factor of iid Schreier decoration.

2 . I n f i n i t e a m e n a b l e g r a p h s

To obtain Schreier decorations of the Archimedean lattices later in this section, we partition their vertex
set 𝑉 into finite clusters such that, for each cluster 𝐶, there is a unique cluster 𝐶+ surrounding it.

D e f i n i t i o n 4 (Hierarchy). Let 𝐺 be a graph and H a partition of 𝑉(𝐺). We say that two distinct parts
𝐶,𝐷 ∈ H are adjacent if and only if there is 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐷which are adjacent in 𝐺. Then,H is a hierarchy
on 𝐺 if the following hold for every 𝐶 ∈ H: 1) 𝐶 is finite, 2) there is a unique 𝐶+ ∈ H such that 𝐶 and 𝐶+

are adjacent and, for all 𝑣 ∈ 𝑉(𝐺) but finitely many, any path from 𝐶 to 𝑣 contains a vertex from 𝐶+, and
3) whenever 𝐵 ∈ H is adjacent to 𝐶, either 𝐵 = 𝐶+ or 𝐶 = 𝐵+. ◀

A key feature of our hierarchies is that any two non-adjacent clusters are far from one another. But starting
with any hierarchy, we can obtain one in which such clusters are as far from one another as we wish.

P r o p o s i t i o n 5 . Let 𝐺 be a graph and 𝑘 ∈ ℕ. A hierarchy H on 𝐺 is 𝑘-spaced if, for all non-adjacent
𝐵,𝐶 ∈ H, the graph distance 𝑑(𝐵,𝐶) = minᵆ∈𝐵,𝑣∈𝐶 𝑑𝐺(𝑢, 𝑣) is at least 𝑘. Suppose there is a factor of iid
hierarchy H on 𝐺. Then, for all 𝑘 ∈ ℕ, there is a factor of iid 𝑘-spaced hierarchy H𝑘 on 𝐺.

Moreover, for all 𝑐, 𝑘 ∈ ℕ, there is a factor of iid pair (𝐽𝑐,𝑘, 𝜂∶ 𝐽𝑐,𝑘 → [𝑐]) where 𝐽𝑐,𝑘 is a 𝑘-spaced hierarchy
and 𝜂∶ 𝐽𝑐,𝑘 → [𝑐] is a colouring with 𝑐 colours such that, for all 𝐶 ∈ 𝐽𝑐,𝑘, if 𝐶 has colour 𝑖, then 𝐶+ has
colour 𝑖 + 1 (mod 𝑐).

For a general planar lattice 𝛬, we wish to use site percolation to obtain a hierarchy.
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T h e o r e m 6 ([1]). Let 𝛬 be a plane lattice with 𝑚-fold symmetry for some 𝑚 ≥ 2 and 𝛬× be its matching
lattice, i.e., the graph obtained from 𝛬 by adding all diagonals to all faces of 𝛬. Then, for every 𝑝 ∈ [0, 1],
the probabilities 𝜃𝑠𝛬(𝑝), 𝜃𝑠𝛬×(𝑝) satisfy that 𝜃𝑠𝛬(𝑝) = 0 or 𝜃𝑠𝛬×(𝑝) = 0. Furthermore, 𝑝𝑠𝐻(𝛬) + 𝑝𝑠𝐻(𝛬×) = 1.

So if 𝛬 has 𝑚-fold symmetry, we can add a vertex to every non-triangular face and connect it to all the
vertices of that face. The resulting lattice 𝛬• also has 𝑚-fold symmetry and is self-matching, so Theorem 6
tells us that 𝑝𝑠𝐻(𝛬•) = 1

2
and percolation does not occur at criticality. This gives us a hierarchy on 𝛬 as

follows. Colour the vertices of 𝛬 yellow or green uniformly at random. For each face, decide randomly
whether either all its yellow or all its green vertices will be treated as if they were connected through the
face. This results in a hierarchy, which together with Proposition 5 gives basis for the following.

T h e o r e m 7 . Let 𝛬 be a planar lattice with 𝑚-fold symmetry,𝑚 ≥ 2, in which all degrees are even. There is
a finitary factor of iid which is a balanced orientation of 𝛬 almost surely.

2 . 1 . S c h r e i e r d e c o r a t i o n s o f A r c h i m e d e a n l a t t i c e s a n d ℤ𝑑
, 𝑑 ≥ 3, a s f a c t o r s o f i i d

T h e o r e m 8 . Let 𝛬 be ℤ𝑑, 𝑑 ≥ 3, or any of the four Archimedean lattices with even degrees: the square
lattice, the triangular lattice, the Kagomé lattice or the (3, 4, 6, 4) lattice. There is a finitary factor of iid
which is a.s. a Schreier decoration of 𝛬. Moreover, it has almost surely no infinite monochromatic paths.

Our approach is the same throughout. We break the lattices into a hierarchy of finite pieces. Then, for
each piece independently, we choose an edge-𝑑-colouring scheme such that we can ensure that every
monochromatic connected subgraph is a finite cycle. Each cycle will orient itself strongly.

Both in the case of the triangular lattice and ℤ𝑑, 𝑑 ≥ 3, once we have a spaced enough hierarchy, we reuse
the patterns developed for 𝛬�. Unlike in the proofs for Archimedean lattices, we do not use percolation as
our starting point for ℤ𝑑, 𝑑 ≥ 3, but instead the results of Gao, Jackson, Krohne and Seward [3].

C o r o l l a r y 9 . For every 𝑑 ≥ 2, there is a factor of iid which is a proper 2𝑑-colouring of the edges of ℤ𝑑 a.s.
Subsequently, there is a factor of iid which is a perfect matching on ℤ𝑑 a.s.

3 . B a l a n c e d o r i e n t a t i o n o f n o n - a m e n a b l e q u a s i - t r a n s i t i v e g r a p h s

T h e o r e m 1 0 . Every non-amenable quasi-transitive unimodular 2𝑑-regular graph 𝐺 has a factor of iid
orientation that is balanced almost surely.

For example, the regular trees are unimodular. For 𝑑 > 1, the 2𝑑-regular tree 𝑇2𝑑 is also non-amenable, so
it is covered by Theorem 10. For 𝑑 > 2, Theorem 10 allows us to remark the following too.

P r o p o s i t i o n 1 1 . If 𝑇𝑑 has a factor of iid proper edge 𝑑-colouring, then 𝑇2𝑑 has a factor of iid Schreier
decoration.

Despite this connection, it remains open whether there is a factor of iid Schreier decoration of 𝑇2𝑑.

To prove Theorem 10, we first reduce a balanced orientation of 𝐺 to a perfect matching in an auxiliary
bipartite graph 𝐺∗. Then, we extend earlier matching results on Cayley graphs to the case of unimodular
quasi-transitive graphs. The key step for us, as it is for the earlier results [2, 4], is to use spectral theory to
show stabilisation of an infinite algorithm.

T h e o r e m 1 2 . Let 𝐺 be a connected, unimodular, quasi-transitive graph. If 𝐺 is non-amenable, then its
Bernoulli graphing 𝒢 has positive spectral gap.

The interpretation of spectral gap differs depending on the Bernoulli graphing being bipartite or not. See
Theorems 14 and 15 for exact statements.

C o r o l l a r y 1 3 . Let 𝐺 be a connected, unimodular, quasi-transitive non-amenable 𝑑-regular bipartite graph.
Then, 𝐺 has a factor of iid subset of the edges which is a perfect matching almost surely.
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3 . 1 . U n i m o d u l a r q u a s i - t r a n s i t i v e g r a p h s , B e r n o u l l i g r a p h i n g s a n d s p e c t r a l g a p

Let 𝐺 be a locally finite quasi-transitive graph, 𝛤 = Aut(𝐺). 𝐺 is unimodular if |Stab𝛤(𝑥) ⋅ 𝑦| = |Stab𝛤(𝑦) ⋅ 𝑥|
for any 𝑥, 𝑦 ∈ 𝑉(𝐺) that are in the same 𝛤 orbit. Let 𝑇 = {𝑜1,… , 𝑜𝑡} be a set of representatives of the orbits
of 𝛤 ↷ 𝑉(𝐺). We set 𝑝(𝑜𝑖) = 𝜇(𝑜𝑖)−1 and scale such that∑𝑖 𝑝(𝑜𝑖) = 1.
The notion of unimodularity comes hand in hand with the Mass Transport Principle, which allows us to
set up a Markov chain𝑀𝑇 mimicking the transitions of the random walk on 𝐺 between 𝛤-orbits. Let its
states be 𝑇 and transition probabilities 𝑝𝑀𝑇(𝑜𝑖, 𝑜𝑗) =

|{(𝑣,𝑜𝑖)∈𝐸∣𝑣∈𝛤⋅𝑜𝑗}|

deg(𝑜𝑖)
.

List the eigenvalues of 𝑀𝑇 in decreasing order, 1 = 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑡. We say 𝑀𝑇 is bipartite if 𝜆𝑡 = −1.
When𝑀𝑇 is not bipartite, we set 𝜌𝑇 = max(|𝜆2|, |𝜆𝑡|). When it is, we set 𝜌𝑇 = max(|𝜆2|, |𝜆𝑡−1|).
Let 𝛺 denote the space of [0, 1]-labelled rooted connected graphs. Elements of 𝛺 are of the form (𝐻, 𝑢,𝜔),
where (𝐻, 𝑢) is a bounded-degree rooted graph and 𝜔∶ 𝑉(𝐻) → [0, 1]. We connect (𝐻, 𝑢,𝜔)with (𝐻′, 𝑢′,𝜔′)
if and only if we can obtain (𝐻′, 𝑢′,𝜔′) from (𝐻, 𝑢,𝜔) bymoving the root to one of its neighbours. We denote
the resulting edge set by ℰ. To define the probability measure on 𝛺, pick the rooted graph (𝐺, 𝑜𝑖) with
probability 𝑝(𝑜𝑖). Then pick a labelling 𝜔 ∈ [0, 1]𝑉(𝐺) according to u𝑉(𝐺). Let 𝜈𝐺 denote the distribution of
(𝐺, 𝑜𝑖,𝜔). Then, the Bernoulli graphing of 𝐺 is 𝒢 = (𝛺,ℰ, 𝜈𝐺).
The Markov operatorℳ is a self-adjoint operator on 𝐿2(𝛺, 𝜈st). Similarly, denote the Markov operator of 𝐺
on ℓ2(𝐺,𝑚st) as𝑀. Here 𝜈st and𝑚st denote the degree-biased versions of 𝜈 and of the counting measure
on 𝑉(𝐺). The following two theorems deal with the non-bipartite and bipartite cases separately.

T h e o r e m 1 4 . Let 𝐺 be as in Theorem 12, and assume also that 𝑀𝑇 is not bipartite. Let 𝜌 < 1 denote the
spectral radius of 𝐺 on ℓ2(𝐺,𝑚st). Then, the spectral radius of ℳ on 𝐿20(𝛺, 𝜈st) is at most max(𝜌, 𝜌𝑇) < 1.

T h e o r e m 1 5 . Let 𝐺 be as in Theorem 12, and assume that 𝑀𝑇 is bipartite. Let 𝜌 < 1 denote the spectral
radius of 𝐺 on ℓ2(𝐺,𝑚st). The Bernoulli graphing 𝒢 is measurably bipartite, with bipartition 𝑋1∪𝑋2 = 𝑉(𝒢).
Let 𝐿200(𝛺, 𝜈st) denote the orthogonal complement of the subspace generated by the functions 1𝑋 and
1𝑋1 − 1𝑋2. Then, the spectral radius of ℳ on 𝐿200(𝛺, 𝜈st) is at most max(𝜌, 𝜌𝑇) < 1.

3 . 2 . P e r f e c t m a t c h i n g s a n d b a l a n c e d o r i e n t a t i o n s

To proveTheorem 10, we relate balanced orientations of our 2𝑑-regular𝐺 to perfect matchings of a bipartite
graph 𝐺∗. 𝐺∗ is constructed from 𝐺 by local transformations, which makes sure that it remains unimodular.
In particular, the bipartite 𝐺∗ = (𝑆,𝑇,𝐸∗) is obtained by setting 𝑆 = 𝐸(𝐺) and 𝑇 = 𝑉(𝐺) × [𝑑]. Edges of 𝐺∗

are defined by connecting 𝑒 ∈ 𝑆 to (𝑣, 𝑖) ∈ 𝑇 if and only if 𝑒 is incident to 𝑣 in 𝐺.

L e m m a 1 6 . The graph 𝐺∗ is quasi-isometric to 𝐺. If 𝐺 is unimodular quasi-transitive, then so is 𝐺∗.
Crucially, any perfect matching 𝑀 in 𝐺∗ defines a balanced orientation of 𝐺 by orienting the edge 𝑒 ∈ 𝑆
towards its endpoint 𝑣 if and only if 𝑒 and (𝑣, 𝑖) are matched by 𝑀 for some 𝑖 ∈ [𝑑].

P r o o f o f T h e o r e m 1 0 . We construct 𝐺∗, which Lemma 16 tells us is bipartite, unimodular, quasi-transitive,
and quasi-isometric to 𝐺. As amenability is a quasi-isometry invariant property, 𝐺∗ is non-amenable. By
Corollary 13, 𝐺∗ has a perfect matching, which by Lemma 16 gives a balanced orientation of 𝐺. ▪
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A b s t r a c t : Hardy kernels are known for being a useful tool to construct bounded
operators on 𝐿𝑝(ℝ+) spaces, property which follows from Hardy’s inequality. Even
more, recently Hardy kernels have also been used to define bounded operators
on Hardy spaces on the half plane 𝐻𝑝

𝑎(ℂ+). In this work, the range spaces in
𝐿𝑝(ℝ+) and 𝐻𝑝

𝑎(ℂ+) of such operators are analysed. We focus on the case 𝑝 = 2,
where under some circumstances, these range spaces arise as reproducing kernel
Hilbert spaces. We show that in the 𝐿2(ℝ+) case, the reproducing kernels of these
spaces turn out to be Hardy kernels as well, whereas in the 𝐻2

𝑎(ℂ+) setting, their
reproducing kernels are holomorphic extensions of Hardy kernels. We also present
how the Laplace transform connects the real and complex settings of this family of
range spaces.

R e s u m e n : Los núcleos de Hardy son conocidos por ser una herramienta útil para
construir operadores acotados en los espacios 𝐿𝑝(ℝ+), hecho que se sigue de la
desigualdad de Hardy. Además, los núcleos de Hardy han sido recientemente utili-
zados para construir operadores acotados en los espacios de Hardy del semiplano
𝐻𝑝
𝑎(ℂ+). En este trabajo, se analizan los espacios rango de dichos operadores en

𝐿𝑝(ℝ+) y 𝐻𝑝
𝑎(ℂ+). En particular, nos centramos en el caso 𝑝 = 2, en el que, bajo

determinadas condiciones, estos espacios rango son de hecho espacios de Hilbert
con núcleo reproductor. Demostramos que, en el caso de 𝐿2(ℝ+), los núcleos re-
productores de dichos espacios son a su vez núcleos de Hardy, y que en el caso
de 𝐻2

𝑎(ℂ+), los núcleos reproductores vienen dados por extensiones holomorfas
de núcleos de Hardy. Por último, mostramos cómo la transformada de Laplace
conecta los escenarios real y complejo de esta familia de espacios rango.
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1 . B a n a c h a l g e b r a o f H a r d y k e r n e l s

Set ℝ+ ≔ (0,∞) and ℂ+ ≔ {𝑧 ∈ ℂ | ℜ𝑧 > 0}.

D e f i n i t i o n 1 . Let 1 ≤ 𝑝 < ∞ and let 𝐻∶ ℝ+ ×ℝ+ → ℂ be a measurable map. 𝐻 is said to be a Hardy kernel
of index 𝑝 if the following conditions hold.

( i ) 𝐻 is homogeneous of degree −1; that is, for all 𝜆 > 0, 𝐻(𝜆𝑟, 𝜆𝑠) = 𝜆−1𝐻(𝑟, 𝑠) for all 𝑟, 𝑠 > 0.
( i i ) ∫∞

0 𝐻(1, 𝑠)𝑠−1/𝑝 d𝑠 < ∞.

Let us denote by ℌ𝑝 the set of Hardy kernels of index 𝑝. ◀

For 1 ≤ 𝑝 < ∞, let 𝐿𝑝(ℝ+) denote the classical Lebesgue space on the positive real line, and 𝐻𝑝
𝑎(ℂ+) the

Hardy space on the right complex half plane. Given a Hardy kernel of index 𝑝, one can construct bounded
operators 𝐴𝐻 and 𝐷𝐻 on 𝐿𝑝(ℝ+) and 𝐻𝑝(ℂ+) respectively, which are given by

(𝐴𝐻𝑓)(𝑟) ≔ ∫
∞

0
𝐻(𝑟, 𝑠)𝑓(𝑠) d𝑠, for a.e. 𝑟 > 0, 𝑓 ∈ 𝐿𝑝(ℝ+),

(𝐷𝐻𝐹)(𝑧) ≔ ∫
∞

0
𝐻(|𝑧|, 𝑠)𝐹(𝑠ei𝜃) d𝑠, 𝑧 = |𝑧|ei𝜃 ∈ ℂ+, 𝐹 ∈ 𝐻𝑝(ℂ+).

The boundedness of 𝐴𝐻 ∈ ℬ(𝐿𝑝(ℝ+)) follows from Hardy’s inequality [3, Theorem 319], and the bound-
edness of 𝐷𝐻 ∈ ℬ(𝐻𝑝(ℂ+)) was shown in the recent work about Hausdorff operators [5]. In fact, these
families of operators (𝐴𝐻)𝐻∈ℌ𝑝 and (𝐷𝐻)𝐻∈ℌ𝑝 may be labelled as Hardy-Hausdorff operators since they
are a particular case of Hausdorff operators, see the survey article [6] for more details.

It is part of folklore that the family of operators given by (𝐴𝐻)𝐻∈ℌ𝑝 can be described as convolution
operators by identifying a Hardy kernel 𝐻 with a Lebesgue integrable function 𝑔𝐻 ∈ 𝐿1(ℝ), see for example
the paper about the spectra of 𝐴𝐻 [1]. More precisely, let 𝐻 be a Hardy kernel of index 𝑝, and set 𝑔𝐻(𝑡) ≔
𝐻(1, e−𝑡)e−𝑡/𝑝′ for all 𝑡 ∈ ℝ, where 𝑝′ is such that 1/𝑝 + 1/𝑝′ = 1. It is readily seen that 𝑔𝐻 ∈ 𝐿1(ℝ), with
‖𝑔𝐻‖1 = ∫∞

0 |𝐻(1, 𝑠)|𝑠−1/𝑝 d𝑠. Moreover, if one takes certain equivalence classes on ℌ𝑝, it is straightforward
to obtain that the mapping 𝐻 ↦ 𝑔𝐻 is a bijection from ℌ𝑝 onto 𝐿1(ℝ), see the forthcoming paper [8]
for more details. Therefore, one obtains that this set of equivalence classes of Hardy kernels of index 𝑝
entails a commutative Banach algebra structure, isomorphic to 𝐿1(ℝ), whose norm and product are given,
respectively, by

‖𝐻‖ℌ𝑝 ≔ ∫
∞

0
|𝐻(1, 𝑠)|𝑠−1/𝑝 d𝑠, 𝐻 ∈ ℌ𝑝,

(𝐻 • 𝐺)(𝑟, 𝑠) ≔ ∫
∞

0
𝐻(𝑟, 𝑡)𝐺(𝑡, 𝑠) d𝑡, 𝑟, 𝑠 > 0, 𝐻,𝐺 ∈ ℌ𝑝.

Notice that the multiplication • resembles typical formulas about the construction of reproducing kernel
Hilbert spaces, see for example the expression [9, (2.1)].

For the purposes of this work, two subsets ofℌ𝑝must be pointed out. First, set ℐ𝑝 ≔ {𝐻 ∈ ℌ𝑝 ∣ 𝑔𝐻 ∈ 𝐿𝑝′(ℝ)},
which is a dense ideal of ℌ𝑝. Second, let ℌHol

𝑝 denote the subspace of ℌ𝑝 of Hardy kernels 𝐻 of index 𝑝 that
admit a (unique) extension 𝐻Hol from ℝ+ ×ℝ+ to ℂ+ × ℂ+ such that 𝐻Hol(𝑧,𝑤) is holomorphic in 𝑧 and
anti-holomorphic in 𝑤. The following will also be needed.

D e f i n i t i o n 2 . Let 1 < 𝑝 < ∞, and𝐻 ∈ ℌ𝑝. Set𝐻𝑡(𝑟, 𝑠) ≔ 𝐻(𝑠, 𝑟) and𝐻∗(𝑟, 𝑠) ≔ 𝐻(𝑠, 𝑟) for all 𝑟, 𝑠 > 0, where
𝑧 denotes the conjugate of a complex number 𝑧. ◀

It is readily seen that both 𝐻𝑡, 𝐻∗ belong to ℌ𝑝′.

2 . R a n g e s p a c e s o f H a r d y - H a u s d o r f f o p e r a t o r s

In this section, we proceed to study the range spaces of Hardy-Hausdorff operators on 𝐿2(ℝ+) and 𝐻2
𝑎(ℂ+)

as reproducing kernel Hilbert spaces, that is, Hilbert spaces of functions for which point evaluations
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define continuous functionals. This is partly motivated by the forthcoming work [2], where range spaces
of fractional Cesàro operators are analysed. Let us recall that if 𝛺 is a reproducing kernel Hilbert space
(RKHS from now on) of complex functions with domain 𝑋, its reproducing kernel 𝐾 is given by

𝐾(𝑥, 𝑦) = 𝑘𝑦(𝑥), 𝑥, 𝑦 ∈ 𝑋,

where 𝑘𝑦 ∈ 𝛺 is such that 𝑓(𝑦) = ⟨𝑓|𝑘𝑦⟩ for all 𝑓 ∈ 𝛺. One of themain interesting properties of reproducing
kernels is that one can recover the whole Hilbert space 𝛺 from its reproducing kernel 𝐾, see for example
Chapter I in [7].

2 . 1 . H a r d y k e r n e l s a s r e p r o d u c i n g k e r n e l s o n ℝ+ ×ℝ+

First, we shall study the 𝐿𝑝(ℝ+) scenario. Recall that 𝐿𝑝(ℝ+) denotes the Banach space of functions 𝑓
defined a.e. on ℝ+, such that ‖𝑓‖𝐿𝑝 ≔ (∫∞

0 |𝑓(𝑟)|𝑝 d𝑟)1/𝑝 < ∞.

D e f i n i t i o n 3 . Let 1 ≤ 𝑝 < ∞, and 𝐻 ∈ ℌ𝑝. Set the range space 𝒜(𝐻) ≔ 𝐴𝐻(𝐿𝑝(ℝ+)), and endow it with the
canonical Banach space structure 𝒜(𝐻) ≅ 𝐿𝑝(ℝ+)/ ker𝐴𝐻. ◀

Notice that since 𝒜(𝐻) ⊂ 𝐿𝑝(ℝ+), one cannot guarantee that point evaluations are well defined on 𝒜(𝐻).
Let 𝐶(ℝ+) denote the set of complex continuous functions on ℝ+.

L e m m a 4 . Let 1 ≤ 𝑝 < ∞ and let 𝐻 ∈ ℐ𝑝 ⊂ ℌ𝑝. One has that 𝒜(𝐻) ⊂ 𝐶(ℝ+), in the sense that, if
𝑓 ∈ 𝒜(𝐻), then there is a (unique) continuous function 𝑔 ∈ 𝐶(ℝ+) such that 𝑓 = 𝑔 a.e.

Therefore, if 𝐻 ∈ ℐ𝑝 and 𝑟 > 0, one can define point evaluations on 𝒜(𝐻) by 𝑓(𝑟) ≔ 𝑔(𝑟), where 𝑓 ∈ 𝒜(𝐻)
and 𝑔 ∈ 𝐶(ℝ+) are as in the lemma above. The proposition below shows that these are all the Hardy kernels
for which one can define continuous point evaluations on 𝒜(𝐻).

P r o p o s i t i o n 5 . Let 1 ≤ 𝑝 < ∞, and 𝐻 ∈ ℌ𝑝. Then, one can define continuous point evaluations on 𝒜(𝐻)
if and only if 𝐻 ∈ ℐ𝑝. If this is the case, it follows that for all 𝑓 ∈ 𝒜(𝐻)

|𝑓(𝑟)| ≤ 𝑟−1/𝑝‖𝑔𝐻‖𝐿𝑝′‖𝑓‖𝒜(𝐻), 𝑟 > 0.

Next we give the reproducing kernel of this family of range spaces with continuous point evaluations.

T h e o r e m 6 . Let 𝐻 ∈ ℌ2. Then, 𝒜(𝐻) is a RKHS if and only if 𝐻 ∈ ℐ2, and in this case its reproducing
kernel 𝐾𝐻 is separately continuous and given by

𝐾𝐻(𝑟, 𝑠) = ∫
∞

0
𝐻(𝑟, 𝑡)𝐻(𝑠, 𝑡) d𝑡, for 𝑟, 𝑠 > 0.

It follows that 𝐾𝐻 defines a Hardy kernel, satisfying 𝐾𝐻 = 𝐻 • 𝐻∗.

2 . 2 . H a r d y k e r n e l s a s r e p r o d u c i n g k e r n e l s o n ℂ+ × ℂ+

Nowwe focus on the Hardy spaces of the half plane𝐻𝑝
𝑎(ℂ+), which are formed by all holomorphic functions

𝐹 on ℂ+ such that ‖𝐹‖𝐻𝑝 ≔ sup𝑥>0 (∫
∞
−∞ |𝑓(𝑥 + i𝑦)|𝑝 d𝑦)1/𝑝 < ∞. It is well known that these spaces present

continuous point evaluations, so in particular 𝐻2
𝑎(ℂ+) is a RKHS whose reproducing kernel 𝒦 is given

by𝒦(𝑧,𝑤) = (𝑧 + 𝑤)−1 for all 𝑧,𝑤 ∈ ℂ+, see for example Proposition 1.8 in the notes [4]. Notice that, if
one restricts𝒦 to ℝ+ ×ℝ+, one obtains the Stieltjes kernel 𝒮, which is a Hardy kernel of index 2 given by
𝒮(𝑟, 𝑠) = (𝑟 + 𝑠)−1 for all 𝑟, 𝑠 > 0.

D e f i n i t i o n 7 . Let 𝐻 ∈ ℌ𝑝. Set 𝒟(𝐻) ≔ 𝐷𝐻(𝐻
𝑝
𝑎(ℂ+)) ⊂ 𝐻𝑝

𝑎(ℂ+) and endow 𝒟(𝐻) with the canonical
structure of a Banach space by𝒟(𝐻) ≅ 𝐻𝑝

𝑎(ℂ+)/ ker𝐷𝐻. ◀

It is readily seen that point evaluations are continuous functionals on𝒟(𝐻) for all 𝐻 ∈ ℌ𝑝. The following
theorem gives the reproducing kernel𝒦𝐻 of𝒟(𝐻), where 𝐻 ∈ ℌ2, and which is given by the holomorphic
extension of a Hardy kernel.
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T h e o r e m 8 . Let 𝐻 ∈ ℌ2. One has that 𝐻•𝒮•𝐻∗ ∈ ℌHol
2 , and that 𝒟(𝐻) is a RKHS continuously embedded

into 𝐻2
𝑎(ℂ+) whose reproducing kernel 𝒦𝐻 is given by

𝒦𝐻 = (𝐻 • 𝒮 • 𝐻∗)Hol.

2 . 3 . A P a l e y - W i e n e r r e s u l t

Next, we analyse the connection between the real and complex settings. First of all, recall that the classical
Paley-Wiener theorem states that the Laplace transform ℒ, given by (ℒ𝑓)(𝑧) ≔ ∫∞

0 e−𝑟𝑧𝑓(𝑟) for all 𝑧 ∈ ℂ+,
defines an isometric isomorphism from 𝐿2(ℝ+) onto 𝐻2

𝑎(ℂ+). The results below show how the Laplace
transform connects the range spaces presented in subsections above.

P r o p o s i t i o n 9 . Let 𝐻 ∈ ℌ2. It follows that ℒ𝐴𝐻 = 𝐷𝐻𝑡ℒ.

T h e o r e m 1 0 . Let 𝐻 ∈ ℌ2. The Laplace transform ℒ restricted to 𝒜(𝐻) is an isometric isomorphism onto
𝒟(𝐻𝑡), ℒ∶ 𝒜(𝐻) → 𝒟(𝐻𝑡).

C o r o l l a r y 1 1 . Let 𝐻 ∈ ℌ2. Either if 𝐻 is symmetric, that is, 𝐻 = 𝐻𝑡, or if 𝐻 is real-valued, one obtains that
𝒟(𝐻) = 𝒟(𝐻𝑡) as RKH spaces. Thus, the Laplace tranform ℒ restricts to an isometric isomorphism from
𝒜(𝐻) onto 𝒟(𝐻), ℒ∶ 𝒜(𝐻) → 𝒟(𝐻).

One may ask whether there exists an isometric isomorphism from 𝒜(𝐻) onto𝒟(𝐻) for a general 𝐻 ∈ ℌ2.
This question is answered in the forthcoming work [8], where two mappings 𝒫, 𝒮∶ 𝐿2(ℝ+) → 𝐻2

𝑎(ℂ+) are
given such that they define isometric isomorphisms from 𝒜(𝐻) onto𝒟(𝐻) for all 𝐻 ∈ ℌ2.

As a final note, we refer the reader again to the upcoming work [8], where the proofs of all the results
presented here, as well as a bunch of new results about this topic, are given in detail.
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Poisson brackets on the space of solutions of first order Hamiltonian field theories

I n t r o d u c t i o n

We aim to analyse geometrical structures needed to give a description of a classical field theory allowing
for a formulation of its quantum counterpart being compatible with special relativity. Now, we motivate
how, with this problem in mind, it could be of interest to search for a Poisson structure on the space of
solutions of the equations of the motion of the classical field theory.

Given a classical dynamical system, a formulation in terms of Poisson geometry is helpful to give a
description of its quantum counterpart, if existing. If a Poisson structure exists on the phase space1, say
ℳ, of the dynamical system, then a Poisson bracket on the space of smooth functions onℳ is defined.
Real valued smooth functions onℳ are usually interpreted as the observables of the theory. The so called
Dirac’s analogy principle states that in order for the predictions of the classical and the quantum theory
to coincide within the energy scale where they are experimentally indistinguishable, then the Poisson
structure on the space of classical observables must “come from” a Lie algebra structure on the space of
quantum observables, that are modelled as self-adjoint operators on a Hilbert space. This motivates the
search of a Poisson description of the classical theory.

However, the very concept of phase space is not compatible with special relativity. Indeed, often, the
phase space is the space of configurations and momenta of the dynamical system for a fixed value of
the time and the definition of a concept of time requires the introduction of a reference frame which
splits the relativistic space-time into space and time. But, after a particular reference frame is introduced,
the covariance of the dynamical system2 under the Lorentz group can not be manifest. Following an
idea of Souriau [7], the space of solutions of the equations of the motion seems to be more suitable for a
relativistic description. Indeed, the relativity group is a group whose action preserves the equations of the
motion and, consequently, maps solutions into solutions. Thus, differently from phase space, the space of
solutions is actually covariant with respect to the action of the relativity group. With all this in mind, in
order to give a description of the quantum counterpart of a classical field theory which is compatible with
special relativity, it is of interest to investigate whether and how a Poisson structure can be given on the
space of solutions of the classical theory.

This is what we do in this paper, giving an affirmative answer in the case of field theories where all the
constraints can be solved and postponing the analysis of gauge theories to a more extensive work.

1 . M u l t i s y m p l e c t i c f o r m u l a t i o n o f f i e l d t h e o r i e s

We refer to [5, 6] for basic notions, notations and conventions about differential geometry and jet bundles.
We adopt the so called multisymplectic formulation of field theories [4]. In this formulation the fields
of the theory are modelled as sections of a fibre bundle (𝐸,𝜋,ℳ) whose base spaceℳ is a space-time
with boundary 𝜕ℳ. A chart onℳ will be denoted by (𝑈ℳ,𝜓ℳ), 𝜓ℳ(𝑚) = (𝑥𝜇)𝜇=0,...,𝑑, with 𝑑 + 1 being
the dimension of the space-time and 𝑚 ∈ ℳ. An adapted fibered chart on 𝐸 will be denoted by (𝑈𝐸,𝜓𝐸),
𝜓𝐸(𝑒) = (𝑥𝜇, 𝑢𝑎)𝜇=0,...,𝑑;𝑎=1,...,𝑛, with 𝑛 being the dimension of the fibres of 𝐸 and 𝑒 ∈ 𝐸. Sections of 𝜋 are
the fields of the theory, and we denote them by 𝜙𝑎. The analogue of the phase space of mechanics is the
so called covariant phase space which is the affine dual of the first order jet bundle of 𝜋 [4]. It is again a
fibre bundle overℳ, denoted by (𝒫(𝐸), 𝜏1,ℳ), where an adapted fibered chart will be denoted by (𝑈𝒫,𝜓𝒫),
𝜓𝒫(𝑝) = (𝑥𝜇, 𝑢𝑎, 𝜌𝜇𝑎)𝜇=0,...,𝑑;𝑎=1,...,𝑛, with 𝑝 ∈ 𝒫(𝐸). Sections of 𝜏1 will be denoted by 𝜒 = (𝜙𝑎, 𝑃𝜇𝑎 ), where 𝑃

𝜇
𝑎

are the momenta fields conjugate with the fields 𝜙𝑎. We take actually a subset of suitably regular section
admitting a Banach manifold structure, we refer to them as dynamical fields of the theory and we denote
them asℱ𝒫. The particular field theory under investigation is specified by selecting anHamiltonian function,
namely, a real valued function on 𝒫(𝐸), say 𝐻(𝑥, 𝑢, 𝜌). As it is explained in [4], when an Hamiltonian is
fixed, the covariant phase space has a canonical (𝑑 + 1)-form denoted by

𝛩𝐻 = 𝜌𝜇𝑎 d𝑢𝑎 ∧ 𝑖𝜇𝑣𝑜𝑙ℳ − 𝐻𝜈ℳ,

1It is a space where each possible configuration of the dynamical system is represented by a point.
2We mean the invariance of the equations of the motion as well as the invariance of physical meaningful quantities.
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where 𝑖𝜇 denotes the contraction with the vector field
𝜕

𝜕𝑥𝜇
and 𝜈ℳ is the volume form onℳ.

The dynamical content of the theory is encoded in the Schwinger-Weiss variational principle. Trajectories
are defined to be the critical points of the following action functional

𝒮[𝜒] = ∫
ℳ
𝜒⋆𝛩𝐻.

The critical points of 𝒮 are those dynamical fields for which the variation of the action along any direction
only depends on boundary terms. Let us clarify what we mean for “variation”, “direction” and “boundary
term”. The space ℱ𝒫 is a space of sections. A tangent vector at some “point” 𝜒 is defined [4] as a map
𝑚 ↦ 𝑋(𝜒) ∈ V𝜒(𝑚)𝒫(𝐸) for all 𝑚 ∈ ℳ, namely, as a section of the pull-back bundle of V𝒫(𝐸) via 𝜒.
Intuitively it is a collection of 𝜏1-vertical3 tangent vectors at 𝒫(𝐸) along the map 𝜒. Let us denote as 𝑋
an extension of 𝑋(𝜒) to a (𝜏1-vertical) vector field on 𝒫(𝐸) defined on a neighborhood of the image of
𝜒. Denote by 𝐹𝑋𝑠 the local flow of 𝑋. Then, 𝜒𝑠 ≔ 𝐹𝑋𝑠 ∘ 𝜒 is a one-parameter family of sections of 𝜏1. The
variation of 𝒮 along the direction 𝑋(𝜒) is defined to be

( 1 ) 𝛿𝑋(𝜒)𝒮[𝜒] =
d
d𝑠
|||
𝑠=0

∫
ℳ
𝜒⋆𝑠 𝛩𝐻 = ∫

ℳ
𝜒⋆ (𝑖𝑋 d𝛩𝐻) +∫

𝜕ℳ
𝜒⋆𝜕ℳ (𝑖𝑋𝛩𝐻) ,

where 𝜒𝜕ℳ = 𝜒||𝜕ℳ is the dynamical field 𝜒 restricted to 𝜕ℳ4. The first term on the right hand side (r.h.s.)
of (1) can be interpreted as the contraction of a differential one-form over ℱ𝒫, that we denote by �� and
call Euler-Lagrange form, with the tangent vector 𝑋(𝜒). The second term in (1) is a boundary term in the
sense that it only depends on the restriction of the dynamical fields to the boundary. We are going to
denote the space of restrictions of dynamical fields to the boundary by ℱ𝜕ℳ

𝒫 . Therefore, the second term
on the r.h.s. can be interpreted as the pull-back of a differential form on ℱ𝜕ℳ

𝒫 via the restriction map
𝛱𝜕ℳ∶ ℱ𝒫 → ℱ𝜕ℳ

𝒫 . We denote such a differential form by 𝛱⋆
𝜕ℳ𝛼𝜕ℳ, where 𝛼𝜕ℳ is a differential one-form

on ℱ𝜕ℳ
𝒫 . Thus, following the Schwinger-Weiss principle, trajectories are those 𝜒 for which the first term on

the r.h.s. of (1) vanishes for any direction 𝑋(𝜒). Then, the fundamental lemma of the calculus of variations
implies that 𝜒 satisfies the following equations of the motion

��𝜒(𝑋(𝜒)) = 0 ∀𝑋(𝜒) ∈ T𝜒ℱ𝒫 ⟹ 𝜒⋆ (𝑖𝑋 d𝛩𝐻) = 0 ∀𝑋 ∈ 𝔛𝑣 (𝑈(𝜒)
𝒫 ) ⟹ {

𝜕𝜙𝑎

𝜕𝑥𝜇
= 𝜕𝐻

𝜕𝜌𝜇𝑎
(𝜒),

𝜕𝑃𝜇𝑎
𝜕𝑥𝜇

= − 𝜕𝐻
𝜕ᵆ𝑎

(𝜒),

𝑈(𝜒)
𝒫 being an open neighborhood of the image of 𝜒. The space of solutions of the equations of the motion

will be denoted by ℰℒℳ.

Now, we focus on the role of the differential form 𝛱⋆
𝜕ℳ𝛼𝜕ℳ within the construction of the Poisson bracket

on ℰℒℳ. First, its differential gives the following two-form on ℱ𝒫 being, again, the pull-back of a two-form
on ℱ𝜕ℳ

𝒫

d𝛱⋆
𝜕ℳ𝛼𝜕ℳ(𝑋(𝜒),𝑌 (𝜒)) ≕ 𝛱⋆

𝜕ℳ𝛺𝜕ℳ(𝑋(𝜒),𝑌 (𝜒)) = ∫
𝜕ℳ

𝜒⋆𝜕ℳ (𝑖𝑋𝑖𝑌 d𝛩𝐻) .

It can be proved that [1, 2]

P r o p o s i t i o n 1 . ℰℒℳ is an isotropic manifold for 𝛱⋆
𝜕ℳ𝛺𝜕ℳ.

On the other hand, if we consider a blockℳ12 inℳwhose boundary ismade by two hypersurfaces𝛴1 and𝛴2
with opposite orientations, then 𝛱⋆

𝜕ℳ𝛺𝜕ℳ = 𝛱⋆
𝛴1𝛺

𝛴1 −𝛱⋆
𝛴2𝛺

𝛴2, where 𝛱⋆
𝛴𝛺𝛴 = ∫𝛴 𝜒

⋆
𝛴 (𝑖𝑋𝑖𝑌 d𝛩𝐻), 𝜒𝛴 being

the restriction to𝛴 of a dynamical field. Then, because of proposition 1, we have𝛱⋆
𝛴1𝛺

𝛴1||ℰℒℳ
= 𝛱⋆

𝛴2𝛺
𝛴2||ℰℒℳ

.
The same argument for any couple of hypersurfaces inℳ gives that the differential two-form 𝛱⋆

𝛴𝛺𝛴 on
the space of restrictions of dynamical fields to a hypersurface 𝛴 does not depend on the particular 𝛴 if it is
evaluated on solutions of the equations of the motion. We are going to denote the equivalence class of all
these equivalent 𝛱⋆

𝛴𝛺𝛴 on ℰℒℳ, as 𝛱⋆𝛺.

3They must be vertical in order to ensure their flow to lie in the space of sections.
4It is actually a section of the pull-back bundle of 𝜏1 via 𝔦𝜕ℳ, 𝔦𝜕ℳ being the canonical immersion of 𝜕ℳ intoℳ.
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2 . C o n s t r u c t i o n o f t h e b r a c k e t

The crucial point to obtain a Poisson bracket on ℰℒℳ is that 𝛱⋆𝛺 is a symplectic structure for theories
where all constraints can be solved5.

P r o p o s i t i o n 2 . 𝛱⋆𝛺 is a symplectic structure if all constraints can be solved.

P r o o f s k e t c h . Since 𝛱⋆𝛺 does not depend on 𝛴, one can consider as 𝛴 a hypersurface of Cauchy data for
the equations on the motion. If all constraints can be solved, an existence and uniqueness theorem for
the equations of the motion holds and, thus, the space of Cauchy data is diffeomorphic with the space of
solutions, the diffeomorphism denoted by 𝛷ℰℒℳ. The structure 𝛱⋆𝛺 restricted to the space of Cauchy data
of the equations of the motion is 𝛷⋆

ℰℒℳ
𝛱⋆
𝛴𝛺𝛴. Via a direct computation it is easy to prove that 𝛷⋆

ℰℒℳ
𝛱⋆
𝛴𝛺𝛴

is symplectic. Therefore, the structure 𝛱⋆𝛺 on the space of solutions is the pull-back via a diffeomorphism
of a symplectic structure, thus, it is symplectic. ▪

With the symplectic structure 𝛱⋆𝛺 in hand, a Poisson bracket on ℰℒℳ can be defined in the usual way as

{𝐹,𝐺} = 𝛱⋆𝛺(𝑋𝐹,𝑋𝐺) = 𝔏𝑋𝐹𝐺,

𝐹 and 𝐺 being functions on ℰℒℳ and 𝑋𝐹 being the Hamiltonian vector field associated with 𝐹 w.r.t. 𝛱⋆𝛺,
i.e., the one satisfying 𝑖𝑋𝐹𝛱

⋆𝛺 = d𝐹.

We conclude by mentioning that an easier way to compute the Hamiltonian vector field , and, thus, the
bracket, exists6. Indeed, the functional 𝐹 can be restricted to the space of Cauchy data to 𝑓 = 𝛷⋆

ℰℒℳ
𝐹.

To 𝑓 a Hamiltonian vector field, say 𝑋𝑓, can be associated via the symplectic structure 𝛷⋆
ℰℒℳ

𝛱⋆𝛺, and
this is much easier from the computational point of view. Then, it can be proved that the Hamiltonian
vector field associated with the original functional 𝐹 with respect to the structure 𝛱⋆𝛺 can be recovered
by solving the linearization of the equations of the motion with 𝑋𝑓 as Cauchy datum.
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A b s t r a c t : Over the last decades several regularization methods have been devel-
oped for sparse high-dimensional regression models. The influence of outliers
is particularly awkward in the high dimensional context and so certain robust
methods have been considered. Regularization methods simultaneously perform
the model selection and the estimation of regression coefficients, merging a loss
function based on the residuals and a penalty function inducing sparsity. Differ-
ent penalties have been proposed, such as LASSO or Adaptive LASSO, a variant
which improves the oracle model selection property, or non-concave penalties
such as SCAD or MCP, which demostrably overcome the bias problem of the LASSO.
We propose to examine robust losses with the various proposals for the penal-
ties, leading to the differents estimating methods, namely the minimun density
power divergence (DPD) and Rényi psedudodistance (RP) estimator penalized
with LASSO, adaptative LASSO and SCAD.We develop an estimating algorithm for
each method, focusing on their differences and similarities. Finally, we study the
performance of the methods throught a simulation study.

R e s u m e n : En las últimas décadas se han desarrollado variosmétodos de regulariza-
ción para el modelo lineal de regresión con datos de alta dimensión. La influencia
de los datos atípicos en la estimación es particularmente perjudicial en el contexto
de datos de alta dimensión, y por tanto se han considerado métodos robustos
de estimación. Los métodos de regularización llevan a cabo simultáneamente
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penalizaciones como las penalizaciones LASSO y LASSO Adaptativo, una variante
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como SCAD o MCP, que resuelven el problema de sesgo que presenta la penaliza-
ción LASSO. Se propone examinar las pérdidas robustas con distintas funciones
de penalización, dando lugar a distintos estimadores, a saber, el estimador de
mínima potencia (DPD) y de mínima pseudodistancia de Rényi penalizado con
LASSO, LASSO adaptativo y SCAD . Se desarrolla un algoritmo de estimación para
cada método, señalando sus diferencias y similitudes. Por último, se estudia el
comportamiento de los métodos a través de un estudio de simulación.
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A comparative study of robust regularization methods based on minimum DPD and RP losses

1 . I n t r o d u c c i ó n

We consider the high-dimensional linear regression model (LRM) given by

( 1 ) 𝑌𝑖 = 𝑿𝑇
𝑖 𝜷 + 𝑈𝑖, 𝑖 = 1,… , 𝑛,

where 𝑿𝑖 = (𝑋𝑖1,… ,𝑋𝑖𝑝)𝑇 are the explanatory variables or covariates, 𝜷 = (𝛽1,… , 𝛽𝑝)𝑇 ∈ ℝ𝑝 is the vector of
unknown regression coefficients and the 𝑈𝑖s are random noise with 𝑼 = (𝑈1,… ,𝑈𝑛) ∈ ℝ𝑛 being normally
distributed with null mean vector and variance covariance matrix 𝜎2𝑰𝑛.
The term high-dimensional data is used when the number of explanatory variables, 𝑝, is greater than
the number of observations by nonpolynomial dimensionality. On the other hand, sparse models are
those whose number of true non-zero regression parameters is very low respect to the total number of
covariates. This situation is accurate to real-life problems in several areas, such as genetics and genomic,
bioinformatics, neuroimaging or chemometrics. Finally, it is known that contaminated data could worsen
the estimation of the regression parameters. To avoid this issue, we need to develop robust estimating
procedures. In this line, we are following the ideas by Castilla et al. (2020) [1] and Ghosh et al. (2020) [2].
The main awkward of the high dimensional regression models is the variable selection. As the number of
possible models grows exponentially, information criteria are not suitable to choose the best model. Hence,
regularization methods are clearly more convenient in these settings. Regularization methods introduce a
penalty term, which penalizes the absolute value of the regression coefficients, on the objective function
to achieve simultaneously model selection and parameter estimation. Regularization methods for sparse
high-dimensional data analysis are characterized by loss functions measuring data fits and penalty terms
constraining model parameters. In LRM, we estimate the parameter vector (𝜷,𝜎) ∈ ℝ𝑝+1 by minimizing
an objective function of the form

( 2 ) 𝑄𝑛,𝜆 (𝜷,𝜎) = 𝐿𝑛 (𝜷, 𝜎) +∑𝑝
𝑗=1𝑝𝜆𝑛 (|𝛽𝑗|) ,

which consists of a data fit functional 𝐿𝑛 (𝜷,𝜎), called loss function, and a penalty function∑
𝑝
𝑗=1𝑝𝜆𝑛 (||𝛽𝑗||),

assessing the physical plausibility of 𝜷 and controlling the complexity of the fitted model in order to avoid
overfitting. A regularization parameter 𝜆𝑛 (𝜆𝑛 ≥ 0) regulates the penalty. From a practical point of view,
the regularization parameter is chosen using some information criterion or by cross-validation.
The most common penalties are 𝑝𝜆𝑛(𝑠) = 𝑠2 for Ridge estimator and 𝑝𝜆𝑛(𝑠) = |𝑠| for the LASSO estimator.
The first one does not achieve model selection as it is unable to detect the null regression coefficients, but
is more convenient when there is multicolinearity. Further, there have been several generalizations of the
LASSO penalty yielding consistent estimator of the active set under much weaker conditions. In this vein,
we also consider the Adaptative-LASSO and the SCAD (smoothly clipped absolute deviation) penalties.
Respect to the loss function, the most common is the least squares function obtained by the maximum
likelihood criterion. The lack of robustness of this quadratic function is known, so it must be replaced by a
robust loss so as to limit the impact of contamination in the data.

2 . R o b u s t l o s s e s

Let us consider the linear regression model (1) on which we assume that 𝑌|𝑿 = 𝒙 follows a normal
𝒩(𝒙𝑇𝜷,𝜎2) depending on the regression parameter, and let us consider a random sample (𝑌𝑖,𝑿𝑖)1,…,𝑛 from
the model whose empirical distribution is 𝐺𝑛.
Theminimumdistance approach aims tominimize “some kind ofmeasure of the distance or the divergence”
between the proposed distribution of 𝑌|𝑿 = 𝒙 and its empirical version. We use two of these measures
of proximity between two distributions, namely the density power divergence (DPD) and the Rényi’s
pseudodistance (RP). These two measures take the following form for the linear regression model:

𝐿DPD𝑛,𝛼 (𝜷, 𝜎) =
1

(2𝜋)𝛼/2 𝜎𝛼
(

1
√𝛼 + 1

− 𝛼 + 1
𝛼

1
𝑛

𝑛
∑
𝑖=1

exp {−𝛼
(𝑦𝑖 − 𝒙𝑇𝑖 𝜷))

2

2𝜎2 }) +
1
𝛼 ,( 3 )

𝐿RP𝑛,𝛼(𝜷, 𝜎) =
1
𝑛

𝑛
∑
𝑖=1

−𝜎
−𝛼
𝛼+1 exp (−𝛼2 (

𝑦𝑖 − 𝒙𝑇𝑖 𝜷
𝜎 )

2

) ,( 4 )
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where 𝑓𝒙𝑇𝜷,𝜍2 denotes the normal density with mean 𝒙𝑇𝜷 and variance 𝜎2. Note that both depend on a
tunning parameter 𝛼 > 0 which controls the trade-off between efficiency and robustness. The minimun
DPD estimator (MDPDE) ( ̂𝜷DPD𝛼 , �̂�DPD𝛼 ) and the minimun RP estimator (MRPE) ( ̂𝜷RP𝛼 , �̂�RP𝛼 ) are defined as the
values (𝜷,𝜎)minimizing (3) and (4), respectively. Even more, both measures can be defined at 𝛼 = 0 as
the log-likelihood function taking continuous limit in 𝛼. Hence, both approaches include the maximum
likelihood estimator (MLE) for the value 𝛼 = 0. From a practical point of view, the main difference between
these measures lies in the estimation of 𝜎2.

3 . P e n a l i z e d M D P D E a n d M R P E .

The regularization methods based on DPD and RP losses are constructed by including a penalty term to the
objective function so as to achieve simultaneously model selection and parameter estimation. Therefore,
our objective function is 𝑄𝑛,𝛼,𝜆(𝜷) = �̃�𝑛,𝛼,𝜆(𝜷) + ∑𝑝

𝑗=1 𝑝𝜆(|𝛽𝑗|) for a robust loss �̃�𝑛,𝛼,𝜆(𝜷) (DPD or RP loss)
and a penalty function 𝑝𝜆(⋅). We are considering three different penalties to compare their performance,
namely LASSO, Adaptive LASSO and a non-concave penalty SCAD.

• LASSO panalty: 𝑝𝜆(𝛽𝑗) = 𝜆∑𝑝
𝑗=1 |𝛽𝑗|.

• Adaptive LASSO penalty: 𝑝𝜆(𝛽𝑗) = 𝜆∑𝑝
𝑗=1

1

| ̃𝛽𝑗|
⋅ |𝛽𝑗|, where ̃𝜷 is a robust estimate of 𝜷.

• Non-concave penalty SCAD: 𝑝𝜆(|𝛽𝑗|) =
⎧⎪
⎨⎪
⎩

𝜆|𝛽𝑗| if |𝛽𝑗| ≤ 𝜆,
2𝑎𝜆|𝛽𝑗|−|𝛽𝑗|2−𝜆2

2(𝑎−1)
if 𝜆 < |𝛽𝑗| ≤ 𝑎𝜆,

(𝑎+1)𝜆2

2
if 𝑎𝜆 < |𝛽𝑗|,

where 𝑎 = 3.7.

3 . 1 . R o b u s t n e s s o f t h e p r o p o s e d e s t i m a t o r s

Local robustness of an estimator can be studied through its influence function (IF). The IF measures the
possible asymptotic bias in the estimation due to an infinitesimal contamination, and an estimator is
said robust if its IF is bounded. We can verify that the IF of the proposed estimators is bounded for 𝛼 > 0
and non-bounded for 𝛼 = 0 corresponding to the MLE. Figure 1 shows the IF of the MDPDEs and MRPEs
for univariate linear regression with 𝜎0 = 1, 𝑥𝑡 = 1 and �[𝑥2] = 1. The abscissa axis corresponds to the
perturbation 𝑢 = 𝑦 − 𝑥𝛽 and the ordinate axis corresponds to the IF value.

4 . E s t i m a t i n g a l g o r i t h m

The basic idea of our proposed algorithm is to iteratively minimize the objective 𝑄𝑛(𝜷, 𝜎) in two steps: we
first update the current solution of the regression parameter 𝜷 and then we minimize the error deviance 𝜎.
For the first step, we combine MM-algorithm and coordinate descent algorithm, adapted to each situation,
so as to update 𝜷. As mentioned before, this update is similar for both proposed losses, DPD and RP. For
the second step, we approximate a solution of the estimating equations of 𝜎, obtained by equating the first
derivative of the objective function to zero.

5 . S i m u l a t i o n S t u d y

We finally carry out a simulation study so as to evaluate the robustness and efficiency of the proposal
penalized MDPDE MNPRPE under the LRM.We also estimate the regression parameters (𝜷,𝜎) using other
existing robust and non-robust methods of high-dimensional LRM to compare their performances with
our proposed method. For each one of the estimators, we calculate the mean square error (MSE) for
the true non-zero and zero coefficients separately, Absolute Prediction Bias using an unused test sample
generated in the same way as train data, True Positive proportion, True Negative proportion and Model
Size of the estimated regression coefficient ̂𝜷, and Estimation Error of the estimate �̂�.
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F i g u r e 1 : IF of the MDPDE for beta (upper left) and sigma (upper right), and IF of the MRPE for beta (bottom
left) and sigma (bottom right).

Further, in order to examine the efficiency loss against non-robust methods in absence of any contami-
nation, as well as compare the performance in the presence of contamination in the data, we consider
different scenarios for data contamination, besides the pure data setting, including contaminating data in
the responde variable 𝑌 and the explanatory variables 𝑿.

The simulation results show the gain in robustness when the parameter 𝛼 increases, as well as the improve-
ment that the Adaptative LASSO and SCAD penalty entail for the variable selection. We conclude that the
proposed estimators are very competitive to the classical MLE, and moreover, they perform better with
contaminated data.
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A b s t r a c t : The term disability means a physical, intellectual or sensory permanent
or temporary nature, which limits the ability to perform one or more activities.
According to theWHO, it is estimated that about 15% of the world’s population lives
with some type of disability (2010 estimates). This number is lower than estimates
from IBGE, of the same year, which indicate that approximately 23.9% of Brazil’s
population. Race is a social construction used to distinguish people in terms of one
or more physical marks, among them color. Social inequality is the phenomenon
that differentiates among people in the same society. As an aggravation of this
whole scenario, in this year of 2020, the COVID-19 pandemic, caused by the SARS-
CoV-2, with social, economic and health impacts unprecedented. The estimate of
infected and dead competes directly with the impact on health systems, with the
populations exposure, vulnerable groups and the economical system support. In
mathematical and statistical terms, we intend to describe in this work relations
between COVID-19 and different social inequality factors in moments before,
during and after this pandemic.

R e s u m e n : El término discapacidad significa una naturaleza física, intelectual o
sensorial permanente o temporal, que limita la capacidad para realizar una o
más actividades. Según la OMS, se estima que alrededor del 15% de la población
mundial vive con algún tipo de discapacidad (estimaciones de 2010). Esta cifra es
inferior a las estimaciones del IBGE, del mismo año, que indican que aproxima-
damente el 23,9% de la población brasileña. La raza es una construcción social
que se utiliza para distinguir a las personas en términos de una o más marcas
físicas, entre ellas el color. La desigualdad social es el fenómeno que diferencia
a las personas de una misma sociedad. Como agravante de todo este escenario,
en este año de 2020, la pandemia COVID-19, provocada por el SARS-CoV-2, con
impactos sociales, económicos y de salud sin precedentes. La estimación de infec-
tados y muertos compite directamente con el impacto en los sistemas de salud,
con la exposición de las poblaciones, los grupos vulnerables y el apoyo al sistema
económico. En términos matemáticos y estadísticos, pretendemos describir en
este trabajo las relaciones entre COVID-19 y diferentes factores de desigualdad
social en momentos antes, durante y después de esta pandemia.

K e y w o r d s : disability, COVID-19, demographic census, exploratory data, race.

M S C 2 0 1 0 : 62P25.

A c k n o w l e d g e m e n t s : The author thanks Professor Dr. Júlia Maria Pavan Soler for proposing the theme and IBGE
for the availability of census data.

R e f e r e n c e : DE OLIVEIRA, Paulo Tadeu Meira e Silva. “Challenges in the nowadays, disabled people, race, income
and COVID-19, under the mathematical and probabilistic”. In: TEMat monográficos, 2 (2021): Proceedings of
the 3rd BYMAT Conference, pp. 199-202. ISSN: 2660-6003. URL: https://temat.es/monograficos/article/
view/vol2-p199.

cb This work is distributed under a Creative Commons Attribution 4.0 International licence
https://creativecommons.org/licenses/by/4.0/

mailto:poliver@usp.br
https://temat.es/monograficos/article/view/vol2-p199
https://temat.es/monograficos/article/view/vol2-p199
https://creativecommons.org/licenses/by/4.0/


Disabled people, race, income and COVID-19, under the mathematical and probabilistic

1 . I n t r o d u c t i o n

Worldwide, disabled people have worse health prospects, lower education level, lower economic participa-
tion and higher poverty rates compared to people without disabilities. This is partly due to the fact that
disabled people face barriers to access services that many of us have long considered guaranteed, such
as health, education, employment, transport and information. Such difficulties are exacerbated in the
poorest communities [4].

Race can be understood as a social construct, used to distinguish people in terms of one or more physical
marks. In other words, race is a category used to refer to a group of people whose physical marks are
considered socially significant. Perceptions and conceptions of race can affect people’s social lives, being
mainly responsible for creating and maintaining a system of social inequality [2].

People’s participation in the workforce is important for reasons such as maximizing human resources by
increasing individual well-being, as well as promoting human dignity and social cohesion.

According to experts, the first cases of COVID-19 originated in the seafood market in the city ofWuhan
located in China in December 2019 and the incidence increased exponentially in the first weeks.

This virus is believed to host certain species of bats and the pangolin; its incubation period is estimated
at around 4 to 14 days; the rate of transmission is 2.75 individuals, and finally, the disease has an overall
lethality of 3.4%. Infection with this virus has high rates of contagion with very rapid spread of cases,
hospitalization in highly complex hospitals and high mortality rates.

In mathematical and statistical terms, it is intended, with the use of techniques of data analysis, to describe
relationships between disabled people, race, income, decent work and COVID-19. In mathematical and
statistical terms, probability is the study of the chances of obtaining each result of a random experiment.
These chances are assigned real numbers in the range between 0 and 1. Conditional probability refers to
the probability of an event A knowing that another B occurred.

To continue this work, in section 2 we will present materials and methods, in section 3 results and
discussions, and finally, in section 4 the conclusions of this research.

2 . M a t e r i a l s a n d m e t h o d s

2 . 1 . M o t i v a t i o n

In order to assess the effects of the epidemiology of COVID-19 in relation to factors such as disabled people,
work, income, race and sex, among others, we will use the data from the 2010 IBGE Demographic Census
of 20800804 respondents from the sample and aggregates for the 5565 municipalities together with the
2013 UNDP data.

In statistical terms, there are few published works that describe the effects of the COVID-19 epidemic in
areas such as education, disability, income, economy, work, sex and social inequality, among others.

2 . 2 . S o c i a l i n e q u a l i t y

Social inequality, also called economic inequality, is a social problem present in all countries of the world
and it is an economic difference that exists between certain groups of people within the same society. It
stems mainly from the poor distribution of income and the lack of investment in the social area, such as
education and health. In this way, the majority of the population is at the mercy of a minority that owns
the resources, which generates inequalities.

The main causes of inequality are lack of investment in social, cultural, health and education areas;
mismanagement of resources, poor distribution of income; market logic and, finally, corruption. Among
the consequences generated by inequality it is possible to mention an increase in the rate of violence
and crime; poverty and misery; delay in economic progress; famine, destruction and child mortality;
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marginalization of young people; increase in the unemployment rate and, finally, formation of different
socials classes.
The expansion of the COVID-19 epidemic in the slums, peripheries and interiors opened up the social and
economic inequality between the naturalized social classes that are accepted by a large part of society and
State institutions, which represents a barrier to the recommendations of basic hygiene, social detachment
and staying at home.
According to health experts, the main problems pointed out are the need for special protection for groups
in situations of vulnerability or at risk, such as people on the street, suffering or mental disorder, with
disabilities, living with AIDS/HIV, LGBTI, indigenous, black, riverside, informal market workers; the lack
of sanitation and housing conditions in the face of the pandemic; recommendations such as the use of
alcohol gels and masks, hand hygiene and not leaving home are measures that come up against realities in
the country, or in the absence of basic rights such as employment, health and housing, and, finally, it is
not possible to develop the economy in the country without effective control of the pandemic.

3 . R e s u l t s a n d d i s c u s s i o n

Before the COVID-19 pandemic, in regards of adequate housing, it was already possible to notice worrying
scenarios with a group of vulnerable people on the rise formed by groups such as disabled people, black,
brown and indigenous races, and joining these groups came the groups of people most prone to counter
the COVID-19 virus such as the elderly, diabetics, hypertension, heart, cancer and respiratory diseases;
greater worsening in economic terms with rising unemployment and greater difficulties in meeting the
recommendations of health authorities in terms of prevention due to unavailability of resources such as
water, electricity, gas, food, health and adequate housing conditions.
Figure 1 shows the distribution of people without disabilities by age group (I), with disabilities by age
group (II), mortality by age group (III), clinical status of COVID-19 (IV), people without disabilities (V),
people with disabilities (VI). The graphs in Figure 1 also show that COVID-19 affects more disabled people,
older people and people working in worse conditions.

F i g u r e 1 : Disabled people distribution, age, work type and COVID-19 clinical internship.

Following, in Figure 2 it shows the distribution of residents by dormitories (1), access to drinking water (2),
education level (3) and number of children (4). Analyzing the data in Figure 2, it appears that, proportionally,
disabled people are more exposed to COVID-19 than people without disabilities. And first-time mothers
have a greater number of children, a lower level of education, less access to drinking water, and a greater
number of people per bedroom.
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In 1, it is possible to verify that considering the

WHO recommendations in terms of isolation and

social distance, only 19.9% of the entire

population, 16.8% of people without disabled

people and 29.9% of disabled people sleep in

conditions suitable and less risk solutions for

COVID-19.

In 2 it is possible to

observe that an index

higher than 20% of the

population does not

have drinking water

available under suitable

conditions.

In 4 it is noted that

in general, in

proportional terms

families of

disabled people

have a greater

number of

children, except

families with a

number of children

between 1 and 3.

Now, in 3, it is

possible to

notice that

disabled people

have a higher

proportion of

people with a

education level

of at most

fundamental

incompetent.

F i g u r e 2 : COVID-19, disabled and housing conditions.

4 . C o n c l u s i o n s

Data from the 2010 IBGE Census show the disabled people predominance and of black, brown and
indigenous races in worse working conditions, income, education and employment. With the emergence
of the COVID-19 pandemic and the isolation policies as a solution to combat it, it became even more
precarious for a good part of the population, further expanding economic and social inequality due to the
increase in unemployment, mainly in informal and closing of many small and medium-sized companies,
increasing the mass of vulnerable people in the population according to the results of studies carried out by
several specialists in several areas, such as public health, economics, statistics, history, or medicine, among
others. These results also show the mismanagement by authorities in establishing a more effective combat
plan. These results are confirmed by the results of analyses made with data from the IBGE Demographic
Census and with the results of several surveys carried out in Brazil and abroad.

Among the possible results stand out disabled people and other groups of people in more vulnerable
situations were already in worse situations on issues such as education, health, housing conditions, income,
work, leisure and many other things. These situations were aggravated after the beginning of the COVID-19
pandemic, since, in addition to these factors mentioned above, there is the need for isolation, greater
hygiene, and having to satisfy new protocols developed byWHO.
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A b s t r a c t : In this work we describe a theory of a cumulative distribution function
(in short, cdf) on a separable linearly ordered topological space (LOTS) from a
probability measure defined in this space. This function can be extended to the
Dedekind-MacNeille completion of the space where it does make sense to define
the pseudo-inverse. Moreover, we study the properties of both functions (the
cdf and the pseudo-inverse) and get results that are similar to those which are
well-known in the classical case.

R e s u m e n : En este trabajo describimos una teoría sobre la función de distribución
acumulada en un espacio topológico linealmente ordenado separable a partir
de una medida de probabilidad definida en este espacio. Esta función se puede
extender a la completación Dedekind-MacNeille del espacio donde tiene sentido
definir la pseudo-inversa. Además, estudiamos las propiedades de ambas funciones
(la función de distribución y la pseudo-inversa) y obtenemos resultados similares
a los conocidos en el caso clásico.
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Distribution functions and probability measures on LOTSs

1 . I n t r o d u c t i o n

This work collects some results on a theory of a cumulative distribution function (cdf) on a separable
linearly ordered topological space (LOTS).

In [2], we described a theory of a cumulative distribution function on a separable linearly ordered topo-
logical space. Moreover, we showed that this function plays a similar role to that played in the classical
case and studied its pseudo-inverse, which allowed us to generate samples of the probability measure
that we used to define the distribution function. In [3], we extended a cdf defined on a separable linearly
ordered topological space, 𝑋, to its Dedekind-MacNeille completion, 𝐷𝑀(𝑋). That completion is, indeed,
a compactification. Moreover, we proved that each function satisfying the properties of a cdf on 𝐷𝑀(𝑋)
is the cdf of a probability measure defined on 𝐷𝑀(𝑋). Indeed, if 𝑋 is compact, a similar result can be
obtained in this context. Finally, the compactification 𝐷𝑀(𝑋) lets us generate samples of a distribution
in 𝑋. By following this research line, the next step is exploring some conditions on 𝑋 such that, given a
function 𝐹 with the properties of a cdf, we can ensure that there exists a unique probability measure on 𝑋
such that its cdf is 𝐹. This is completely developed in [4].

For further reference about the classical measure theory see, for example, [5].

2 . P r e l i m i n a r i e s : l i n e a r l y o r d e r e d t o p o l o g i c a l s p a c e s

First, we recall the definition of a linear order:

D e f i n i t i o n 1 . A partially ordered set (𝑋,≤) (that is, a set 𝑋 with the binary relation ≤ that is reflexive,
antisymmetric and transitive) is totally ordered if every 𝑥, 𝑦 ∈ 𝑋 are comparable, that is, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. In
this case, the order is said to be total or linear. ◀

For further reference about partially ordered spaces see, for example, [1].

From the previous definition, we can talk about linearly ordered topological spaces:

D e f i n i t i o n 2 . A linearly ordered topological space (in short, LOTS) is a triple (𝑋, 𝜏,≤) where (𝑋,≤) is a
linearly ordered set and where 𝜏 is the topology of the order. ◀

The topology of the order is defined as follows:

D e f i n i t i o n 3 . Let 𝑋 be a set which is linearly ordered by <. We define the order topology 𝜏 on 𝑋 by taking
the sub-basis {{𝑥 ∈ 𝑋 ∶ 𝑥 < 𝑎} ∶ 𝑎 ∈ 𝑋} ∪ {{𝑥 ∈ 𝑋 ∶ 𝑥 > 𝑎} ∶ 𝑎 ∈ 𝑋}. ◀

In the rest of this work, we will assume that 𝑋 is a separable LOTS, 𝜇 is a probability measure on the Borel
𝜎-algebra of 𝑋, 𝜎(𝑋), and 𝜏 is the order topology in 𝑋.

3 . D e f i n i n g t h e c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n

First we give the definition of the cumulative distribution function of a probability measure defined on 𝑋.

D e f i n i t i o n 4 . Given a probability measure 𝜇 on 𝑋, its cumulative distribution function (in short, cdf) is
the function 𝐹∶ 𝑋 → [0, 1] defined by 𝐹(𝑥) = 𝜇({𝑎 ∈ 𝑋 ∶ 𝑎 ≤ 𝑥}), for each 𝑥 ∈ 𝑋. ◀

This function satisfies some properties that we collect next, and that are similar to those which are
well-known in the classical theory of distribution functions:

P r o p o s i t i o n 5 . Let 𝜇 be a probability measure on 𝑋, and 𝐹 its cdf. Then,

( i ) 𝐹 is monotonically non-decreasing.
( i i ) 𝐹 is right 𝜏-continuous.
( i i i ) sup𝐹(𝑋) = 1.
( i v ) If there does not exist min𝑋, then inf𝐹(𝑋) = 0.
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Once we have defined a cdf and studied its properties, it does make sense to ask ourselves if, given a
function, 𝐹, satisfying the properties collected above, there exists a probability measure 𝜇 on 𝑋 such that
its cdf, 𝐹𝜇, is 𝐹. This is a question we will answer with the help of a structure we analyse in the next section.
Indeed, if we work with 𝐹 we can get the measure of each interval in 𝑋.

P r o p o s i t i o n 6 . If 𝐹 is the cdf of a probability measure 𝜇 on 𝑋, then 𝜇({𝑥 ∈ 𝑋 ∶ 𝑎 < 𝑥 ≤ 𝑏}) = 𝐹(𝑏) − 𝐹(𝑎),
for each 𝑎, 𝑏 ∈ 𝑋 such that 𝑎 < 𝑏.

The next result is about the continuity of a cdf:

P r o p o s i t i o n 7 . Let 𝑥 ∈ 𝑋, 𝜇 be a probability measure on 𝑋 and 𝐹 its cdf. If 𝜇({𝑥}) = 0, then 𝐹 is 𝜏-
continuous at 𝑥.

However, the converse is not true. To show that, we include an example where the cdf of a probability
measure on a space is a step cdf which is continuous with respect to 𝜏.

E x a m p l e 8 . Let 𝑋 = [0, 1] ∪ [2, 3] with the usual order. If 𝜇 is a probability measure defined on 𝑋 by
𝜇({2}) = 1, then its cdf is the function 𝐹∶ 𝑋 → [0, 1] defined by

𝐹(𝑥) = {
0 if 𝑥 ≤ 1,
1 if 𝑥 ≥ 2.

Note that 𝐹 is a step cdf and it is 𝜏-continuous. ◀

4 . T h e e x t e n s i o n o f a c d f t o t h e D e d e k i n d - M a c N e i l l e c o m p l e t i o n

D e f i n i t i o n 9 . The Dedekind-MacNeille completion of a partially ordered set 𝑋 is defined to be 𝐷𝑀(𝑋) =
{𝐴 ⊆ 𝑋 ∶ 𝐴 = (𝐴ᵆ)𝑙} ordered by inclusion (𝐴 ≤ 𝐵 if and only if 𝐴 ⊆ 𝐵), where 𝐴ᵆ (resp. 𝐴𝑙) is the set of
upper (resp. lower) bounds of 𝐴. ◀

We also define 𝜙∶ 𝑋 → 𝐷𝑀(𝑋) as the embedding given by 𝜙(𝑥) = ({𝑎 ∈ 𝑋 ∶ 𝑎 ≤ 𝑥}), for each 𝑥 ∈ 𝑋. For
further reference about cuts and the Dedekind-MacNeille completion see, respectively, [6] and [7].
The next result gives us that each cdf on a LOTS can be naturally extended to its Dedekind-MacNeille
completion.

P r o p o s i t i o n 1 0 . 𝐷𝑀(𝑋) is, indeed, a compactification of 𝑋 and 𝐹 can be extended to a cdf, 𝐹, on 𝐷𝑀(𝑋)
by defining 𝐹 ∶ 𝐷𝑀(𝑋) → [0, 1] by 𝐹(𝐴) = inf 𝐹(𝐴ᵆ), for each 𝐴 ∈ 𝐷𝑀(𝑋).

5 . T h e p s e u d o - i n v e r s e o f a c d f

D e f i n i t i o n 1 1 . Let 𝐹 be a cdf. We define the pseudo-inverse of 𝐹 by 𝐺∶ [0, 1] → 𝐷𝑀(𝑋) given by 𝐺(𝑟) =
{𝑥 ∈ 𝑋 ∶ 𝐹(𝑥) ≥ 𝑟}𝑙, for each 𝑟 ∈ [0, 1]. ◀

This function satisfies some properties which are similar to those which are well-known in the classical
case for the pseudo-inverse of a cdf, as we can see next:

P r o p o s i t i o n 1 2 . The following hold:

( i ) 𝐺 is monotonically non-decreasing.
( i i ) 𝐺 is left 𝜏-continuous.
( i i i ) 𝐺(𝑟) ≤ 𝜙(𝑥) if and only if 𝑟 ≤ 𝐹(𝑥), for each 𝑥 ∈ 𝑋 and each 𝑟 ∈ [0, 1].

6 . R e l a t i o n s h i p b e t w e e n a p r o b a b i l i t y m e a s u r e a n d i t s c d f

Once we have defined and studied the main properties of a cdf and its pseudo-inverse, we answer the
question made in Section 3 about the univocal relationship between a probability measure and its cdf in
the context of separable LOTS. For that purpose, the main result is the next one:
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T h e o r e m 1 3 . Let 𝑋 be a separable LOTS such that 𝐷𝑀(𝑋) ⧵ 𝜙(𝑋) is countable and 𝐹∶ 𝑋 → [0, 1] be a
monotonically non-decreasing and right 𝜏-continuous function satisfying sup𝐹(𝑋) = 1 and sup𝐹(𝐴) =
inf𝐹(𝐴ᵆ), for each 𝐴 ∈ 𝐷𝑀(𝑋). Moreover, inf𝐹(𝑋) = 0 if there does not exist the minimum of 𝑋. Then,
there exists a unique probability measure on 𝑋, 𝜇, such that 𝐹 = 𝐹𝜇.

What is more, the pseudo-inverse of a cdf is also univocally determined by its probability measure:

T h e o r e m 1 4 . Let 𝑋 be a separable LOTS such that 𝐷𝑀(𝑋)⧵𝜙(𝑋) is countable and let 𝐺∶ [0, 1] → 𝐷𝑀(𝑋) be
amonotonically non-decreasing and left 𝜏-continuous function such that sup𝐺−1(< 𝐴) = inf𝐺−1(> 𝐴), for
each 𝐴 ∈ 𝐷𝑀(𝑋) ⧵ 𝜙(𝑋), 𝐺(0) = min𝐷𝑀(𝑋), 𝐺−1(max𝐷𝑀(𝑋)) ⊆ {1} if there does not exist the maximum
of 𝑋 and 𝐺−1(min𝐷𝑀(𝑋)) = {0} if there does not exist the minimum of 𝑋. Then, there exists a unique
probability measure on 𝑋, 𝜇, such that 𝐺 is the pseudo-inverse of 𝐹𝜇.

7 . A p p l i c a t i o n s

7 . 1 . G e n e r a t i n g s a m p l e s

First, we can get the measure of each subset in the Borel 𝜎-algebra of 𝑋 from the pseudo-inverse of a cdf.

P r o p o s i t i o n 1 5 . Let 𝜇 be a probability measure. Then, 𝜇(𝐴) = 𝑙(𝐺−1(𝐴)) for each 𝐴 ∈ 𝜎(𝑋), where 𝑙 is the
Lebesgue measure.

That procedure lets us generate samples of a distribution, similarly to the classical procedure for distribution
functions in the real line.

R e m a r k 1 6 . We can also calculate integrals with respect to 𝜇, so, for 𝑔∶ 𝑋 → ℝ, it holds that

∫ 𝑔(𝑥) d𝜇(𝑥) = ∫ 𝑔(𝐺(𝑡)) d𝑡. ◀

7 . 2 . A g o o d n e s s - o f - f i t t e s t

In this subsection, we give a goodness-of-fit test whose idea is similar to the one followed by the Kolmogorov-
Smirnov test, but in a more general context. Suppose that we are given a random sample on a separable
LOTS according to a certain cumulative distribution function. Our purpose is testing if that distribution
comes from a certain cdf 𝐹. Let us denote by 𝐹𝑛 the empirical cumulative distribution function of the
sample and define the statistic 𝐷𝑛 = sup𝑥∈𝑋 |𝐹𝑛(𝑥) − 𝐹(𝑥)|, then the next statement holds.

T h e o r e m 1 7 . Given a separable LOTS, 𝑋, and 𝑛 ∈ ℕ, the distribution of 𝐷𝑛 is the same for each cdf, 𝐹𝜇,
satisfying that 𝜇({𝑥}) = 0, for each 𝑥 ∈ 𝑋.
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maps of degree one. It is based on the computation of the rotation number of a
monotone circle map of degree one with a constant section. The main strength of
this algorithm is that it computes exactly the rotation interval of a natural subclass
of the continuous non-invertible degree one circle maps.

We also compare our algorithm with other existing ones by plotting the Devil’s
Staircase of a one-parameter non-differentiable family of maps, which is out of
reach for the existing algorithms that are centred around differentiable maps.

R e s u m e n : Presentamos un algoritmo eficiente para calcular el intervalo de rotación
para aplicaciones en el círculo de grado 1. Está basado en el cálculo del número
de rotación de aplicaciones en el círculo de grado 1 monótonas que tengan una
sección constante. El punto fuerte de este algoritmo es que calcula el intervalo
de rotacion de formula exacta para una subclasse natural de aplicaciones en el
círculo continuas y no invertibles.

También compararemos nuestro algoritmo con otros existentes para dibujar la De-
vil’s Staircase de una familia dependiente de un parametro no-diferenciable, fuera
del alcance de los algoritmos existentes, centrados en funciones diferenciables.
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Algorithm for rotation numbers

1 . S t a t e m e n t o f t h e p r o b l e m

This extended abstract basically summarizes the results in [1]. Most of the preliminary results can be found
in [2].

Wewant to efficiently compute rotation intervals for degree one circlemaps, the reason being the theoretical
importance it plays on combinatorial dynamics. Many results, ranging from the exact set of periods of
the maps to their entropy, use the rotation interval strongly. Now we will introduce the notion of rotation
number and interval, and give some important properties relating degree one circle maps and their rotation
numbers or intervals. First, let us introduce the notion of degree one map.

D e f i n i t i o n 1 (degree one maps). Let 𝑓∶ �1 → �1 be a continuous map and let 𝐹∶ ℝ → ℝ be such that
exp(2π𝑥)∘𝑓 = 𝐹∘ exp(2π𝑥). Wewill say that𝐹 is a lifing of 𝑓. We say that𝑓 is of degree 1 if𝐹(1)−𝐹(0) = 1. ◀

Note that there may be many liftings, but if 𝐹 and 𝐹′ are liftings of 𝑓, then 𝐹 = 𝐹′ + 𝑘, with 𝑘 ∈ ℤ, hence
the property 𝐹(1) − 𝐹(0) is independent of the choice of lifting. Now let us introduce the stars of the show,
the rotation number and rotation interval.

D e f i n i t i o n 2 (rotation number and rotation interval). Let 𝑓 be a map of degree 1 and let 𝐹 be a lifting. We
will define the rotation number of 𝐹 on 𝑥 ∈ ℝ as

𝜌𝐹(𝑥) = lim sup
𝑛→∞

𝐹𝑛(𝑥) − 𝑥
𝑛 .

Note that this number is dependent on 𝑥. Moreover we will define the rotation set of 𝐹 as

Rot(𝐹) = {𝜌𝐹(𝑥) ∣ 𝑥 ∈ ℝ} = {𝜌𝐹(𝑥) ∣ 𝑥 ∈ [0, 1]},

which is an interval [3]. ◀

Now, let us study some some ways to infer the rotation number from the properties of 𝐹.

L e m m a 3 . Let 𝐹 ∈ ℒ1. Then, 𝑥 is an 𝑛-periodic (mod 1) point of 𝐹 if and only if there exists 𝑘 ∈ ℤ such
that 𝐹𝑛(𝑥) = 𝑥 + 𝑘 but 𝐹𝑗(𝑥) − 𝑥 ∉ ℤ for 𝑗 = 1, 2,… , 𝑛 − 1. In this case,

𝜌𝐹(𝑥) = lim
𝑚→∞

𝐹𝑚(𝑥) − 𝑥
𝑚 = 𝑘

𝑛.

P r o p o s i t i o n 4 . Let 𝐹 ∈ ℒ1 be non-decreasing. Then, for every 𝑥 ∈ ℝ the limit

lim
𝑛→∞

𝐹𝑛(𝑥) − 𝑥
𝑛 ,

exists and is independent of 𝑥. In this case we denote the rotation number of the map by 𝜌𝐹.

Using this proposition we will compute the rotation interval by just computing the rotation number of two
non decreasing maps. However, first we need to introduce these special maps.

D e f i n i t i o n 5 . We set

𝐹𝑙(𝑥) = inf{𝐹(𝑦) ∶ 𝑦 ≥ 𝑥},
𝐹 (𝑥) = sup{𝐹(𝑦) ∶ 𝑦 ≤ 𝑥},

where 𝑢 stands for upper and 𝑙 for lower. ◀

In Figure 1a we show an example of the upper and lower maps. Finally we can show a result relating the
rotation interval with the well defined rotation number of two maps.

T h e o r e m 6 . Let 𝐹 be of degree 1. Then,

Rot(𝐹) = [𝜌𝐹𝑙 , 𝜌𝐹𝑢].
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2 . M a i n r e s u l t a n d n e w a l g o r i t h m

For a real number 𝑥, we will denote the floor of 𝑥 as ⌊𝑥⌋ and the decimal part function as {𝑥}.

A constant section of a lifting 𝐹 of a circle map is a closed non-degenerate subinterval 𝐾 of ℝ such that 𝐹|𝐾
is constant. In the special case when 𝐹 ∈ ℒ1, we have that 𝐹(𝑥 + 1) = 𝐹(𝑥) + 1 ≠ 𝐹(𝑥) for every 𝑥 ∈ ℝ.
Hence, the length of 𝐾 is less than 1.

The algorithm we propose is based on Lemma 8 but, especially, on the following simple proposition which
allows us to compute exactly the rotation number of a non-decreasing lifting from ℒ1 that has a constant
section, provided that 𝐹𝑛(𝐾) ∩ (𝐾 + ℤ) ≠ ∅.

P r o p o s i t i o n 7 . Let 𝐹 ∈ ℒ1 be non-decreasing and have a constant section 𝐾. Assume that there exists
𝑛 ∈ ℕ such that 𝐹𝑛(𝐾) ∩ (𝐾 + ℤ) ≠ ∅, and that 𝑛 is minimal with this property. Then, there exists 𝜉 ∈ ℝ

such that 𝐹𝑛(𝐾) = {𝜉} ⊂ 𝐾 + 𝑚 with 𝑚 = ⌊𝜉 −min𝐾⌋ ∈ ℤ, 𝜉 is an 𝑛-periodic (mod 1) point of 𝐹, and
𝜌𝐹 =

𝑚
𝑛
.

P r o o f . Since 𝐾 is a constant section of 𝐹, 𝐹(𝐾) contains a unique point, and hence there exists 𝜉 ∈ ℝ such
that 𝐹𝑛(𝐾) = {𝜉}. Then, the fact that 𝐹𝑛(𝐾)∩ (𝐾 +ℤ) ≠ ∅ implies that 𝜉 ∈ 𝐾 +𝑚 with𝑚 = ⌊𝜉−min𝐾⌋ ∈ ℤ.

Set ̃𝜉 ≔ 𝜉 − 𝑚 ∈ 𝐾. Then, {𝐹𝑛( ̃𝜉)} = 𝐹𝑛(𝐾) = { ̃𝜉 + 𝑚}. Moreover, the minimality of 𝑛 implies that
𝐹𝑗( ̃𝜉) − ̃𝜉 ∉ ℤ for 𝑗 = 1, 2,… , 𝑛 − 1. So, Lemma 3 tells us that ̃𝜉 (and hence 𝜉) is an 𝑛-periodic (mod 1)
point of 𝐹. Thus, 𝜌𝐹 =

𝑚
𝑛
by Proposition 4. ▪

Notice that this proposition gives us the backbone for an algorithm to compute rotation numbers for
non-decreasing maps with a constant section. What remains to be checked is what happens if the iteration
of the constant part 𝐾 never falls again inside 𝐾 +ℤ, or the number of iterates that are required is too large
to make it computationally practical. For this, we may use the following lemma.

L e m m a 8 . For every non-decreasing lifting 𝐹 ∈ ℒ1 and 𝑛 ∈ ℕ we have

|
|𝜌𝐹 −

𝐹𝑛(𝑥)−𝑥
𝑛

|
| <

1
𝑛 ,

for every 𝑥 ∈ ℝ.

2 . 1 . A l g o r i t h m

From Proposition 7 and Lemma 8 we can obtain the following algorithm:

( i ) Decide the maximum number of iterates N = ceil( 1

error
) to perform in the worst case (i.e., when

Proposition 7 does not work).
( i i ) Re-parametrize the lifting 𝐹 so that it has a maximal constant section of the form [0, 𝛽].
( i i i ) Initialize 𝑥 = 0 and𝑚 = 0.
( i v ) Compute iteratively 𝑥 = {𝐹𝑛(0)} and𝑚 = ⌊𝐹𝑛(0)⌋ (so that 𝐹𝑛(0) = 𝑥 + 𝑚) for 𝑛 ≤ N.
( v ) Check whether 𝑥 ≤ 𝛽. On the affirmative we apply the previous proposition, and thus, 𝜌𝐹 =

𝑚
𝑛
;⇒

“exact” rotation number.
( v i ) If we reach N iterates with 𝑥 > 𝛽 for every 𝑛 then, by the Lemma 8

|
|𝜌𝐹 −

𝑚 + 𝑥
N

|
| =

|||𝜌𝐹 −
𝐹𝑛(0)
N

||| <
1
N
,

and the algorithm returns 𝑚+𝑥
N

as an estimate of 𝜌𝐹 with
1

N
as the estimated error bound.

In [1], one can find a slightly more nuanced presentation of the algorithm, taking into account machine
and rounding errors, but in spirit they are the same.
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( a ) An example of a map 𝐹 ∈
ℒ1 with its lower map 𝐹𝑙 in red
and its upper map 𝐹𝑢 in blue.
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( b ) Plot of 𝐹𝜇 for a general 𝜇
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( c ) Devil’s Staircase plotted us-
ing the proposed algorithm

F i g u r e 1 : All the figures of the paper.

T a b l e 1 : Time taken by both the algorithms studied

Method Time (s)
Classic 132.418015

Proposed Algorithm 0.003307

3 . T e s t i n g o f t h e a l g o r i t h m

To test the algorithm we have plotted the Devil’s Staircase for the one-parametric family of maps

𝐹𝜇(𝑥) = 𝐹𝜇|[0,1]({𝑥}) + ⌊𝑥⌋.

See Figure 1b for a schematic plot. The so-called Devil’s staircase is the result of plotting the rotation
number as a function of the parameter 𝜇. It can be proven that this plot will have constant sections for
any rational rotation number, hence the “Staircase” in the name.

To conduct the test, we have plotted the Devil’s Staircase for 𝐹𝜇 using the proposed algorithm and the
algorithm stemming from Lemmas 4 and 8, which tells us that in the non decreasing case we can get the
rotation number just by iterating and allow us to control the error. In Figure 1c one can find the plot of the
Devil’s Staircase plotted with our algorithm and in Table 1 the times each algorithm required to plot such
figures. Moreover, the Arnol’d Tongues and the Rotation Intervals have also been computed in [1].
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A b s t r a c t : Symmetries represent a central tool in the geometric analysis of mechan-
ical systems. When a group of symmetries acts on the configuration space of a
Lagrangian system, the quotient by this action of both the space and the varia-
tional principle is known as reduction. In the case of mechanics, this produces the
well-known Lagrange-Poincaré equations, which have many applications in the
literature.

In the realm of field theories, similar results have also been obtained. However, the
typical nature of symmetries involved in the most relevant classical field theories
is local and has not been addressed so far. In this case, symmetries are given by
fiberwise actions of Lie group fiber bundles. The main instance of this situation
are gauge theories.

The goal of this contribution is to determine the reduction procedure when a first
order Lagrangian is invariant by a certain type of gauge group.

R e s u m e n : El estudio de las simetrías constituye una herramienta fundamental en
el análisis geométrico de los sistemas mecánicos. Cuando un grupo de simetrías
actúa en el espacio de configuración de un sistema lagrangiano, el cociente por
esta acción tanto del espacio, como del principio variacional es conocido como
reducción. En el caso de la mecánica, esto da lugar a las ecuaciones de Lagrange-
Poincaré, de las que se pueden encontrar muchas aplicaciones en la literatura.

En el contexto de las teorías de campos, se han obtenido resultados similares. Sin
embargo, las simetrías involucradas en las teorías de campos más importantes
son locales y no se han tratado todavía. En este caso, las simetrías están dadas
por acciones fibradas de fibrados de grupos de Lie. El principal ejemplo de esta
situación son las teorías gauge.

El objetivo de esta contribución es determinar el procedimiento de reducción
cuando un lagrangiano de primer orden es invariante por un cierto tipo de grupo
gauge.
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Covariant reduction by fiberwise actions in classical field theory

1 . I n t r o d u c t i o n

In the context of Lagrangian mechanics, continuous (global) symmetries of physical systems emerge
mathematically as actions of Lie groups on the configuration spaces. The reduction method consists of
transferring the variational principle to the quotient space by the symmetry group, yielding the reduced
equations when applied to specific Lagrangians. This has been thoroughly treated in the literature [2].
More recently, these ideas have been extended to field theories [1, 3].

The goal of the present contribution is to consider local symmetries of Lagrangian systems instead of
global ones. In such case, the Lie group is replaced by an appropriate Lie group fiber bundle. Namely, we
focus our attention on a particular type of symmetries whose derivatives are constrained to a prescribed
Lie subalgebra. The ideas outlined here will be treated in detail and extended to more general symmetries
in a forthcoming paper.

In the following, every manifold or map is assumed to be smooth in the sense of 𝐶∞ unless otherwise
stated. Likewise, every fiber bundle is assumed to be locally trivial. The superscript ∗ will denote the dual
bundle of the corresponding vector bundle.

2 . G e o m e t r i c s e t t i n g

2 . 1 . A c t i o n s o f L i e g r o u p b u n d l e s a n d g e n e r a l i z e d p r i n c i p a l c o n n e c t i o n s

A Lie group bundle is a fiber bundle 𝜋𝒢,𝑋∶ 𝒢 → 𝑋 with typical fiber a Lie group 𝐺 such that for any point
𝑥 ∈ 𝑋 the fiber 𝒢𝑥 = 𝜋−1𝒢,𝑋({𝑥}) is equipped with a Lie group structure and there exist a neighborhood𝒰 ⊂ 𝑋
and a diffeomorphism 𝒰 × 𝐺 → 𝜋−1𝒢,𝑋(𝒰) preserving the Lie group structure fiberwisely. We denote by 1𝑥
the identity element of 𝒢𝑥 for each 𝑥 ∈ 𝑋. Any Lie group bundle defines a Lie algebra bundle 𝜋g,𝑋∶ g → 𝑋
as the vector bundle whose fiber at each 𝑥 ∈ 𝑋 is g𝑥 = 𝑇1𝑥𝒢𝑥, the Lie algebra of 𝒢𝑥.

D e f i n i t i o n 1 . A (right) fibered action of a Lie group bundle 𝒢 → 𝑋 on a fiber bundle 𝜋𝑌,𝑋∶ 𝑌 → 𝑋 is
a bundle morphism 𝛷∶ 𝑌 ×𝑋 𝒢 → 𝑌 covering the identity id𝑋 such that 𝛷(𝑦, ℎ𝑔) = 𝛷(𝛷(𝑦, ℎ), 𝑔) and
𝛷(𝑦, 1𝑥) = 𝑦, for all (𝑦, 𝑔), (𝑦, ℎ) ∈ 𝑌 ×𝑋 𝒢, 𝜋𝑌,𝑋(𝑦) = 𝑥, where ×𝑋 denotes the fibered product. ◀

We denote the fibered action by 𝛷(𝑦, 𝑔) = 𝑦 ⋅ 𝑔 and the corresponding quotient by 𝑌/𝒢. The action is said
to be free if 𝑦 ⋅ 𝑔 = 𝑦 for some (𝑦, 𝑔) ∈ 𝑌 ×𝑋 𝒢 implies that 𝑔 = 1𝑥, 𝑥 = 𝜋𝑌,𝑋(𝑦). In the same way, it is said
to be proper if the bundle morphism 𝑌 ×𝑋 𝒢 ∋ (𝑦, 𝑔) ↦ (𝑦, 𝑦 ⋅ 𝑔) ∈ 𝑌 ×𝑋 𝑌 is proper.

P r o p o s i t i o n 2 . If 𝒢 → 𝑋 acts on 𝑌 → 𝑋 freely and properly, then 𝑌/𝒢 admits a unique smooth structure
such that 𝑌 → 𝑌/𝒢 is a fiber bundle with typical fiber 𝐺 and 𝑌/𝒢 → 𝑋 is a fiberedmanifold, i.e., a surjective
submersion.

Note that an Ehresmann connection (see [7]) on a Lie group bundle 𝒢 → 𝑋may be regarded as a map
𝜈∶ 𝑇𝒢 → g. It is natural to impose a compatibility of 𝜈 with the algebraic structure of 𝒢.

D e f i n i t i o n 3 . A Lie group bundle connection on 𝜋𝒢,𝑋 is an Ehresmann connection 𝜈 on 𝜋𝒢,𝑋 satisfying:

( i ) ker 𝜈|𝑇1𝑥𝒢 = (𝑑1)𝑥(𝑇𝑥𝑋) for each 𝑥 ∈ 𝑋, where 1∶ 𝑋 → 𝒢 is the unit section.
( i i ) For every (𝑔, ℎ) ∈ 𝒢 ×𝑋 𝒢 and (𝑈𝑔,𝑈ℎ) ∈ 𝑇𝑔𝒢 ×𝑇𝑥𝑋 𝑇ℎ𝒢, 𝑥 = 𝜋𝒢,𝑋(𝑔), then

𝜈 ((𝑑𝑀)(𝑔,ℎ)(𝑈𝑔,𝑈ℎ)) = 𝜈(𝑈𝑔) + 𝐴𝑑𝑔 (𝜈(𝑈ℎ)) ,

where𝑀∶ 𝒢 ×𝑋 𝒢 → 𝒢 is the multiplication map and 𝐴𝑑𝑔∶ g𝑥 → g𝑥 is the adjoint representation. ◀

In the same vein, we ask connections on 𝑌 → 𝑌/𝒢 to be equivariant. Note the analogy with principal
connections (see [6]).

D e f i n i t i o n 4 . Let 𝜈 be an Lie group bundle connection on 𝒢 → 𝑋. A generalized principal connection on
𝑌 → 𝑌/𝒢 associated to 𝜈 is a 1-form 𝜔 ∈ 𝛺1(𝑌, g) satisfying:
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( i ) (Complementarity) 𝜔𝑦(𝜉∗𝑦 ) = 𝜉 for every (𝑦, 𝜉) ∈ 𝑌 ×𝑋 g, where 𝜉∗𝑦 =
d

d𝑡
||𝑡=0

𝑦 ⋅ exp(𝑡𝜉) is the infinitesi-
mal generator of 𝜉 at 𝑦.

( i i ) (𝐴𝑑-equivariance) For each (𝑦, 𝑔) ∈ 𝑌 ×𝑋 𝒢 and (𝑈𝑦,𝑈𝑔) ∈ 𝑇𝑦𝑌 ×𝑇𝑥𝑋 𝑇𝑔𝒢, 𝑥 = 𝜋𝑌,𝑋(𝑥), then

𝜔𝑦⋅𝑔 ((𝑑𝛷)(𝑦,𝑔)(𝑈𝑦,𝑈𝑔)) = 𝐴𝑑𝑔−1 (𝜔𝑦(𝑈𝑦) + 𝜈(𝑈𝑔)) . ◀

Recall that the curvature of 𝜔 (see for example [7, §9.4]) is the 2-form 𝛺 ∈ 𝛺2(𝑌, g) defined as

𝛺(𝑈1,𝑈2) = −𝜔 ([𝑈1 − 𝜔(𝑈1)∗,𝑈2 − 𝜔(𝑈2)∗]) , 𝑈1,𝑈2 ∈ 𝔛(𝑌).

2 . 2 . G e o m e t r y o f t h e r e d u c e d c o n f i g u r a t i o n s p a c e

Let 𝒢 → 𝑋 be a Lie group bundle. Then, 𝜋𝐽1𝒢,𝑋∶ 𝐽1𝒢 → 𝑋 is also a Lie group bundle (see [4, §3, Th. 1]). We
take a Lie group subbundle of 𝜋𝐽1𝒢,𝑋, that is, a Lie group bundle 𝜋𝐻,𝑋∶ 𝐻 → 𝑋 such that

( i ) 𝐻 is a submanifold of 𝐽1𝒢,
( i i ) 𝐻𝑥 is a Lie subgroup of 𝐽1𝑥𝒢 for each 𝑥 ∈ 𝑋.

We also assume that 𝐻𝑥 is closed in 𝐽1𝑥𝒢 for every 𝑥 ∈ 𝑋, 𝜋𝐽1𝒢,𝒢(𝐻) = 𝒢 and 𝜋𝐻,𝒢 is an affine subbundle of
𝜋𝐽1𝒢,𝒢. A Lie group connection 𝜈 on 𝒢 → 𝑋 gives an identification of the first jet bundle 𝐽1𝒢 with the vector
bundle modelling it, 𝐽1𝒢 ≃ 𝒢×𝑋 (𝑇∗𝑋 ⊗ g). Under this identification, we suppose that𝐻 = 𝒢×𝑋 (𝑇∗𝑋 ⊗ h),
for certain Lie algebra subbundle h ⊂ g such that h𝑥 is an ideal of g𝑥 for every 𝑥 ∈ 𝑋.

It can be seen that 𝒢 ×𝑋 h → 𝑋 acts fiberwisely, freely and properly on the right on 𝑌 ×𝑋 g → 𝑋. Moreover,
the corresponding quotient 𝑎𝑑h(𝑌) = (𝑌 ×𝑋 g)/(𝒢 ×𝑋 h) is a vector bundle over 𝑌/𝒢, whose elements are
denoted by J𝑦, 𝜉K ∈ 𝑎𝑑h(𝑌).

On the other hand, the first jet extension of the fibered action, i.e., 𝛷1∶ 𝐽1𝑌 ×𝑋 𝐽1𝒢 → 𝐽1𝑌, turns out to be
a right fibered action of 𝐽1𝒢 → 𝑋 on 𝐽1𝑌 → 𝑋 that can be restricted to 𝐻.

T h e o r e m 5 . In the above conditions, let 𝜔 ∈ 𝛺1(𝑌, g) be a generalized principal connection on 𝑌 → 𝑌/𝒢
associated to 𝜈. Then, the following map is a fibered isomorphism over 𝑌/𝒢:

𝐽1𝑌/𝐻 ∋ [𝑗1𝑥𝑠]𝐻 ⟼(𝑗1𝑥 (𝜋𝑌,𝑌/𝒢 ∘ 𝑠) , J𝑠(𝑥), (𝑠∗𝜔)𝑥K) ∈ 𝐽1(𝑌/𝒢) ×𝑌/𝒢 (𝑇∗𝑋 ⊗ 𝑎𝑑h(𝑌)) .

The connections 𝜔 and 𝜈 induce a linear connection ∇h on 𝑎𝑑h(𝑌) → 𝑌/𝒢. Provided a linear connection
∇𝑋 on 𝑇𝑋, we get a linear connection∇ on 𝑇∗𝑋⊗𝑎𝑑h(𝑌) → 𝑌/𝒢. Likewise, a torsion free linear connection
on 𝑇(𝑌/𝒢) → 𝑌/𝒢 projectable to ∇𝑋 (see [5]) induces an affine connection on 𝐽1(𝑌/𝒢) → 𝑌/𝒢. Hence, we
obtain an affine connection on the reduced space.

3 . R e d u c t i o n o f t h e v a r i a t i o n a l p r i n c i p l e

A (first order) Lagrangian density on a fiber bundle 𝑌 → 𝑋 is a bundle morphism ℒ∶ 𝐽1𝑌 → ⋀𝑛 𝑇∗𝑋
covering the identity on 𝑋, where 𝑛 = dim𝑋. Assuming that 𝑋 is orientable and 𝑣 ∈ 𝛺𝑛(𝑋) is a volume
form, we can write ℒ = 𝐿𝑣 for certain 𝐿∶ 𝐽1𝑌 → ℝ called Lagrangian.

Let 𝒢 → 𝑋 be a Lie group bundle acting freely and properly on 𝑌 → 𝑋 and 𝐻 ⊂ 𝐽1𝒢 be a Lie subbundle as
in Section 2.2. If the Lagrangian 𝐿 is 𝐻-invariant, that is, 𝐿 (𝛷1 (𝑗1𝑥𝑠, 𝑗1𝑥𝜂)) = 𝐿 (𝑗1𝑥𝑠) for each (𝑗1𝑥𝑠, 𝑗1𝑥𝜂) ∈
𝐽1𝑌 ×𝑋 𝐻, then the reduced Lagrangian, 𝑙∶ 𝐽1𝑌/𝐻 → ℝ, is well defined. Using a generalized principal
connection, Theorem 5 enables us to regard 𝑙 as defined on 𝐽1(𝑌/𝒢) ×𝑌/𝒢 (𝑇∗𝑋 ⊗ 𝑎𝑑h(𝑌)).

The principle of stationary action used to obtain the Euler-Lagrange equations can be transferred to the
reduced configuration space. When applied to 𝑙, the so-called reduced equations are obtained.
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T h e o r e m 6 (Reduced field equations). Let 𝒰 ⊂ 𝑋 be an open set such that 𝒰 is compact. Let 𝑠 ∈ 𝛤 (𝒰,𝜋𝑌,𝑋)
and 𝜎𝑠 = 𝜋𝑌,𝑌/𝒢 ∘ 𝑠, and consider the reduced section 𝑠 = J𝑠, 𝑠∗𝜔K. Then, the following assertions are
equivalent:

( i ) The variational principle 𝛿∫
𝒰
𝐿(𝑗1𝑠) 𝑣 = 0 holds for vertical variations of 𝑠 such that 𝛿𝑠|𝜕𝒰 = 0.

( i i ) The section 𝑠 satisfies the Euler-Lagrange equations for 𝐿, i.e., ℰℒ(𝐿) (𝑗1𝑠) = 0 (see [1, Section 2.4]).

( i i i ) The variational principle 𝛿∫
𝒰
𝑙(𝑗1𝜎𝑠, 𝑠) 𝑣 = 0 holds for variations of the form

(𝛿𝑠)𝑣 = ∇
h
𝜂 − [𝑠, 𝜂] + 𝜎∗𝑠 �̃� (𝛿𝜎𝑠, ⋅) ,

with 𝜂 ∈ 𝛤 (𝒰,𝜋𝑎𝑑h(𝑌),𝑋) arbitrary such that 𝜋𝑎𝑑h(𝑌),𝑌/𝒢 ∘ 𝜂 = 𝜎𝑠 and 𝜂|𝜕𝒰 = 0, and 𝛿𝜎𝑠 arbitrary
vertical variation of 𝜎𝑠 such that 𝛿𝜎𝑠|𝜕𝒰 = 0.

( i v ) The reduced section 𝑠 satisfies the following reduced field equations

𝛿𝑙
𝛿𝜎𝑠

− div𝑌/𝒢 ( 𝛿𝑙
𝛿𝑗1𝜎𝑠

) = ⟨
𝛿𝑙
𝛿𝑠
, �̃� (𝑑𝜎𝑠, ⋅)⟩ , divh ( 𝛿𝑙

𝛿𝑠
) − ad∗𝑠 (

𝛿𝑙
𝛿𝑠
) = 0.

To conclude, let us define the objects that appear in the equations. First, �̃� ∈ 𝛺2(𝑌/𝒢, 𝑎𝑑h(𝑌)) is the
reduced curvature of 𝜔, which is given by �̃�[𝑦]𝒢 (𝑢1, 𝑢2) =

q
𝑦,𝛺𝑦 (𝑈1,𝑈2)

y
for each [𝑦]𝒢 ∈ 𝑌/𝒢 and 𝑢1, 𝑢2 ∈

𝑇[𝑦]𝐺(𝑌/𝒢), where 𝑈1,𝑈2 ∈ 𝑇𝑦𝑌 project to 𝑢1, 𝑢2, respectively. On the other hand, div
h and div𝑌/𝒢 are the

divergence of ∇h and ∇𝑌/𝒢, respectively, that is, minus the adjoint of those linear connections. In the same
manner, the coadjoint representation of g is naturally extended to a map

ad∗∶ 𝛤(𝑇∗𝑋 ⊗ 𝑎𝑑h(𝑌)) × 𝛤(𝑇𝑋 ⊗ 𝑎𝑑h(𝑌)
∗)⟶ 𝛤(𝑎𝑑h(𝑌)

∗).

At last, the partial derivatives of the reduced Lagrangian are the sections

𝛿𝑙
𝛿𝜎𝑠

∈ 𝛤 (𝑇∗(𝑌/𝒢)) , 𝛿𝑙
𝛿𝑗1𝜎𝑠

∈ 𝛤 (𝑇𝑋 ⊗ 𝑉∗(𝑌/𝒢)) , 𝛿𝑙
𝛿𝑠

∈ 𝛤 (𝑇𝑋 ⊗ 𝑎𝑑h(𝑌)
∗) .

The first one is the horizontal derivative using the affine connection on the reduced space, whereas the
latter ones are fiber derivatives.
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Results in spectral algorithms for signed graphs

1 . I n t r o d u c t i o n

A signed graph can be characterized by the triple 𝐺 = (𝑉,𝐸,𝜎), with vertex set 𝑉, edge set 𝐸 ⊆ 𝑉 × 𝑉 and
signature 𝜎∶ 𝐸 → {−,+}. We consider 𝐺 to be undirected, and thus (𝑖, 𝑗) ∈ 𝐸 if and only if (𝑗, 𝑖) ∈ 𝐸 and
𝜎(𝑖, 𝑗) = 𝜎(𝑗, 𝑖) (we omit parentheses for clarity of exposition).

We focus on the spectral analysis of signed graphs, which concerns associated matrices. Given a signed
graph 𝐺 = (𝑉,𝐸,𝜎), we define the adjacency matrix 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 ∈ 𝑉, where 𝑎𝑖𝑗 = 0 if (𝑖, 𝑗) ∉ 𝐸. Otherwise,
𝑎𝑖𝑗 = 1 if 𝜎(𝑖, 𝑗) = + and −1 if 𝜎(𝑖, 𝑗) = −1.

Wewill discuss two recent results from the computer science literature, involving the detection of subgraphs
with particular characteristics. The problems, as formulated, are hard to optimize and reveal key differences
with respect to their unsigned counterparts. This leads to further questions which we formulate as open
problems.

2 . R e s u l t s i n s p e c t r a l s i g n e d g r a p h p a r t i t i o n i n g

2 . 1 . P a r t i t i o n i n g a n d c o m m u n i t y d e t e c t i o n

The first result we discuss was found by Bonchi et al. [1], and it involves a randomized algorithm to
simultaneously find and partition a dense subgraph with approximation guarantees. In particular, the
problem in question is formulated as follows:

P r o b l e m 1 . Given a signed graph with 𝑛 × 𝑛 adjacency matrix 𝐴 find

max
𝑥∈{−1,0,1}𝑛\{0}

𝑥𝑇𝐴𝑥
𝑥𝑇𝑥

, ◀

where 0 denotes the null vector in ℝ𝑛. This problem is akin to finding the densest subgraph, measured
by average degree. However, we aim not only to find a subgraph with high average degree, but also that
we can approximately partition in accordance to the edge signs; i.e., so that most edges traversing the
boundary of the partition are negative. Contrary to its unsigned counterpart, this problem is NP-hard [1].

The main result of the cited work can be stated as follows:

T h e o r e m 2 . There exists a randomized polynomial-time algorithm that outputs a vector 𝑥 ∈ {−1, 0, 1}𝑛\{0}
satisfying

𝑥𝑇𝐴𝑥
𝑥𝑇𝑥

≥ 𝛺(𝑛−1/2)𝜆1,

where 𝜆1 is the largest eigenvalue of 𝐴.

The result is tight, as there exist graphs where the gap between the optimal vector and 𝜆1 matches the
bound [2].

2 . 2 . P a r t i t i o n i n g i n t o a n a r b i t r a r y n u m b e r o f g r o u p s

The next result we discuss is an extension of the work mentioned above —which is limited to a two-way
partition of the detected subgraph— to handle an arbitrary number of subgraphs. This extension was
accomplished in subsequent work by Tzeng et al. [2]. By defining the sets 𝐸+(𝐺) = {𝑒 ∈ 𝐸 ∶ 𝜎(𝑒) = +} and
𝐸−(𝐺) = {𝑒 ∈ 𝐸 ∶ 𝜎(𝑒) = −}, we can simultaneously quantify the density and the quality of a partition
using the following function, mapping collections of 𝑘 disjoint vertex subsets to the reals:

𝑓(𝑆1,… , 𝑆𝑘) =
∑ℎ∈[𝑘] (|𝐸+(𝑆ℎ)| − |𝐸−(𝑆ℎ)|) +

1

𝑘−1
∑ℎ≠𝑙∈[𝑘] (|𝐸−(𝑆ℎ, 𝑆ℓ)| − |𝐸+(𝑆ℎ, 𝑆ℓ)|)

|⋃ℎ∈[𝑘] 𝑆ℎ|
.
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We abuse the notation and use vertex subsets in lieu of the corresponding induced subgraphs. 𝐸+(𝑆𝑖, 𝑆𝑗)
(resp. 𝐸−(𝑆𝑖, 𝑆𝑗)) denotes the set of positive (resp. negative) edges with one endpoint in 𝑆𝑖 and the other in
𝑆𝑗. [𝑘] is the set {1,… , 𝑘}.

We can thus formulate the problem as follows. Given a signed graph 𝐺 with 𝑛 vertices, the goal is to find 𝑘
disjoint vertex subsets, for a given 0 ≤ 𝑘 ≤ 𝑛, attaining the following optimum:

max
𝑆1,…,𝑆𝑘

𝑓(𝑆1,… , 𝑆𝑘).( 1 )

Somemanipulations reveal that the numerator of the above problem is equivalent to the following quantity:

⟨𝐴,𝑋𝐿𝑘𝑋𝑇⟩
𝑘 − 1 ,

where

• ⟨𝐴,𝐵⟩ is the Frobenius product of matrices 𝐴 and 𝐵,
• 𝐿𝑘 = 𝑘𝐼𝑘 − 𝐽𝑘,
• 𝐼𝑘 is the identity matrix of order 𝑘,
• 𝐽𝑘 is the all-ones square matrix of order 𝑘, and
• 𝑋 ∈ {0, 1}𝑛×𝑘 is a vertex-subset indicator matrix, so that 𝑥𝑖𝑗 = 1 if 𝑖 ∈ 𝑆𝑗, 𝑥𝑖𝑗 = 0 otherwise.

The key insight now is that 𝐿𝑘 has a (𝑘 − 1)-dimensional invariant subspace, which enables the design
of effective algorithms. This is because we can choose the eigenvectors so that they resemble a discrete
structure. In particular, let 𝐿𝑘 = 𝑈𝐷𝑈𝑇, 𝑌 = 𝑋𝑈. Then, 𝑈 can be chosen as follows:

(𝑈∶,1)𝑇 = 1/√𝑘 [1,… , 1], (𝑈∶,2)𝑇 = 𝑐1 [𝑘 − 1,−1,… ,−1],
(𝑈∶,3)𝑇 = 𝑐2 [0, 𝑘 − 2,−1,… ,−1], … (𝑈∶,𝑘)𝑇 = 𝑐𝑘−1 [0,… , 0, 1,−1].

( 2 )

A similar analysis of the cardinality of the union of the chosen sets leads to the final formulation:

max
𝑌∈ℝ𝑛×(𝑘−1)\{0}

Tr(𝑌𝑇𝐴𝑌)
Tr(𝑌𝑇𝑌)

subject to 𝑌𝑖,𝑗 =
⎧

⎨
⎩

𝑐𝑗(𝑘 − 𝑗) if 𝑖 ∈ 𝑆𝑗,
0 if 𝑖 ∈ ∪𝑗−1ℎ=1𝑆ℎ or 𝑖 ∉ ∪ℎ∈[𝑘]𝑆ℎ,
−𝑐𝑗 if 𝑖 ∈ ∪𝑘ℎ=𝑗+1𝑆ℎ.

This can be approximately optimized with approximation guarantees. In particular, the authors provide
the next result [2]:

T h e o r e m 3 . There exists a randomized polynomial-time algorithm that outputs a collection of vertex
subsets 𝑆1,… , 𝑆𝑘 satisfying 𝑓(𝑆1,… , 𝑆𝑘) ≥ 𝛺 ((𝑘√𝑛)−1) 𝑂𝑃𝑇,

where 𝑂𝑃𝑇 is the maximum of (1) over all collections of 𝑘 disjoint vertex subsets.

3 . O p e n p r o b l e m s

The above results highlight interesting differences arising in spectral theory when signs are introduced in
graphs. Most notably, what is arguably a natural extension of the densest subgraph problem formulation
becomes hard to optimize. This suggests the problem of identifying the conditions under which Problem 1
can be solved in polynomial time. We thus propose the following problem:

P r o b l e m 4 . Characterize signed graphs for which Problem 1 can be solved in polynomial time. ◀

Since unsigned graphs can be seen as a special case of signed graphs, we know that the above family is
non-empty. We can further extend this family by simply taking into account the spectral equivalence
between unsigned and balanced graphs [3].
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An additional question arises from empirical results presented in the works cited above. Despite the
hardness of the problem formulations and the tightness of the given bounds, spectral algorithms usually
work well in practice. This suggests the existence of a family of problem instances in which the value of
the objective is not too far detached from the maximum eigenvalue. Thus, we formulate the following
question:

P r o b l e m 5 . Characterize signed graphs for which

max
𝑥∈{−1,0,1}𝑛\{0}

𝑥𝑇𝐴𝑥
𝑥𝑇𝑥

=
𝜆1

𝑜 (√𝑛)
. ◀

That is, we aim to identify the graphs that allow us to attain approximations significantly better than those
described above.
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A b s t r a c t : To measure the impact of isolating individuals infected with direct trans-
mission diseases a compartmental model was obtained and validated mathemati-
cally with respect to qualitative behavior.

First, the basal number 𝑅0 was determined throughVan den Driessche-Watmough’s
method, because that parameter sets the stability of the two equilibrium points.
Then, using Liapunov’s theory, it was proven that when 𝑅0 < 1 the disease-free
equilibrium is globally asymptotic stable and the endemic equilibrium is globally
asymptotic stable when 𝑅0 > 1, has a forward bifurcation in 𝑅0 = 1 and is unstable
otherwise.

Finally, sensitivity analysis was done through numerical simulations, changing the
parameters and analyzing the curve of infected. Increasing the number of infected
that enter quarantine and reducing the contagion rate both lead to a significant
reduction in the number of cases, however the curve was flattened only in the
second case, therefore it is expected to be more effective.

R e s u m e n : Para medir el impacto de aislar individuos infectados con enferme-
dades de transmisión directa se obtuvo un modelo compartimental y se validó
matemáticamente con respecto al comportamiento cualitativo.

En primer lugar, se determinó el número basal 𝑅0 mediante el método de Van
den Driessch-Watmough, ya que ese parámetro establece la estabilidad de los dos
puntos de equilibrio. Luego, utilizando la teoría de Liapunov, se demostró que
cuando 𝑅0 < 1 el equilibrio libre de enfermedad es globalmente asintótico estable
y el equilibrio endémico es globalmente asintótico estable cuando 𝑅0 > 1, tiene
una bifucación hacia adelante en 𝑅0 = 1 y es inestable en caso contrario.

Por último, se ha realizado un análisis de sensibilidad mediante simulaciones
numéricas, cambiando los parámetros y analizando la curva de infectados. Tanto
el aumento del número de infectados que entran en cuarentena como la reducción
de la tasa de contagio conducen a una reducción significativa en el número de
casos; sin embargo, la curva se aplanó solo en el segundo caso, por lo que se espera
que sea más eficaz.

K e y w o r d s : SQIR model, global stability, sensitivity analysis.
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Global stability and sensitivity of an SQIR model with infectivity during quarantine

1 . I n t r o d u c t i o n

Although compartmental models have been a fundamental tool in epidemiology for decades, the necessity
for development in this area has become very evident recently due to the COVID-19 pandemic. One
tendency in recent works concerning such models is to incorporate different types of isolation into the
classical models. For example, some results where made in [2] to cases where the isolation is given as
a function of the distancing between susceptibles. More recently, [1] considered non-lethal diseases in
which a portion of the susceptible is isolated and the incubation period is infectious.

In this work, we will be concerned with the isolation of the infected while they are in treatment. The Centers
for Disease Control and Prevention of the USA recommend this practice for cases of HIV, Tuberculosis,
Rubella, Chickenpox, among others [3] and the World Health Organization and many other agencies
adopted this method to handle the COVID-19 [4]. Most of these diseases are lethal and some health
professionals and patients can end up infected by those isolated patients due to flexibilization of isolating
norms.

2 . S Q I R m o d e l

For the modeling, the main aspects were that individuals might recover or die after being infected, some
of them get in quarantine while receiving medical care and that the quarantine is imperfect, changing
recovery and deaths rate. The following model was obtained considering all this.

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

d𝑆
d𝑡 = 𝜈 − 𝛽1𝑆𝑄 − 𝛽2𝑆𝐼 − 𝜇𝑆,

d𝑄
d𝑡 = 𝛾𝐼 − (𝜇 + 𝛼1 + 𝜌1)𝑄,

d𝐼
d𝑡 = 𝛽1𝑆𝑄 + 𝛽2𝑆𝐼 − (𝜇 + 𝛾 + 𝛼2 + 𝜌2)𝐼,

d𝑅
d𝑡 = 𝜌1𝑄 + 𝜌2𝐼 − 𝜇𝑅.

The parameters are values between 0 and 1. Their meaning is shown in Table1.

T a b l e 1 : Summary of all the parameters.

𝛼1 mortality rate in quarantine
𝛼2 mortality rate without quarantine
𝛽1 infection rate in quarantine
𝛽2 infection rate without quarantine
𝛾 rate of infected people that go to quarantine
𝜇 natural deaths (not caused by the disease)
𝜈 natality and migration rate
𝜌1 recovery rate in quarantine
𝜌2 recovery rate without quarantine

The model dynamic is determined mainly by the domain of the functions 𝑆,𝑄, 𝐼,𝑅 and the basic reproduc-
tion number 𝑅0, which tell us how many people one infected individual will contaminate.

A feasible positively invariant region for the model is

𝐷 = {(𝑆,𝑄, 𝐼,𝑅) ∈ ℝ4 ∶ 0 < 𝑆 ≤ 𝜈
𝜇 , 0 ≤ 𝑄, 0 ≤ 𝐼, 0 ≤ 𝑅} .
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To determine a suitable 𝑅0, first the substitutions 𝛿 = 𝜇 + 𝛼1 + 𝜌1, 𝜔 = 𝜇+ 𝛾 + 𝛼2 + 𝜌2 were made, then the
compartments with the disease were divided into two matrices 𝐹 and 𝑉 such that

d
d𝑡 [

𝑄
𝐼 ] = 𝐹 − 𝑉 = [ 𝛾𝐼

𝛽1𝑆𝑄 + 𝛽2𝑆𝐼
] − [ 𝛿𝑄

𝜔𝐼 ] .

Then, the value of 𝑅0 was established using Van der Driessch-Watmough’s method.

𝑅0 = 𝜌(𝐽(𝐹)𝐽−1(𝑉)) =
𝜈(𝛾𝛽1 + 𝛿𝛽2)

𝜇𝜔𝛿 ;

here, 𝜌(𝑋) and 𝐽(𝑋) represent the spectral radius and the Jacobian matrix of 𝑋, respectively.

3 . R e s u l t s

Through the calculations, it was found that, when 𝑅0 > 1, there are two stationary points 𝑃1 and 𝑃2, the first
occurs if 𝐼(0) = 0 in 𝜕𝐷 and the second if 𝐼(0) > 0 in the interior of 𝐷. However, when 𝑅0 ≤ 1 only 𝑃1 exists.

𝑃1 = ( 𝜈
𝜇
, 0, 0, 0) reflects the situation where there is no disease to spread and the endemic equilibrium is

given by

𝑃2 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑆2 =
𝛿𝜔

𝛽1𝛾 + 𝛽2𝛿
= 𝜈
𝜇𝑅0

,

𝑄2 =
𝜈𝛾
𝜇𝛿3𝜔 −

𝛾
𝛽1𝛾 + 𝛽2𝛿

,

𝐼2 =
𝜈

𝜇𝛿2𝜔 − 𝛿
𝛽1𝛾 + 𝛽2𝛿

= 𝛿
𝛾𝑄2,

𝑅2 =
1
𝜇 (𝜌1𝑄2 + 𝜌2𝐼2) =

𝑄2
𝜇 (𝜌1 +

𝜌2𝛿
𝛾 ) .

Defining convenient Lyapunov and anti-Lyapunov functions, it was proven that 𝑃1 is globally asymptotic
stable when 𝑅0 < 1, it has a forward bifurcation in 𝑅0 = 1 and is unstable when 𝑅0 > 1. Also 𝑃2 is globally
asymptotic stable when 𝑅0 ≥ 1. Therefore it meets the expected qualitative behavior from the disease, i.e.,
when 𝑅0 < 1 it eventually vanishes, no matter how many infected are in the population, and when 𝑅0 > 1
it spreads until almost all the people had contact and are now immunized or dead.

The model was also investigated quantitatively using numerical simulations and sensitivity analysis was
done on the parameters 𝛾 and 𝛽2. The results for 𝛽1 = 0.01, 𝛼1 = 0.01, 𝛼2 = 0.02, 𝜌1 = 0.99, 𝜌2 = 0.98,
𝜈 = 0.03 and 𝜇 = 0.00005 fixed are presented below in Figures 1 and 2.

F i g u r e 1 : Infected curves for different values of 𝛾.
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F i g u r e 2 : Infected curves for different values of 𝛽2.

As observed, increasing the number of infected that enter quarantine there was a significant reduction in
the number of cases, however the curve maintained its shape, and reducing the contagion rate the number
of infected decreased and the curve was flattened, retarding the pinnacle of cases. Therefore, contagion
reducing actions, such as washing hand, using masks, etc. are expected to be more effective than this type
of isolation.

4 . C o n c l u s i o n

The new coronavirus (SARS-CoV-2) identified in December 2019 inWuhan in China was a great motivator
of recent work in epidemiology, and many of these have isolation as their object of study. Following this
trend, a model was obtained with the population divided into susceptible, quarantined, infected and
recovered, the isolation is done between infected individuals and is imperfect, that is, some infections
come from the encounter between quarantined and susceptible people.

It has been analytically proven that the model follows the expected asymptotic behavior of a disease like
COVID-19, which should stabilize and eventually disappear if there are no mutations. Although they have
this tendency, it is known that this is a very damaging process for society, causing losses and deaths. It is
then necessary to intervene through preventive measures to prevent the rapid increase in the number of
infected individuals.

In practice, it is not always possible to implement several measures at the same time, so it is interesting to
know which ones are more effective. In order to compare between increasing the isolation proposed by this
SQIR model with actions that decrease the contagion rate, it was verified from the numerical simulations
with random parameters, a decrease in the number of infected with both, but the flattening of the curve
only happened in the second case, and therefore should be prioritized.
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A b s t r a c t : Model categories are a category theoretic tool defined by Daniel Quillen
with the aim of generalizing the homotopy theory built for topological spaces. The
main goal of this text is to give an introduction to them, following an article by
Dwyer and Spalinski. Just by its definition, it is almost inmediate that we can
generalize analogues of well-known notions such as cylinder spaces, path spaces
and homotopies. We use these tools to build a homotopy theory on a model
category. Moreover, we will give some examples of different model structures
over some categories, such as the expected category of topological spaces and the
category of chain complexes of modules over a ring. Concerning the second one,
we will also speak a little about spectral sequences and about the related model
structure for filtered chain complexes.

R e s u m e n : Las categorías de modelos son un concepto categórico teórico que fue
definido por Daniel Quillen con el objetivo de generalizar la teoría de homotopía
ya existente para espacios topológicos. Tan solo a partir de su definición, es casi
inmediato que podemos generalizar nociones bien conocidas como son los es-
pacios cilíndricos, los espacios de caminos y las homotopías. Utilizaremos estas
herramientas para construir una teoría de homotopía en una categoría de modelos.
Además, daremos algunos ejemplos de diferentes estructuras de modelos para
diversas categorías, como es la esperada categoría de espacios topológicos o como
la categoría de complejos de cadenas de módulos sobre un anillo. Con respecto
a éste último, también hablaremos un poco sobre sucesiones espectrales y, en
relación con ellas, sobre una estructura de modelos para complejos de cadenas
filtrados.

K e y w o r d s : homotopy theories, homotopy categories, model categories fibrations,
cofibrations, weak equivalences, spectral sequences, spectral systems.
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Model categories and homotopy theories

1 . I n t r o d u c t i o n

Model categories were introduced by Daniel Quillen in [8], looking for a generalization of the classic
homotopic tools that we knew for topological spaces. As he explains there, he did that in sight of some
work by Dold and Kan where some sort of “homotopic methods” were used succesfully in the context of
derived categories.

To generalize it, he defined what he calledmodel categories. A model structure over a category is defined by
distinguishing some classes of maps and imposing some axioms over them. These axioms, which resemble
basic homotopy properties, turn out to be enough to define an equivalence relation for the maps of this
category. This relation is called homotopy relation, and it is what will give us the homotopy theory (also
called rational homotopy theory). From then on, several authors have proved different categories to fulfill
the axioms for some classes of maps, and also have found different structures for a particular category.

2 . T h e d e f i n i t i o n o f m o d e l c a t e g o r i e s

The first step to define a model structure over a category 𝒞 (following [2, Section 3]) is to distinguish three
classes of maps, all of them closed under composition:

• Weak equivalences, of which we may think of as weak homotopy equivalences (maps that induce
isomorphisms over all the homotopy groups).

• Fibrations, which can correspond to Serre fibrations and include covering maps.
• Cofibrations, which are dual to fibrations, and in the case of topological spaces can correspond to
retracts of maps that obtain a space from another one by attaching cells.

Also, we ask them to fulfill the following axioms:

M C 1 Finite limits and colimits exist in 𝒞.
M C 2 If 𝑓 and 𝑔 are maps in 𝒞 such that its composition 𝑔 ∘ 𝑓, and two out of the three of them are weak

equivalences, then so is the third one.
M C 3 If 𝑓 is a retract of 𝑔 and 𝑔 is a fibration, a cofibration or a weak equivalence, then so is 𝑓.
M C 4 Let us consider the commutative diagram on the

right. If 𝑖 is a cofibration and 𝑝 is a fibration and
a weak equivalence (called acyclic fibration), or if 𝑖
is an acyclic cofibration and 𝑝 a fibration, then there
exists a lift for the diagram (that is, a map 𝑙∶ 𝐵 → 𝑋
that commutes with the other arrows of the diagram).

𝐴 𝑋

𝐵 𝑌

𝑖

𝑓

𝑔

𝑝

M C 5 Any morphism 𝑓 can be factored (maybe with a functorial factorization) as 𝑓 = 𝑝𝑖, where 𝑖 is a
cofibration and 𝑝 is an acyclic fibration, or where 𝑖 is an acyclic cofibration and 𝑝 is a fibration.

MC1 is purely technical, and is related to the existence of initial and terminal objects. MC2 tells us about
the good behaviour of weak equivalences with respect to compositions. MC3 and MC4 ask our classes to
behave well with respect to retracts (of maps), extensions and liftings. We notice that those two and MC2
resemble topological spaces, homotopy liftings and composition of weak homotopy equivalences.

To understand MC5, we have to introduce the so called cofibrant and fibrant objects. These are objects for
which, respectively, the map from the initial object is a cofibration and the map to the terminal object is a
fibration. In the case of topological spaces, all objects can be fibrants, whereas the cofibrant objects can
be the retracts of cell-complexes. Using now MC5, and given an object 𝑋, we can factor those maps as

∅ 𝑋 ∅ 𝐹 𝑋

𝑋 ∗ 𝑋 𝐶 ∗

𝑖 ∼

𝑝 ∼
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In other words, MC5means that we can find some sort of 𝐶𝑊-approximation for any object in our category.
These kinds of objects are important because they behave very well with respect to the homotopy relations.

Next, we define a cylinder object on a model category 𝒞 to be an
object 𝑋 ∧ 𝐼 that factors the map id𝑋+id𝑋∶ 𝑋∐𝑋 → 𝑋 in such a
way that the map 𝑋 ∧ 𝐼 → 𝑋 is a weak equivalence. Looking at the
diagram on the right, we can see that this definition tries to capture
the topological idea of cylinder, with inclusion of both bases into a
topological cartesian product 𝑋 × [0, 1] together with the projection
onto 𝑋. However, it throws away all the geometric or topological
information, and keeps only the maps.

Now, if we take two maps, 𝑓, 𝑔∶ 𝑋 → 𝑌, and a cylinder object for 𝑋,
𝑋 ∧ 𝐼, then we define a left homotopy between 𝑓 and 𝑔 via 𝑋 ∧ 𝐼 to
be a map 𝐻∶ 𝑋 ∧ 𝐼 → 𝑌 that extends the sum 𝑓 + 𝑔∶ 𝑋∐𝑋 → 𝑌. In
that case, we say that 𝑓 and 𝑔 are homotopic, and we call this relation
“left homotopy relation”. This obviously reminds of the usual notion
of homotopy, as illustrated by the diagram below.

We can also define dual notions of cylinders and left homo-
topies, which are called path spaces and right homotopies. The
key point here is that not only fibrant and cofibrant objects give
us the desired lifting properties for homotopies, but also make
left and right homotopy relations equivalent.

Using MC5 as we did before, we take those 𝐶𝑊-approximations
and define with them a unique homotopy relation. Therefore,
the homotopy category Ho(𝒞) of a model category 𝒞 is the cate-
gory with the same objects of 𝒞 and withmorphisms the equiva-
lence classes ofmaps, between the fibrant and cofibrant replace-
ments, by the homotopy relation previously defined. Specifi-

cally, this means that we can work there “up to homotopy”, and that we have a functor 𝛾∶ 𝒞 → Ho(𝒞) that
inverts all the maps that we distinguished as weak equivalences.

3 . E x a m p l e s

As we mentioned previously, one can easily find different examples of homotopy theories over different
categories. We will comment the ones that are mentioned in [2] and that we studied in [6].

As we have been mentioning previously, topological spaces admit a model structure taking the class of
weak equivalences to be weak homotopy equivalences, the class of fibrations to be Serre fibrations and the
class of cofibrations to be the retracts of maps that attach cells on a given space.

However, this is not the only way to do this. If we look at the class of weak equivalences, we could ask
ourselves if it is possible to build a model structure where the weak equivalences are the homotopy
equivalences. Strom, in [9], answered this question by building such a model structure, taking Hurewicz
fibrations and closed Hurewicz cofibrations. The difference between these structures lies in the fact that
there are maps that are weak homotopy equivalences but not homotopy equivalences (see for example [6,
Section 3.1]). However, they are the same for CW-complexes, asWhitehead’s Theorem states.

There are several categories of chain complexes that admit a model structure, and several ways to define
one over each of them ([3, Chapter 2]). In particular, we have the so-called projective model structure,
which is built by taking as weak equivalences the maps that induce isomorphisms between the homology
groups, as cofibrations the monomorphisms with projective kernel and as fibrations the epimorphisms.
Also, it is worth mentioning that there are model structures that take as weak equivalences the usual chain
homotopy equivalences (called Hurewicz model structure).

TEMat monogr., 2 (2021) e-ISSN: 2660-6003 225



Model categories and homotopy theories

F i l t e r e d c h a i n c o m p l e x e s . S p e c t r a l s e q u e n c e s

Spectral sequences are families (𝐸𝑟, 𝑑𝑟)𝑟≥1 of bigraded modules 𝐸𝑟 = {𝐸𝑟𝑝,𝑞}𝑝,𝑞∈ℤ for each 𝑟 (the number 𝑟 is
called page). The 𝑑𝑟𝑝,𝑞 are maps of bidegree (−𝑟, 𝑟 − 1) that are called differentials (see [5] for more about
them). We can obtain each page computing the homology of the previous one.

• • • • •
• • • • •
• • • • •
• • • • •

𝑝

𝑞 r=1

//

OO

𝑑14,1
oo

𝑑13,1
oo

𝑑12,1
oo

𝑑11,1
oo

𝑑14,2
oo

𝑑13,2
oo

𝑑12,2
oo

𝑑11,2
oo

• • • • •
• • • • •
• • • • •
• • • • •

𝑝

𝑞 r=2

//

OO

𝑑23,2
gg

𝑑24,1
gg

𝑑22,2
gg

𝑑23,1
gg

• • • • •
• • • • •
• • • • •
• • • • •

𝑝

𝑞 r=3

//

OO

𝑑33,0

dd
𝑑34,1

dd

𝑑33,1

dd

Given a filtered chain complex (𝐹𝑘𝐶∗, 𝑑)𝑝∈ℤ, one defines its associated spectral sequence (which is a
progressive approximation of homology groups by pages) by taking the quotient of the so called almost-
cycles (𝑍𝑟𝑝,𝑞) and almost-boundaries (𝐵𝑟𝑝,𝑞) as follows:

𝑍𝑟𝑝,𝑞 =
𝐴𝑟𝑝,𝑞 + 𝐹𝑝−1𝐶𝑛

𝐹𝑝−1𝐶𝑛
, 𝐵𝑟𝑝,𝑞 =

d(𝐴𝑟−1𝑝+𝑟−1,𝑞−𝑟+2) + 𝐹𝑝−1𝐶𝑛
𝐹𝑝−1𝐶𝑛

and 𝐸𝑟𝑝,𝑞 ≔
𝑍𝑟𝑝,𝑞
𝐵𝑟𝑝,𝑞

,

where 𝑛 = 𝑝 + 𝑞, 𝐴𝑟𝑝,𝑞 = {𝑐 ∈ 𝐹𝑝𝐶𝑛 ∣ d(𝑐) ∈ 𝐹𝑝−𝑟𝐶𝑛−1}, and the differentials are induced by the ones of
the complex. Noticing that a map of filtered chain complexes induces a map of spectral sequences, and
looking at the previous example of model structure, one could ask if we can take as weak equivalences the
maps that induce a spectral sequences isomorphism from a certain page. The answer is positive, and it
is given by Joana Cirici [1]. Moreover, there exists a generalization of spectral sequences for generalized
filtered chain complexes, called spectral systems, and introduced in [4]. An open problem is to define a
model structure for generalized filtered chain complexes by taking the class of weak equivalences to be the
maps that induce isomorphisms between certain terms of the associated spectral system.

4 . C o n c l u s i o n

There are more examples that we could mention, such as the classic Kan complexes and the category of
simplicial sets. However, there exist more “unexpected” examples, such as [7], concernig schemes. One
can apply this in many different areas, and work with generalized homotopy notions that can be thought
intuitively but that have also proved themselves useful. Consequently, its study is really encouraging.
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A b s t r a c t : It is well known that every continuous function from ℝ to ℝmaps con-
nected sets to connected sets. However, the converse is not true in general, that
is, the family of real functions that map connected sets to connected sets (known
as Darboux functions) strictly contains the family of continuous functions. This
method of considering necessary but not sufficient conditions for continuous func-
tions lead us to obtain the families of functions known as Darboux-like functions.
In this expository paper we will study the main results related to the inclusions
and set operations between the classical families of Darboux-like functions, and
also analyze the cardinal coefficient known as additivity of these families.

R e s u m e n : Es bien conocido que toda función continua de ℝ en ℝ lleva conjuntos
conexos en conjuntos conexos. Sin embargo, el recíproco no es cierto en general,
es decir, la familia de funciones que llevan conjuntos conexos en conjuntos co-
nexos (conocidas como funciones Darboux) contiene estrictamente a la familia
de funciones continuas. Este método de considerar condiciones necesarias pero
no suficientes para las funciones continuas nos lleva a obtener las familias de
funciones conocidas como funciones de tipo Darboux. En este artículo expositivo
estudiaremos los resultados principales relacionados con las inclusiones y ope-
raciones de conjuntos entre las familias clásicas de funciones de tipo Darboux, y
también analizaremos el coeficiente cardinal conocido como aditividad de estas
familias.
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Additivities of the families of Darboux-like functions

1 . I n t r o d u c t i o n a n d p r e l i m i n a r i e s

Let ℝ andℕ denote the sets of real and natural numbers, respectively. We will denote for the rest of this
paper the set of functions from ℝ to ℝ and the set of continuous functions from ℝ to ℝ by ℝℝ and 𝐶,
respectively.

Let us begin with some historical background. The IntermediateValueTheorem (in its classical formulation)
is a well-known result on continuous functions proven by Bolzano in 1817. It states that if 𝑓 ∈ 𝐶, then
𝑓 maps intervals to intervals, that is, 𝑓 maps connected sets to connected sets. We say that a function
𝑓 ∈ ℝℝ satisfies the Intermediate Value Property (IVP) if 𝑓maps connected sets to connected sets. Around
1875, famous mathematician Darboux studied the IVP proving, for instance, that the derivative of every
differentiable function in ℝℝ satisfies the IVP. However, not every function that maps connected sets to
connected sets is continuous, as shown by the following classical example:

𝑓(𝑥) = {
sin ( 1

𝑥
) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

We say that 𝑓 ∈ ℝℝ is Darboux (in honor of Jean-Gaston Darboux) if 𝑓maps connected sets to connected
sets. We will denote by 𝒟 the family of all functions 𝑓 ∈ ℝℝ that map connected sets to connected
sets. Notice that 𝐶 ⊊ 𝒟. This idea of considering necessary but not sufficient conditions for continuous
functions has been thoroughly studied throughout the past century by many mathematicians, leading to
what are known as Darboux-like functions (or generalized continuous functions).

In this paper we will study how the classical families of Darboux-like functions are related by inclusions and
by set operations, showing that they form an algebra of sets, and also we will show the cardinal coefficient
known as additivity of these families. The paper is arranged as follows. In Section 2 we will define all the
classical families of Darboux-like functions as well as how they are related by inclusions and intersections.
This section will also show that these families form an algebra of sets, providing the atoms that generate
the algebra as well. In Section 3 we will define the concept of additivity of a family of real functions and its
relation with the field of lineability. We will finish this section by providing the known additivities of (i) the
classical families of Darboux-like functions, (ii) the complements of the classical families of Darboux-like
functions and (iii) the atoms that form the algebra of sets.

To finish this section we will introduce standard notations and definitions from set theory that will be
used for the rest of this paper. The symbol |𝑋| will denote the cardinality of the set 𝑋. If 𝑓 ∈ ℝℝ and 𝑋 ⊆ ℝ,
then 𝑓 � 𝑋 denotes the restriction of 𝑓 to 𝑋. The successor of a cardinal number 𝜆 and its cofinality will be
denoted by 𝜆+ and cof(𝜆), respectively. We say that a cardinal number 𝜆 is regular if cof(𝜆) = 𝜆. Given a set
𝑋 and a cardinal number 𝜆, we denote by [𝑋]<𝜆 and [𝑋]𝜆 the sets of all subsets of 𝑋 of cardinality less than
𝜆 and equal to 𝜆, respectively. Let 𝜔1 = |ℕ|, 𝜔2 = 𝜔+1 and 𝔠 = |ℝ|. We define also 𝔠− as 𝜅 when 𝜅 = 𝔠+ and
as 𝔠 otherwise. Finally, let 𝑇 be a theory and 𝐴 an additional axiom. Then, 𝐴 is consistent with 𝑇 (or 𝐴 is
relatively consistent with 𝑇) if it can be proved that if 𝑇 is consistent (does not entail contradiction), then
𝑇 + 𝐴 is consistent.

2 . D a r b o u x - l i k e f u n c t i o n s a n d t h e i r r e l a t i o n s

There are eight classical families of Darboux-like functions (one of them being𝒟). They are defined and
denoted as follows:

PC - family of all peripherally continuous functions 𝑓 ∈ ℝℝ, that is, such that for every 𝑥 ∈ ℝ, there exist
two sequences 𝑠𝑛 ↗ 𝑥 and 𝑡𝑛 ↘ 𝑥 with lim

𝑛→∞
𝑓(𝑠𝑛) = 𝑓(𝑥) = lim

𝑛→∞
𝑓(𝑡𝑛).

Conn - family of all connectivity functions 𝑓 ∈ ℝℝ, that is, such that the graph of 𝑓 restricted to any
connected 𝐶 ⊆ ℝ is a connected subset of ℝ2.

AC - family of all almost continuous functions 𝑓 ∈ ℝℝ (in the sense of Stallings), that is, such that every
open subset of ℝ2 containing the graph of 𝑓 contains also the graph of function in 𝐶.
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PR - family of all functions 𝑓 ∈ ℝℝ with perfect road, that is, such that for every 𝑥 ∈ ℝ there exists a
perfect 𝑃 ⊆ ℝ having 𝑥 as a bilateral limit point such that 𝑓 � 𝑃 is continuous at 𝑥.

CIVP - family of all functions 𝑓 ∈ ℝℝ with the Cantor Intermediate Value Property, that is, such that for all
distinct 𝑝, 𝑞 ∈ ℝwith 𝑓(𝑝) ≠ 𝑓(𝑞) and for every perfect set 𝐾 between 𝑓(𝑝) and 𝑓(𝑞), there exists a
perfect set 𝐶 between 𝑝 and 𝑞 such that 𝑓[𝐶] ⊆ 𝐾.

SCIVP - family of all functions 𝑓 ∈ ℝℝ with the Strong Cantor Intermediate Value Property, that is, such
that for all distinct 𝑝, 𝑞 ∈ ℝwith 𝑓(𝑝) ≠ 𝑓(𝑞) and for every perfect set 𝐾 between 𝑓(𝑝) and 𝑓(𝑞), there
exists a perfect set 𝐶 between 𝑝 and 𝑞 such that 𝑓[𝐶] ⊆ 𝐾 and 𝑓 � 𝐶 is continuous.

Ext - family of all extendable functions 𝑓 ∈ ℝℝ, that is, such that there exists a connectivity function
𝑔∶ ℝ× [0, 1] → ℝwith 𝑓(𝑥) = 𝑔(𝑥, 0) for all 𝑥 ∈ ℝ.

We will denote by� the set of all classical families of Darboux-like functions. The families in� are related
in terms of sets by inclusions. Figure 1 shows all the strict inclusions of the families in�. Moreover, the
families in� still have the containment relations as in Figure 1 even when we consider the intersections
between the families. We refer the interested reader to [2] and the references therein for the proofs of the
containment relations.

F i g u r e 1 : All strict inclusions, indicated by arrows, among the families in�.

Therefore, the families in � form an algebra of sets, which will be denoted by 𝒜(�), generated by the
following 17 sets: Ext, PC ⧵ (PR ∪ 𝒟), PR ⧵ (CIVP ∪ 𝒟), CIVP ⧵ (SCIVP ∪ 𝒟), SCIVP ⧵ 𝒟,𝒟 ⧵ (PR ∪ Conn),
𝒟∩PR⧵(CIVP∪Conn),𝒟∩CIVP⧵(SCIVP∪Conn),𝒟∩SCIVP⧵Conn, Conn⧵(PR∪AC), Conn∩PR⧵(CIVP∪AC),
Conn∩CIVP⧵(SCIVP∪AC), Conn∩SCIVP⧵AC, AC⧵PR, AC∩PR⧵CIVP, AC∩CIVP⧵SCIVP andAC∩SCIVP⧵Ext.

3 . A d d i t i v i t i e s o f t h e a l g e b r a o f D a r b o u x - l i k e f u n c t i o n s

We begin this section by defining the additivity of a family of real functions.

D e f i n i t i o n 1 (Additivity). Let ℱ ⊆ ℝℝ. The additivity of ℱ is the following cardinal number:

A(ℱ) = min ({|𝐹| ∶ 𝐹 ⊂ ℝℝ, ∀𝑔 ∈ ℝℝ, 𝑔 + 𝐹 ⊈ ℱ} ∪ {(2𝔠)+}) . ◀

Although the additivity is interesting from the point of view of set theoretical real analysis, it can also be
used in the field of lineability to find vector spaces of certain dimension. For more information about this
field we refer the reader to [1].

D e f i n i t i o n 2 (𝛼-lineable). Let 𝑋 be a vector space, 𝐴 a subset of 𝑋 and 𝛼 a cardinal number. We say that 𝐴
is 𝛼-lineable if 𝐴 ∪ {0} contains a vector space of dimension 𝛼. ◀

T h e o r e m 3 (Gámez, Muñoz and Seoane [3]). Let ℱ ⊆ ℝℝ be star-like, that is, 𝑎ℱ ⊆ ℱ for all 𝑎 ∈ ℝ. If
𝔠 < A(ℱ) ≤ 2𝔠, then ℱ is A(ℱ)-lineable.

Now, one of the properties that additivity has is the following (see [2]): given ℱ,𝒢 ⊆ ℝℝ with ℱ ⊆ 𝒢, we
have that A(ℱ) ≤ A(𝒢). Hence, notice that if we know the additivities of the atoms of 𝒜(�), then we have
the lower bounds of all the additivities of the families in 𝒜(�). We proceed to show the main results of this
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expository paper. We first show the additivities of the families in� and their complements (see [2] and the
references therein). Let us define the following cardinal numbers:

𝑒𝔠 = min{|𝐹| ∶ 𝐹 ⊂ ℝℝ,∀𝑔 ∈ ℝℝ,∃𝑓 ∈ 𝐹 such that |𝑓 ∩ 𝑔| < 𝔠},
𝑑𝔠 = min{|𝐹| ∶ 𝐹 ⊂ ℝℝ,∀𝑔 ∈ ℝℝ,∃𝑓 ∈ 𝐹 such that |𝑓 ∩ 𝑔| = 𝔠}, and
𝑑∗𝔠 = min{|𝐹| ∶ 𝐹 ⊂ ℝℝ,∀𝐺 ∈ [ℝℝ]𝔠,∃𝑓 ∈ 𝐹 such that ∀𝑔 ∈ 𝐺, |𝑓 ∩ 𝑔| = 𝔠}.

T h e o r e m 4 (Ciesielski, Miller, Gámez, Muñoz, Seoane, Mazza, Recław, Jordan, Natkaniec - 1994/95, 1996/97,
2010, 2017). We have the following results:

( a ) 𝔠+ ≤ A(AC) = A(Conn) = A(𝒟) = 𝑒𝔠 ≤ 2𝔠, and this is all that can be proved in ZFC.
( b ) A(Ext) = A(PR) = 𝔠+.
( c ) A(PC) = 2𝔠.
( d ) A(ℝℝ ⧵ PC) = 𝜔1.
( e ) A(ℝℝ ⧵ Ext) = A(ℝℝ ⧵ PR) = 2𝔠.
( f ) 𝑑𝔠 ≤ A(ℝℝ ⧵ 𝒟) ≤ A(ℝℝ ⧵ Conn) ≤ A(ℝℝ ⧵ AC) ≤ 𝑑∗𝔠 .

If |[𝔠]<𝔠| = 𝔠, then A(ℝℝ ⧵ 𝒟) = A(ℝℝ ⧵ Conn) = A(ℝℝ ⧵ AC) = 𝑑𝔠 = 𝑑∗𝔠 .
If |[𝔠]<𝔠| = 𝔠 and 𝔠 = 𝜆+, then 𝑑𝔠 ≤ 𝑒𝔠.
Moreover, 𝔠+ ≤ 𝑑𝔠 ≤ 2𝔠 and

( f 1 ) For every cardinals 𝜆 ≥ 𝜅 ≥ 𝜔2 such that cof(𝜆) > 𝜔1 and 𝜅 is regular, it is relatively consistent
with ZFC+CH that 2𝔠 = 𝜆 and 𝑑𝔠 = 𝑒𝔠 = 𝜅. In particular, 𝔠+ < 𝑑𝔠 = A(ℝℝ ⧵ 𝒟) = A(𝒟) = 𝑒𝔠 < 2𝔠
is consistent with ZFC+CH.

( f 2 ) For every cardinal 𝜆 > 𝜔2 such that cof(𝜆) > 𝜔1, it is relatively consistent with ZFC+CH that
𝔠+ = 𝜔2 = A(ℝℝ ⧵ 𝒟) = 𝑑𝔠 < 𝑒𝔠 = A(𝒟) = 2𝔠 = 𝜆.

Finally we present the known additivities of the atoms of 𝒜(�) (for more details, see [2]).

T h e o r e m 5 (Ciesielski, Natkaniec, Rodríguez, Seoane [2]). We have the following results:

( a ) 𝑑𝔠 ≤ A(PC ⧵ (PR ∪ 𝒟)) ≤ 𝑑∗𝔠 .
( b ) A(PR ⧵ (CIVP ∪ 𝒟)) = A(CIVP ⧵ (SCIVP ∪ 𝒟)) = A(AC ∩ PR ⧵ CIVP) = A(AC ∩ CIVP ⧵ SCIVP) = 𝔠+.
( c ) A(SCIVP ⧵ 𝒟) = A(𝒟 ∩ SCIVP ⧵ Conn) = A(Conn ∩ SCIVP ⧵ AC) = 2.
( d ) A(AC ⧵ PR) = 𝑒𝔠.
( e ) 𝜔1 ≤ A(Conn ⧵ (PR ∪ AC)), A(Conn ∩ PR ⧵ (CIVP ∪ AC)), A(Conn ∩ CIVP ⧵ (SCIVP ∪ AC)) ≤ 𝔠.
( f ) 𝔠− ≤ A(𝒟 ⧵ (PR ∪ Conn)), A(𝒟 ∩ PR ⧵ (CIVP ∪ Conn)), A(𝒟 ∩ CIVP ⧵ (SCIVP ∪ Conn)) ≤ 𝔠.
( g ) 2 ≤ A(AC ∩ SCIVP ⧵ Ext) ≤ 𝔠.
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A b s t r a c t : From a graph 𝐺 related graphs can be constructed, such as its line graph
𝐿(𝐺) and its edge-complement graph 𝐺. After showing how properties of 𝐺 imply
properties of 𝐿(𝐺), we ask how different the concepts of the line graph 𝐿(𝐺) and
that of the edge-complement graph 𝐺 are, by solving the equation 𝐿(𝐺) ≃ 𝐺. We
show that the equation has only two solutions. The proof uses an argument on
the degree of the vertices of a graph that allows to reduce the number of possible
solutions until they can be checked algorithmically. This gives an alternative proof
to the one by Aigner [1].

R e s u m e n : A partir de un grafo 𝐺 se pueden construir grafos relacionados, como
su grafo de líneas 𝐿(𝐺) y su grafo complemento de aristas 𝐺. Después de mostrar
cómo las propiedades de 𝐺 implican propiedades de 𝐿(𝐺), nos preguntamos cuán
diferentes son los conceptos del grafo lineal 𝐿(𝐺) y el del grafo complemento de
aristas 𝐺, resolviendo la ecuación 𝐿(𝐺) ≃ 𝐺. Demostramos que la ecuación tiene
solo dos soluciones. La prueba utiliza un argumento sobre el grado de los vértices
de un grafo que permite reducir el número de posibles soluciones hasta poder
comprobarlas algorítmicamente. Esto da una prueba alternativa a la de Aigner [1].
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A graph equation between the line graph and the edge-complement graph

1 . I n t r o d u c t i o n

Line graphs as well as edge-complement graphs allow to restate graph questions in sometimes easier
versions. In the following section, some relations between the properties of a graph and the respective
properties of its line graph are shown. The last section studies the graph equation 𝐿(𝐺) ≃ 𝐺 in order
to compare the line graph with the edge-complement graph. We find that there are exactly two graphs
whose line graphs and edge-complement graphs coincide. This result was first shown by Aigner [1], whose
argument uses the existence of a unique cycle in a possible solution. Here, we present an alternative proof
that is based on the degree of the vertices of a solution 𝐺. The possible degrees of vertices restrict the
number of vertices of a graph that is a solution to 𝐿(𝐺) ≃ 𝐺. The finite number of remaining cases are
checked in an algorithmic way, resulting in exactly two graphs whose line graphs and edge-complement
graphs are isomorphic.

2 . L i n e g r a p h : d e f i n i t i o n a n d p r o p e r t i e s

D e f i n i t i o n 1 . Let 𝐺 be a graph. The line graph 𝐿(𝐺) of 𝐺 is the graph with vertex set 𝑉(𝐿(𝐺)) = 𝐸(𝐺) and
two vertices 𝑢, 𝑣 ∈ 𝑉(𝐿(𝐺)) are connected by an edge in 𝐿(𝐺) if and only if their corresponding edges share
a common vertex in 𝐺. ◀

E x a m p l e 2 . A graph 𝐺 (left) and its line graph 𝐿(𝐺) (right) are shown in Figure 1. Edges of 𝐺 and their
corresponding vertices in 𝐿(𝐺) are shown in the same colour. ◀

F i g u r e 1 : A graph 𝐺 and its line graph 𝐿(𝐺).

The following proposition is an immediate consequence of Definition 1. It relates the number of edges
|𝐸(𝐿(𝐺))| and vertices |𝑉(𝐿(𝐺))| in 𝐿(𝐺) to the number of edges |𝐸(𝐺)| and vertices |𝑉(𝐺)| in 𝐺.

P r o p o s i t i o n 3 . Let 𝐺 be a graph. The degree of a vertex is the number of edges attached to that vertex. It
holds that |𝑉(𝐿(𝐺))| = |𝐸(𝐺)| and |𝐸(𝐿(𝐺))| = 1

2
∑𝑣∈𝑉(𝐺) deg 𝑣

2 − |𝐸(𝐺)|.

D e f i n i t i o n 4 . A property 𝒫 is preserved under the line graph operation if it follows from the graph 𝐺 having
property 𝒫 that its line graph 𝐿(𝐺) also has property 𝒫. ◀

The following proposition shows that several properties of graphs are preserved under the line graph
operation. We refer to the first chapter of the book [2] for the definitions.

P r o p o s i t i o n 5 . Let 𝐺 be a graph. The following implications are true:

( i ) If 𝐺 is connected, then 𝐿(𝐺) is connected.
( i i ) If 𝐺 is a 𝑘-regular graph, then 𝐿(𝐺) is a 2(𝑘 − 1)-regular graph.
( i i i ) Assume that 𝐺 and 𝐻 are two simple graphs. If 𝐻 is a graph quotient of 𝐺 via the action of a group

𝒜, then 𝐿(𝐻) is a graph quotient of 𝐿(𝐺) via the action of the same group 𝒜.

P r o o f . The proofs of the first two statements are direct consequences of Definition 1. For the third
statement, note that, by Definition 1, the vertices of 𝐿(𝐺) are the edges of 𝐺. From this and the assumption
that the graph𝐺 is simple, it follows that the group𝒜 acts freely on 𝐿(𝐺). On the other hand, the assumption
that 𝐻 is a simple graph implies that the action of 𝒜 on 𝐺 and on 𝐿(𝐺) is essentially the same. Therefore, a
graph morphism is defined between 𝐿(𝐻) and 𝐿(𝐺)/𝒜. It is straightforward to prove that the morphism is
indeed a graph isomorphism. ▪
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3 . T h e g r a p h e q u a t i o n 𝐿(𝐺) ≃ 𝐺
In this section we compare the line graph with the edge-complement of a graph. We find that, except for
two graphs, the line graph is different from the edge-complement.

D e f i n i t i o n 6 . Let 𝐺 be a simple graph. The edge-complement graph 𝐺 of 𝐺 is the graph that has the same
vertex set as 𝐺 and two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) are connected by an edge in 𝐺 if and only if they are not
connected by an edge in 𝐺. ◀

E x a m p l e 7 . Figure 2 shows an example of a graph 𝐺 (left) and its edge-complement 𝐺 (right). ◀

F i g u r e 2 : A graph 𝐺 and its edge-complement 𝐺.

A result similar to Proposition 3 is the following, whose proof follows directly from Definition 6.

P r o p o s i t i o n 8 . Let 𝐺 be a simple graph such that |𝑉(𝐺)| = 𝑛. If 𝐺 is not connected, then 𝐺 is connected.
Moreover, |𝐸(𝐺)| = (𝑛2) − |𝐸(𝐺)|.

In order to study the relations that exist between the line graph and the edge-complement operations, we
focus our attention on the following question: do there exist graphs 𝐺 with non-empty vertex set which
satisfy the equation

( 1 ) 𝐿(𝐺) ≃ 𝐺 ?

The set of solutions for (1) is not empty, since it is easily found that 𝐺 = 𝐶5, which is the cycle with 5
vertices, is isomorphic to both its line graph and its edge-complement (see Figure 3). In fact, 𝐺 = 𝐶5 is the
only regular graph that is a solution to (1).

F i g u r e 3 : The graph 𝐶5 fulfills 𝐿(𝐶5) ≃ 𝐶5 ≃ 𝐶5.

T h e o r e m 9 . The only solutions to the graph equation 𝐿(𝐺) ≃ 𝐺 are 𝐺 = 𝐶5 and the graph with six vertices
that is drawn left in Figure 4.

P r o o f . It follows from the properties of propositions 3, 5 and 8 that a candidate 𝐺 for a solution to (1) must
be connected and must have as many vertices as edges, say |𝑉(𝐺)| = |𝐸(𝐺)| = 𝑛. That is, if the number
of vertices of 𝐺 grows, the edge-complement graph 𝐺 will have a high number of edges, while the line
graph 𝐿(𝐺) will not. Thus, focusing on the degrees of vertices of 𝐺 allows to limit the maximum number of
vertices and edges that a 𝐺 that satisfies (1) is allowed to have.

Indeed, it follows from Definition 6 that 𝐺 cannot have vertices of degree 𝑛 − 1. If we assume 𝐺 to be
𝑘-regular, from propositions 3 and 8 we obtain that 𝑘2𝑛 = 𝑛(𝑛 − 1) and 𝑛𝑘 = 2𝑛. These two equations are
satisfied only if 𝑘 = 2 and 𝑛 = 5. Therefore, the only regular graph which is solution to (1) is 𝐶5.

Thus, we can assume that 𝐺 is not regular. This assumption implies that 𝐺must contain at least one vertex
of degree 1. Indeed, if it was not the case, then 𝐺 would have all vertices of degree at least 2 and at least
one vertex of degree at least 3 (because 𝐺 cannot be regular). This is a contradiction to the handshake
lemma (see [2, Theorem 1.1.1]).
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The existence of at least one vertex of degree 1 in 𝐺 implies that 𝐿(𝐺) must have at least one vertex of
degree 𝑛 − 2. For 𝐿(𝐺) to contain a vertex of degree 𝑛 − 2, there must exist an edge in 𝐺 with endpoints 𝑢
and 𝑤 such that deg 𝑢 + deg𝑤 = 𝑛. However, 𝐺 has only 𝑛 edges and vertices, and each vertex is at least of
degree 1 since 𝐺 is connected. Therefore, we are left with two cases: either 𝐺 has 𝑛 − 3 vertices of degree 1
and one vertex of degree 3 in addition to the vertices 𝑢 and 𝑤, or 𝐺 has 𝑛 − 4 vertices of degree 1 and two
vertices of degree 2 in addition to 𝑢 and 𝑤. In both cases, since 𝐺 cannot have vertices of degree 𝑛 − 1, it
is impossible for 𝐺 to have more than 7 vertices. This leaves us with a finite number of graphs that are
potential solutions and they can be checked individually as shown in the next section for graphs with
6 vertices. It is found that the graph that is drawn left in Figure 4 is the only non-regular solution to
equation (1). ▪

3 . 1 . A n a l g o r i t h m f o r t h e r e m a i n i n g c a s e s

Graphs with 𝑛 vertices that are solutions to equation (1) can be found algorithmically as outlined below.

For 𝐿(𝐺) ≃ 𝐺 to hold, the number of edges of the graphs must be equal. Propositions 3 and 8 obtain
|𝐸(𝐿(𝐺))| and |𝐸(𝐺)| from |𝐸(𝐺)|. Equating these two expressions, one obtains that 𝐺 must satisfy the
following equation:

( 2 ) ∑
𝑣∈𝑉(𝐺)

(
deg 𝑣
2

) =
𝑛2 − 3𝑛

2 .

From Definition 1, it follows that a vertex of degree 𝑑 in 𝐺 corresponds to (𝑑2) edges in the line graph
𝐿(𝐺). This observation together with formula (2) allows to list all combinations of degrees of vertices that
respect (2) for a fixed 𝑛. It is then easy to check whether the resulting graphs are solutions to equation (1).

E x a m p l e 1 0 . This example shows how the algorithm works for 𝑛 = 6. This case will give the only other
solution besides 𝐺 = 𝐶5 to the graph equation (1). First, we determine combinatorially the fourteen degree
combinations of 6 vertices that satisfy (2), i.e.,∑6

𝑖=1
(deg𝑣𝑖)2−deg𝑣𝑖

2
= 9. Among these, it is possible to remove

immediately all combinations which contain a zero, as 𝐺 must be a connected graph (as argued in the
proof of Theorem 9). Hence, only four possible combinations of degrees are left:

(1)∶ {4, 3, 1, 1, 1, 1} (2)∶ {4, 2, 2, 2, 1, 1} (3)∶ {3, 3, 3, 1, 1, 1} (4)∶ {3, 3, 2, 2, 2, 1}.

There is no graph with vertices of the degrees of (1) or (4), because these would require an odd number of
vertices of odd degree. From the remaining two cases, only the graph with degrees of (3) is a solution to
equation (1). The graph is shown in Figure 4. ◀

F i g u r e 4 : The graph 𝐺 on the left, its edge-complement 𝐺 in the middle, its line graph 𝐿(𝐺) on the right.
This is the only graph on six vertices with 𝐿(𝐺) ≃ 𝐺.
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A b s t r a c t : Due to its simplicity and geometric structure, the vortex filament equa-
tion (VFE) secures a unique place in fluid literature. The equation is a model
for the dynamics of a vortex filament (e.g., smoke rings, tornadoes, etc.) in a
three-dimensional inviscid incompressible fluid. In this work, we describe recent
progress on its behaviour for the polygonal-shaped filaments curves. More pre-
cisely, we concentrate on the evolution of VFE for regular polygons as the initial
data. Besides problem formulation, addressing it using theoretical and numerical
techniques, we discuss the time evolution of a single point located on the curve
which, in turn, follows a multifractal trajectory. Simultaneously, we also consider
the corresponding problem in the hyperbolic 3-space.

R e s u m e n : Debido a su simplicidad y estructura geométrica, la vortex filament
equation (VFE) ocupa un lugar único en la literatura de fluidos. La ecuación mode-
la la dinámica de un filamento de vórtice (p. ej., anillos de humo, tornados, etc.) en
un fluido incompresible no viscoso tridimensional. En este trabajo, describimos los
avances recientes en su comportamiento para las curvas de filamentos de forma
poligonal. Más precisamente, nos concentramos en la evolución de la VFE para
polígonos regulares como datos iniciales. Además de la formulación del problema,
abordando el mismo mediante técnicas teóricas y numéricas, se comenta la evo-
lución temporal de un único punto ubicado en la curva que, a su vez, sigue una
trayectoria multifractal. Simultáneamente, también consideramos el problema
correspondiente en el 3-espacio hiperbólico.

K e y w o r d s : vortex filament equation, Schrödinger map equation, numerical
methods for PDEs, multifractality, Talbot effect.
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Recent progress on VFE for regular polygons

1 . I n t r o d u c t i o n

The vortex filament equation (VFE) is a simplified model that describes the dynamics of an ideal fluid
whose vorticity is concentrated on a curve called vortex filament, i.e., smoke rings, tornadoes, etc. Given
by Da Rios in his PhD thesis in 1906, for an arc-length parametrized curve X representing a vortex filament
in three-dimensions, the VFE is expressed as [8]

( 1 ) X𝑡 = X𝑠 ∧ X𝑠𝑠, 𝑠 ∈ ℝ, 𝑡 ∈ ℝ,

where ∧ is the usual cross-product, 𝑠 arc-length and 𝑡 time parameter, and subscripts denote the partial
derivatives. The tangent vector T = X𝑠 solves the so-called Schrödinger map equation onto the sphere

( 2 ) T𝑡 = T ∧ T𝑠𝑠.

Due to its geometrical structure and properties, in the simplest form, (2) allows T to take its value
on the Euclidean unit sphere �2 = {(𝑥1, 𝑥2, 𝑥3) ∶ 𝑥21 + 𝑥22 + 𝑥23 = 1}, or, a hyperbolic one, i.e., ℍ2 =
{(𝑥1, 𝑥2, 𝑥3) ∶ −𝑥21 + 𝑥22 + 𝑥23 = −1, 𝑥1 > 0}. Note that, when T ∈ ℍ2, X lies in the Minkowski 3-space
ℝ1,2 = {(𝑥1, 𝑥2, 𝑥3) ∶ d𝑠2 = − d𝑥21 + d𝑥22 + d𝑥3}, and the cross product in (1)–(2) is given by a ∧ b =
(−(𝑎2𝑏3 − 𝑎3𝑏2), 𝑎3𝑏1 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑎2𝑏1). Moreover, with the curvature 𝜅, torsion 𝜏, the tangent T, normal
n and binormal b vectors of X form an orthonormal system and solve the Frenet–Serret formulas

( 3 ) (
T
n
b
)

𝑠

= (
0 𝜅 0
∓𝜅 0 𝜏
0 −𝜏 0

) ⋅ (
T
n
b
) ,

where the minus sign refers to the Euclidean and the plus sign to the hyperbolic cases. With this, in
1972, Hasimoto developed a relationship between (1)–(2) and the cubic nonlinear Schrödinger (NLS)
equation where the unknown is the wave function 𝜓(𝑠, 𝑡) = 𝜅(𝑠, 𝑡)e∫

𝑠
0 𝜏(𝑠

′,𝑡) d𝑠′. Thanks to this connection,
any advancement in the direction of (1)–(2) is equivalent to that for the NLS equation as well.

Apart from the explicit solutions of VFE, i.e., circle, straight line and helix, another important class is the
one-parameter family of the self-similar solutions which are characterized by a parameter 𝑐0 > 0. In
both Euclidean and hyperbolic cases, for a given time 𝑡 > 0, the curve X has a curvature 𝑐0/√𝑡 and a
torsion 𝑠/2𝑡 and it has been shown that, as the time 𝑡 tends to zero, it develops a corner and turns into two
non-parallel straight lines meeting at 𝑠 = 0. This implies that, at 𝑡 = 0, the corresponding tangent vector is
a Heaviside-type function and the initial solution of the NLS equation is a Dirac delta located at 𝑠 = 0. The
so-called one-corner problem has been well studied by Gutierrez et. al. and Banica et. al. theoretically, and
by Buttke and de la Hoz numerically in their PhD theses.

2 . S o m e p o l y g o n a l s o l u t i o n s o f ( 1 ) – ( 2 )

Motivating from curves with one corner otherwise smooth, it is natural to address the evolution of (1)–(2)
for curves with several corners. In this direction, we consider the simplest case of regular planar polygons
in both Euclidean and hyperbolic spaces followed by their extension to respective non-planar ones.

2 . 1 . R e g u l a r p l a n a r p o l y g o n s

The evolution of (1)–(2) forX(𝑠, 0) as a regular planar polygon is equivalent to that of the NLS equation with
initial datum 𝜓(𝑠, 0) = 𝑐0∑𝑘∈ℤ 𝛿(𝑠 − 𝑘𝛥𝑠), where 𝛥𝑠 is the side-length of the initial polygonal curve which
is equal to 2π/𝑀 for an𝑀-sided polygon in the Euclidean space and 𝑙 > 0 for a hyperbolic polygon and 𝑐0
depends on the initial configuration of the curve [3, 5]. By assuming uniqueness and using the Galilean
invariance of the NLS equation, followed by algebraic calculations, the time evolution of X and T can be
described up to a rigid movement for the rational multiples of the time-period. The numerical experiments
confirm that depending on the (denominator of) rationals, the polygonal curve develops more number of
sides, a behaviour reminiscent of the Talbot effect in optics. For the numerical computations, due to the
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2π spatial periodicity of T, a pseudo-spectral discretization is used in the Euclidean case; however, for
the hyperbolic case, a finite difference scheme with Dirichlet boundary conditions on T is employed; a
fourth-order Runge–Kutta method is used for the time evolution in both cases.

Furthermore, the time evolution of a single point, i.e., X(0, 𝑡) lies in a plane. This is displayed in Figure 1, for
an equilateral triangle which also shows that with a vertical translation at half time-period 𝑡 = π/𝑀2, the
triangle appears upside down and reappears at the end of the time-period 𝑡 = 2π/𝑀2. The latter is recorded
as the axis-switching phenomenon in fluid literature, for example, non-circular jets (for a qualitative
comparison see evolutions of an equilateral triangle, and a vortex filament). The right-hand side
of each subfigure in Figure 1 shows the projection of X(0, 𝑡) onto ℂ and the same after removing the
vertical height, denoted by 𝑧𝑀(𝑡) (or, 𝑧𝑙(𝑡) in the hyperbolic case). Nonetheless, as𝑀 becomes larger (or 𝑙
smaller), 𝑧𝑀(𝑡) (or 𝑧𝑙(𝑡)), converges to the so-called Riemann’s non-differentiable, given by the real part of

𝜙(𝑡) = ∑∞
𝑘=1

eiπ𝑘2𝑡

iπ𝑘2
, 𝑡 ∈ [0, 2], see Figure 2. Due to its multifractal character, the function 𝜙 is an important

object whose properties were studied by Jaffard in [6], and recently by Eceizabarrena in [2].
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F i g u r e 2 : 𝑧𝑙(𝑡), 𝑧𝑀(𝑡), for𝑀 = 3 (see [3, 5] for their precise definition), and 𝜙(𝑡).

2 . 2 . R e g u l a r p o l y g o n s w i t h a n o n z e r o t o r s i o n

For the arc-length parameterized X, the nonzero torsion can be introduced with the parameter 𝑏. In
the Euclidean case, 𝑏 ∈ [−1, 1] corresponds to the third component of the tangent vector, whereas
𝑏 ∈ (−∞,−1]∪ [1,∞) as the first component of T ∈ ℍ2, and 𝑏 ∈ (−∞,∞) as the third component result in
the circular helix and hyperbolic helix, respectively [4, 7]. Note that 𝑏 = 0 reduces back to the planar case
discussed above. In both settings, together with the parameters𝑀 or 𝑙 (giving side-length), 𝑏 determines
the curvature angle 𝜌0 and torsion angle 𝜃0. Moreover, by denoting 𝜓 as 𝜓𝜃 when 𝜃0 > 0, we have

( 4 ) 𝜓𝜃(𝑠, 0) = 𝑐𝜃,0ei𝛾𝑠 ∑
𝑘∈ℤ

𝛿(𝑠 − 𝑘𝛥𝑠) =
𝑐𝜃,0
𝑐0
ei𝛾𝑠𝜓(𝑠, 0),

with 𝛾 = 𝜃0/𝛥𝑠, and 𝑐𝜃,0 > 0, 𝛥𝑠, suitably chosen as mentioned above. Besides the algebraic solution,
with the numerical simulations, we detect the aperiodic movement of a corner initially at 𝑠 = 0 (e.g., see
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the link) and categorize it as Galilean shift and phase shift which also implies that X(0, 𝑡) is non-planar.
With a Fourier analysis of X(0, 𝑡) at a numerical level, different variants of 𝜙(𝑡) have been found whose
structure, in turn, depends on the initial torsion. More precisely, for 𝜃0 = π𝑐/𝑑, 𝑐, 𝑑 ∈ ℕ, gcd(𝑐, 𝑑) = 1, the
vertical movement of X(0, 𝑡) can be compared with the imaginary part of 𝜙𝑐,𝑑(𝑡) = ∑𝑘∈𝐴𝑐,𝑑

e2πi𝑘𝑡

𝑘
, to which

it converges as𝑀 tends to infinity or 𝑙 to zero (i.e., X(𝑠, 0) to a smooth helix), with

( 5 ) 𝑡 ∈ {
[0, 1/2] if 𝑐 ⋅ 𝑑 odd,
[0, 1] if 𝑐 ⋅ 𝑑 even,

𝐴𝑐,𝑑 = {
{𝑛(𝑛𝑑 + 𝑐)/2 ∣ 𝑛 ∈ ℤ} ∩ℕ if 𝑐 ⋅ 𝑑 odd,
{𝑛(𝑛𝑑 + 𝑐) ∣ 𝑛 ∈ ℤ} ∩ℕ if 𝑐 ⋅ 𝑑 even.

Similarly, strong numerical evidence is given that, for a given 𝑀 and as 𝑏 approaches 1 (i.e., X(𝑠, 0) to

a straight line), the stereographic projection of X(0, 𝑡) onto ℂ tends to 𝜙𝑀(𝑡) = ∑𝑘∈𝐴𝑀

e2πi𝑘2𝑡

𝑘2
, 𝑡 ∈ [0, 1],

where 𝐴𝑀 = {1} ∪ {𝑛𝑀 ± 1 ∣ 𝑛 ∈ ℕ}. Remark that, for 𝜃0 ≠ 0, 𝜓𝜃(𝑠, 0) is quasi-periodic and becomes
2π-periodic when 𝑏 → 1. Thus, through a very formal computation if, instead of the NLS equation, one
solves the initial value problem for the free Schrödinger equation 𝜓𝑡 = i𝜓𝑠𝑠, for (4) with 𝑏 ≈ 1, then

̂𝜓𝜃(𝑘, 𝑡) = e−i𝑘2𝑡 ̂𝜓𝜃(𝑘, 0), with ̂𝜓𝜃(𝑘, 0) = {
𝑀
2π

if 𝑘 ± 1 = 𝑛𝑀, 𝑛 ∈ ℕ,
0 else.

Then, bearing in mind the Hasimoto transformation and (1)–(3), X(0, 𝑡) can be related to ∫𝑡
0 𝜓𝜃(𝑠, ̃𝑡) d ̃𝑡, with

𝑠 = 0, which computed using ̂𝜓𝜃(𝑘, 𝑡) is 𝜙𝑀 up to a scaling factor. Nonetheless, the existence of 𝜙 and its
variants in the evolution of X(0, 𝑡) has been proved rigorously by Banica and Vega recently in [1].

3 . C o n c l u s i o n

Thus, the appearance of Riemann’s function (and its variants) in the evolution of polygonal curves indicates
that the evolution of (1)–(2) for smooth curves is not stable. That is, as the number of sides𝑀 tends to
infinity (or 𝑙 to zero), the polygonal curve approaches a smooth curve; however, when measured in the
right topology, the trajectory of a single particle located on it converges to a multifractal, unlike that of a
smooth curve (to compare, see the link). Recall that Riemann’s function satisfies the multifractal formalism
proposed by Frisch and Parisi [6]. Therefore, these latest results also contribute to the debate, which is
already more than a one-hundred-year-old, on the validity of the vortex filament equation as a simplified
model for understanding fundamental but complex natural phenomena such as turbulence.
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